
Appendix of GAN Memory with No Forgetting

Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, Lawrence Carin
Department of ECE, Duke University

A Experimental settings

For all experiments about GAN memory and MeRGAN, we inherit the architecture and experimental
settings from GP-GAN [49]. Note, for both GAN memory and MeRGAN, we use the GP-GAN
model pretrained on CelebA. The architecture for the generator is shown in Figