
A A unifying framework

Data Distribution Model for Fast Weights Slow Weights Updates Evaluation

Supervised Learning S,Q ∼ C fθ = A(S) — L(fθ, Q)

Meta-learning {Ci}Mi=1 ∼ W
M

Si, Qi ∼ Ci
fθi = Aφ(Si)

∇φL(fθi , Qi)
∀i<N

∑M
i=N L(Aφ(Si), Qi)

Continual Learning S1:T , Q1:T ∼ C1:T fθ = CL(S1:T) —
∑
t L(fθ, Qt)

Meta-Continual Learning {Ci,1:T }Mi=1 ∼ W
M

Si,1:T , Qi,1:T ∼ Ci,1:T
fθi = CLφ(Si,1:T)

∇φ
∑
t L(fθi , Qi,t)
∀i<N

∑M
i=N

∑
t L(Aφ(Si,1:T), Qi,t)

Continual-meta learning S1:T , Q1:T ∼ C1:T fθt = Aφ(St−1) ∇φL(fθt , St)
∑
t L(Aφ(St), Qt)

OSAKA Q1:T ∼ C1:T fθt = Aφ(Qt−1) ∇φL(fθt , Qt)
∑
t L(fθt , Qt)

Table 4: A unifying framework for different machine learning settings. Data sampling, fast weights
computation and slow weights updates as well as evaluation protocol are presented with meta-learning
terminology, i.e., the support set S and query set Q. For readability, we omit OSAKA pre-training.

Meta-continual learning combines meta-learning and continual learning. A collection of M se-
quences of contexts is sampled i.i.d. from a distribution over sequences of contexts, WM , i.e.,
{Ci,1:T }Mi=1 ∼ WM and Si,1:T , Qi,1:T ∼ Xi,1:T | Ci,1:T . Next, the continual learning algorithm,
CLφ, can be learned using the gradient ∇φ

∑
t L(CLφ(Si,1:T), Qi,t), for i < N < M and eval-

uated on the remaining sets
∑M
i=N

∑
t L(CLφ(Si,1:T), Qi,t). As in continual learning, the target

distribution is fixed.

Continual-meta learning considers a sequence of datasets S1:T , Q1:T ∼ C1:T . At training or
continual-learning time, S1:T is both used as a support and query set: St is used as the query set and
St−1 as the support. Predictions at time t are made using fθt = Aφ(Qt−1). Since local stationarity
is assumed, the model always fails on its first prediction when the task switches. Next, using
lt = L(fθt , St), the learning of φ is performed using gradient descent of ∇φlt. The evaluation is
performed at the end of the sequence where Aφ recomputes fast weights using the previous supports
and is tested on the query set, i.e.,

∑
t L(Aφ(St), Qt). Similar to meta-learning, continual-meta

learning allows for context-dependent targets.

15

B Algorithms

Algorithm 3: Continual-MAML
1 Require: P (Cpre), P (Ccl): distributions of contexts (or tasks)
2 Require: γ, λ: threshold and regularization hyperparameters
3 Require: η: step size hyperparameter
4 Initialize: φ, θ: Meta and fast adaptation parameters
5 Initialize: ηφ: learnable inner loop learning rate
6 Initialize: B: buffer of incoming data
7 while pre-training
8 Sample batch of contexts (or tasks) {Ci}Bi=1 ∼ P (Cpre)
9 foreach Ci do

10 Sample data from context xi,yi ∼ P (x,y|Ci)
11 θi ← φ− φη∇φL

(
fφ(xi[: k]),yi[: k]

)
12 end
13 φ← φ− η∇φ

∑
i L
(
fθi(xi[k :]),yi[k :]

)
14 end
15 Initialize: current parameters θ0 ← φ
16 while continually learning
17 Sample current context Ct ∼ P (Ccl|Ct−1)
18 Sample data from context xt,yt ∼ P (Ct)
19 Incur loss L

(
fθt−1

(xt),yt
)

20 Virtual model θ̃t ← φ− φη∇φL
(
fφ(xt),yt

)
21 if L

(
fθt−1

(xt),yt
)
− L

(
fθ̃t(xt),yt

)
< γ

22 # No context shift detected
23 Further fine tune the fast parameters

θt ← θt−1 − φη∇θL
(
fθt−1

(xt),yt
)

24 Add (xt,yt) to buffer B
25 else
26 # Task boundary detected
27 Sample training data from buffer xtrain,ytrain ∼ B
28 Fast adaptation θ ← φ− φη∇φL

(
fφ(xtrain),ytrain

)
29 sample test data from buffer xtest,ytest ∼ B
30 Modulated learning rate ηt ← ηgλ

(
L
(
fθ(xtest),ytest

))
31 Update Meta parameters φ← φ− ηt∇φL

(
fθ(xtest),ytest

)
32 Reset buffer B
33 Reset fast parameters θt ← φ− φη∇φL

(
fφ(xt),yt

)
34 t← t+ 1
35 end

16

Algorithm 4: Continual-MAML w/o Prolonged Adaptation Phase
1 Require: P (Cpre), P (Ccl): distributions of contexts (or tasks)
2 Require: γ, λ: threshold hyperparameters
3 Require: η: step size hyperparameter
4 Initialize: φ, θ: Meta and fast adaptation parameters
5 while pre-training
6 Sample batch of contexts (or tasks) {Ci}Bi=1 ∼ P (Cpre)
7 foreach Ci do
8 Sample data from context xi,yi ∼ P (Ci)
9 θi ← φ− φη∇φL

(
fφ(xi[: k]),yi[: k]

)
10 end
11 φ← φ− η∇φ

∑
i L
(
fθi(xi[k :]),yi[k :]

)
12 end
13 Initialize: current parameters θ0 ← φ
14 while continually learning
15 Sample current context Ct ∼ P (Ccl|Ct−1)
16 Sample data from context xt,yt ∼ P (x,y|Ct)
17 Incur loss L

(
fθt−1

(xt),yt
)

18 Reset fast parameters θt ← φ− φη∇φL
(
fφ(xt,yt

)
19 if L

(
fθt−1

(xt),yt
)
− L

(
fθt(xt),yt

)
< γ

20 # No task boundary detected

21 Modulated learning rate ηt ← ηgλ

(
L
(
fθi−1

(xt),yt
))

22 φ← φ− ηt∇φL
(
fθt−1

(xt),yt
)

23 t← t+ 1
24 end

17

C Related Work

Our method intersects the topics of continual learning, meta learning, continual-meta learning,
and meta-continual learning. For each of these topics, we describe the related work and current
state-of-the-art methods.

Continual learning. Given a non-stationary data stream, standard learning methods such as
stochastic gradient descent (SGD) are prone to catastrophic forgetting as the network weights adapted
to the most recent task quickly cannot perform the previous ones anymore. Many continual learning
approaches have been proposed in recent years, which can be roughly clustered into: (1) replay-based
methods, (2) regularization-based methods, and (3) parameter-isolation methods. Replay-based
methods store representative samples from the past, either in their original form (e.g., rehearsal
methods [59, 26, 63, 2], constrained optimization based on those samples [45]), or in a compressed
form, e.g., via a generative model [2, 8, 53, 41]. However, those methods require additional storage,
which may need to keep increasing when the task sequence is longer. Regularization-based or
prior-based approaches [35, 50, 83] prevent significant changes to the parameters that are important
for previous tasks. Most prior-based methods rely on task boundaries. However, they fail to prevent
forgetting with long task sequences or when the task label is not given at test time [14, 43]. The
third family, parameter isolation or dynamic architecture methods, attempts to prevent forgetting by
using different subsets of parameters for fitting different tasks. This is done either by freezing the
old network [81, 67] or growing new parts of the network [40, 66]. Dynamic architecture methods,
however, usually assume that the task label is given a test time, which reduces their applicability in
real-life settings.

Meta learning. Learning-to-learn methods are trained to infer an algorithm that adapts to new
tasks [65]. Meta learning has become central for few-shot classification [58, 78, 52]. A commonly
used meta-learning algorithm is MAML [15], which optimizes the initial parameters of a network
such that adapting to a new task requires few gradient steps. ANIL [57] is another variation of meta
learning that requires only adapting the network’s output layer or head to the new tasks. These
algorithms leverage gradient descent to learn a feature representation that is common among various
tasks, but they are not suitable when the new tasks have a drastic distribution shift from the existing
tasks. Despite the limitations of meta-learning methods, they can be adapted to address the challenges
of continual learning, as we will describe below.

Meta-continual learning. Since non-stationary data distributions breaks the i.i.d assumption for
SGD, it is natural to consider continual learning as an optimization problem where the learning rule
learns with non-stationary data. Therefore, some recent works focus on learning a non-forgetting
learning rule with meta learning, i.e., meta-continual learning.

In Javed and White [28], the model is separated into a representation learning network and a prediction
learning network. The representation learning network is meta learned so that the prediction learning
part can be safely updated with SGD without forgetting. In Vuorio et al. [79], a gradient-based
meta-continual learning is proposed. The update is computed from a parametric combination of
the gradient of the current and previous task. This parametric combination is trained with a meta
objective that prevents forgetting.

These approaches are all limited by the fundamental assumption of meta learning that the distribution
of the meta testing set matches that of the meta training set. Thus it is not guaranteed that the meta-
learned representation or update rule is free of catastrophic forgetting when OoD data is encountered
in the future. Despite that, meta-continual learning is actively researched [61, 6].

Continual-meta learning. Recently, several methods emerged that address the continual-meta
learning setup. FTML [16] extends the MAML algorithm to the online learning setting by incorporat-
ing the follow the leader (FTL) algorithm [22]. FTL provides an O(log T) regret guarantee and has
shown good performance on a variety of datasets. Dirchlet-based meta learning (DBML) [29] uses a
Dirchlet mixture model to infer the task identities sequentially.

More relevant to our work, MetaBGD [24] addresses the problem of fast remembering when the
task segmentation is unavailable. MOCA [23] extends meta-learning methods with a differentiable
Bayesian change-point detection scheme to identify whether a task has changed. Continual-meta
learning is now an active research field [46, 5].

18

C.1 Contrasting OSAKA and MOCA’s framework

In this section, we contrast OSAKA with the recently introduced framework showcasing meta-learning
via online changepoint analysis (MOCA) [23]. We are incentivized to discuss these differences
because both frameworks can appear similar. Specifically, OSAKA and MOCA’s framework represent
the tasks or contexts as a hidden Markov chain. However, both settings are fundamentally different
and the similarities are superficial. We now highlight their core differences.

Context-dependent targets In most CL scenarios including in the MOCA’s framework, the joint
distribution pt(x, y) changes through time via the input distribution pt(x). The target distribution
p(y|x) however is fixed (i.e., pt(y|x) = p(y|x)). In other words, in standard incremental CL, new
labels still appear even though pt(y|x) is fixed: they appear via pt(x) moving its probability mass to
new classes.

OSAKA is more general because it allows for drift in the target distribution pt(y|x) as well. This is
achieved through the latent context variable C as detailed in Section 3. In other words, pt(y|x) =
p(y|x, ct). This is a common scenarios in partially-observable environments [48, 18] or more
generally to any case where a prediction depends on the context, e.g. time-series prediction.

Out-of-distribution tasks Similar to Javed and White [28], Beaulieu et al. [6], MOCA’s framework
allows for pre-training. However, all those frameworks test their models on similar data at CL time,
i.e., new classes from the same dataset. They thus make strong assumptions about the data distribution
that the CL agent will be exposed to at deployment time. This assumption can limite the real-world
applicability of current methods.

In OSAKA, pre-training is also allowed. However, at CL time, the model will be tested on OoD data
distribution w.r.t the pre-training one (see Section 3. OSAKA thus helps us analyze robustness of
algorithms to data distribution(s) outside of the pre-training one. It is thus more aligned with real-life
cases of CL.

Expanding set of labels In MOCA’s framework, all classes are known a priori (see Section B2 in
Harrison et al. [23]). They do not allow for an expanding set of labels over time, which is a central
idea in CL [35, 45, 59, 14, 2, 4, 68, 28, 11]. MOCA’s framework is closer to domain-incremental
learning [76], i.e., classes are fixed but new variations can appear within them.

Similarly to standard CL, OSAKA allows for an expending set of labels. Thus, algorithms’ capacity
to incrementally learn new concepts is studied in OSAKA.

To conclude, the main contribution of Harrison et al. [23] is a new algorithm: MOCA. In contrast,
OSAKA is a new CL evaluation framework aiming to push CL beyond its current limits. We
acknowledge that changepoint detection is important for continual learning and refer the readers to
[23] for a review of the changepoint detection literature.

19

D Datasets and Baselines

Figure 3: Benchmarks. We evaluate
our setup on three different benchmarks,
each one depicted in one row: Om-
niglot/MNIST/FashionMNIST, Synbols, and
Tiered-ImageNet.

PRE-TRAIN CL TIME

MODEL MAML ANIL MAML SGD BGD UM/PAP

ONLINE ADAM × × ×
√

× ×
FINE TUNING ×

√
×

√
× ×

BGD [83] × × × ×
√

×
MAML [15]

√
× × × × N/A

ANIL [57] ×
√

× × × N/A

METABGD [24] × ×
√

×
√

×
METACOG [24] × ×

√
×

√
×

CONTINUAL-MAML
√

×
√

× ×
√

Table 5: Baseline comparison. Columns 2–3 con-
tain pre-training algorithms. Columns 4–7 show
training algorithms at continual learning time. UM
and PAP stand for update modulation and Pro-
longed adaptation phase, respectively, and are ex-
plained in Section 4.

E Experiment Details

The procedure followed to perform the experiments in Section 6 is described next in detail. The code
to reproduce the experiments is publicly available at https://github.com/ElementAI/osaka.

For all experiments, we used a 4-layer convolutional neural network with 64 hidden units as commonly
used in the few-shot literature [78, 70, 73, 62]. All the methods were implemented using the PyTorch
library [55], run on a single 12GB GPU and 4 CPUs .

E.1 Hyperparameter search

Hyperparameters were found by random search. During hyperaparmeter search, we allocated the
same amount of trials for each method, i.e., each line in the reported Tables. We used Adam [34] for
the outer-loop optimization and SGD in the inner (for meta-learning methods). For each trial, we
sampled uniformly a method and then sampled hyperparameters uniformly according to the search
space defined in Table 7. Each for each hyperparameter trial, we ran two continual learning episodes
with different seeds. The seeding impacts the neural net initialization as well as what data stream the
algorithm will be exposed to. Whenever the first ran didn’t return a cumulative accuracy better than
random, we omitted the second run. We allocated equal amount of trials to both non-stationary levels
α ∈ {0.90, 0.98}. We dedicated a fix amount of compute for each benchmarks and further provide
specific details in the rest of this section.

Omniglot / MNIST / FashionMNIST For this benchmark, we allocated a total of 12.5 days of
compute. This allowed for 935 trials of which 381 were better than random.

Synbols For this benchmark, we allocated a total of 19.5 days of compute. This allowed for 1,309
trials of which 340 were better than random.

Tiered-Imagenet For this benchmark, we allocated a total of 62 days of compute. We only ran 1
seed per trials which allowed for 934 trials.

For all benchmarks, concerning the runtime per trials, because BGD requires 5 times more compute
than SGD, the BGD baseline took approximately five time longer to run than Online ADAM.
Similarly, MetaBGD took approximately 5 time longer to run than C-MAML. Moreover, methods
with meta-learning took approximately 5 times longer than methods without.

20

https://github.com/ElementAI/osaka

We add the following clarification: we do not need a validation set in OSAKA, as there is no training
error. Specifically, in the CL episodes, algorithms always make prediction on held-out data.

As for the evaluation runs, the best sets of hyperparameters are used to evaluate the methods on 20
new runs. The algorithms are thus exposed to 20 new CL episodes. For clarification, we do not use
the best models found in the hyperparameter-search: we only use the hyperparameters to train and
evaluate new models.

MODEL η BATCH SIZE INNER-STEP SIZE INNER ITERS FIRST ORDER MC SAMPLES β σ γ λ

ONLINE ADAM
√

× × × × × × × × ×
FINE TUNING

√ √
× × × × × × × ×

MAML [15]
√ √ √ √ √

× × × × ×
ANIL [57]

√ √ √ √ √
× × × × ×

BGD [83]
√

× × × ×
√ √ √

× ×
METABGD [24]

√ √ √ √ √ √ √ √
× ×

METACOG [24]
√ √ √ √ √ √ √ √

× ×
CONTINUAL-MAML

√
×

√ √ √
× × × × ×

CONTINUAL-MAML + PRE.
√ √ √ √ √

× × × × ×
CONTINUAL-MAML + UM

√
×

√ √ √
× × ×

√
×

CONTINUAL-MAML + PAP
√

×
√ √ √

× × × ×
√

Table 6: Method’s hyperparameters. η is the step-size or outer-step size for meta-learning methods.
Batch size is only needed for methods with pre-training. For methods using meta-learning, we
searched the inner-step size, the number of inner iterations (inner iters) and the use of the first order
approximation of MAML. BGD related hyperparameters, i.e., MC samples, β and σ are explained
in Appendix G.1. γ and λ are specific of Continual-MAML and operate the update modulation and
prolonged adaptation phase mechanisms, respectively. For readability, we omitted 2 hyperparameters
related to MetaCOG and refer to the codebase for completeness.

η 0.0001 0.0005 0.001 0.005 0.01
Batch size 1 2 4 8 16
Inner-step size 0.0005 0.001 0.005 0.01 0.05 0.1 0.5
Inner iters 1 2 4 8 16
First Order True False
MC Samples 5
β 0.5 1.0 10.
σ 0.001 0.01 0.1
γ 0.25 0.5 1.0 2.0 3.0 5.0
λ 0.25 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0

Table 7: Hyperparameter search space.

21

F Extra Results

In this section, we provided further results as well as more details about baselines.

F.1 Omniglot / MNIST / FashionMNIST

In Table 8, we report the full results for the Omniglot / MNIST / FashionMNIST experiment. Contrary
to the other experiments, we found that C-MAML pre-training didn’t improve results. We thus focus
the ablation on C-MAML instead of C-MAML + Pre.

α = 0.98 α = 0.90
MODEL TOTAL OMNIGLOT MNIST FASHION TOTAL OMNIGLOT MNIST FASHION

ONLINE ADAM 73.9 ±2.2 81.7 ±2.3 70.0 ±3.6 62.3 ±2.5 23.8 ±1.2 26.6 ±2.0 20.0 ±1.4 22.1 ±1.3
FINE TUNING 72.7 ±1.7 80.8 ±2.0 68.7 ±2.8 59.6 ±3.1 22.1 ±1.1 25.5 ±1.5 18.1 ±1.9 19.2 ±1.6
MAML [15] 84.5 ±1.7 97.3 ±0.3 80.4 ±0.3 63.5 ±0.3 75.5 ±0.7 88.8 ±0.4 68.1 ±0.5 56.2 ±0.4
ANIL [57] 75.3 ±2.0 95.1 ±0.6 58.7 ±2.9 49.7 ±0.3 69.1 ±0.8 88.3 ±0.5 52.4 ±0.6 47.6 ±0.9
BGD [83] 87.8 ±1.3 95.1 ±0.5 86.9 ±1.1 74.4 ±1.1 63.4 ±0.9 72.8 ±1.2 55.9 ±2.2 51.7 ±1.3
METACOG [24] 88.0 ±1.0 95.2 ±0.5 87.1 ±1.5 74.3 ±1.5 63.6 ±0.9 73.5 ±1.3 55.9 ±1.8 51.7 ±1.4
METABGD [24] 91.1 ±2.6 96.8 ±1.5 92.5 ±1.9 77.8 ±3.8 74.8 ±1.1 83.1 ±1.0 71.7 ±1.5 61.5 ±1.2
C-MAML 89.5 ±0.7 95.4 ±0.4 91.1 ±0.9 76.6 ±1.3 82.6 ±0.4 87.8 ±0.4 84.6 ±1.0 70.3 ±0.7
C-MAML + KWTO 92.2 ±0.5 97.1 ±0.3 94.1 ±0.8 80.5 ±1.4 84.5 ±0.4 88.6 ±0.5 86.2 ±0.6 74.2 ±0.8
C-MAML + KWTO + ACC. 92.8 ±0.6 97.8 ±0.2 93.9 ±0.8 79.9 ±0.7 83.3 ±0.4 89.0 ±0.5 84.5 ±0.7 71.1 ±0.7

Table 8: Omniglot / MNIST / FashionMNIST experiment

F.2 Hyperparameter Sensitivity Analysis

In this section, we analyze the update modulation (UM) and prolonged adaptation phase (PAP)
mechanisms we introduce in C-MAML. Their respective hyperparameters are λ and γ.

We perform the analysis on Synbols for the following reasons: (i) It is harder to solve than the
Omniglot benchmark; (ii) Models train faster than Tiered-Imagenet; (iii) It is the only benchmark
with an OoD task in which the pre-training data is bestowed a new semantic meaning, i.e., the font
classification task.

We analyze the higher non-stationarity setting of α = 0.98. setting. This setting puts emphasis on
challenging the fundamental i.i.d assumption that CL is interested in solving.

Update Modulation

We analyze the effect of λ parameterizing gλ : R→ (0, 1). We use gλ to modulate the learning rate
proportionally to the loss (see Alg. 2, L23). λ provides a smooth interpolation between the behavior
of MAML and Continual-MAML. When λ = 0, Continual-MAML + UM collapses to MAML.
When λ = inf , Continual-MAML + UM collapses to Continual-MAML. In Figure 4, we show the
effect of λ on the online cumulative accuracy (same metric as reported elsewhere) which we obtained
from our hyperparameter search. Interestingly, all values of λ consistently increased the performance
of Continual-MAML + UM with respect to MAML and Continual-MAML. This increase is due to
two reasons. First, MAML (λ = 0) cannot accumulate knowledge about the OoD tasks. Second,
Continual-MAML (or λ = inf) overfits its slow parameters φ to the current tasks, interfering with
previous knowledge too aggressively.

Prolonged Adaptation Phase

To enable PAP, we need a mechanism to dectect the task boundary (or the context shifts). We propose
a simple yet effective context shift detection mechanism which monitors the difference in loss with
respect to the previous task and is controlled by a hyperparameter γ (Alg. 2, L20). Setting γ to high
values will increase precision but reduce recall, and vice-versa. In Figure 5 we report precision and
recall with respect to multiple values of γ. We can see that, when tuned appropriately, this mechanism
can achieve near-perfect F1 scores, as highlighted by the trials near the top right corner.

The effectiveness of PAP is shown in Figure 6. Specifically, we show that, across all values of γ, PAP
increases the average performance of Continual-MAML. Again, the proposed mechanism is robust to
its hyperparameter.

22

0
(MAML)

0.25 0.5 1 2 3 5 inf.
(C-MAML)

0.4

0.6

0.8
Ac

cu
ra

cy

Figure 4: Update modulation (UM) analysis. The proposed mechanism is robust to its hyperparam-
eter λ and consistently increases average and maximum performance

Figure 5: Precision (y-axis) and Recall (x-axis) for task boundary detection as a function of γ (color).
Left: all trials are plotted, Right: trials are grouped by γ and the average is reported

23

C-MAML C-MAML + PAP

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Figure 6: Prolonged adaptation phase (PAP) analysis. The proposed mechanism increases average
and maximum performance.

24

G Extra Notes

G.1 Bayesian Gradient Descent

Bayesian Gradient Descent (BGD) is a continual learning algorithm that models the distribution of the
parameter vector φ by a factorized Gaussian. Similarly to [24] we apply BGD during the continual
learning phase. BGD models a the distribution of the parameter vector φ by a factorized Gaussian
q(φ) =

∏
iN (φi|µi, σ2

i). Essential motivation behind BGD is that σ models the uncertainty of the
estimation of the parameter φ. Hence parameters with higher uncertainty should be allowed to change
faster than the parameters with lower σ, which are more important for preserving knowledge learned
so far. BGD leverages variational Bayes techniques [21] and introduces an explicit closed-form
update rule for the parameters µi and σi:

µi =µi − βσ2Eε(
∂L
(
fθt−1

(Xt), Yt
)

∂φ
),

σi =σi

√
1 + (

1

2
σiEεi [

∂L
(
fθt−1

(Xt), Yt
)

∂φi
εi])−

1

2
σiEεi [

∂L
(
fθt−1

(Xt), Yt
)

∂φi
εi],

where the expectations are approximated using Monte Carlo sampling and the re-parametrization
trick is used as φi = µi + σiεi, εi ∼ N (0, 1).

25

H Q&A

Here you can find reviewers questions and concerns and our answers that we couldn’t address in the
main part of the paper due to space limitation.

Pre-training limits the generality of OSAKA and adds computational needs. We disagree. OS-
AKA aligns with the deployment of CL systems in real life (Sec. 1 & 3) and it would be more realistic
to deploy an agent with some knowledge of the world. Nevertheless, pre-training is not mandatory,
although prescribed, and we have a baseline that does use it (C-MAML). Furthermore, it is currently
more computationally efficient to learn on i.i.d. data at pre-training than on non-stationary data at CL
time and pre-training is a one-time cost compared to CL which is a recurring one.

Why putting features of different frameworks together is useful for continual learning evalua-
tion? We unified and extended these features to create a more realistic setting than the ones studied
in the previous literature. Other frameworks study some of the features in silos but when methods
are tested in less realistic settings some methods perform better than they should [12]. See Sec. 6.3
(under dynamic representations) for such an example.

I think it is strange that MAML performs better in the 0.90 setting. The reviewer’s intuition
is right. However, C-MAML needs to predict correctly the context switches otherwise it will get
mixed gradients from different tasks. Thus, α= 0.90 can be more challenging for methods with
dynamic representations when the OoD tasks are not too far from the pre-training ones, as in the
Tiered-Imagenet experiment.

Without task revisits, does φ stop being suitable for few-shot learning? It stays suitable because
it is still trained with the MAML loss, which optimizes for few-shot learning.

26

	A unifying framework
	Algorithms
	Related Work
	Contrasting OSAKA and MOCA's framework

	Datasets and Baselines
	Experiment Details
	Hyperparameter search

	Extra Results
	Omniglot / MNIST / FashionMNIST
	Hyperparameter Sensitivity Analysis

	Extra Notes
	Bayesian Gradient Descent

	Q&A

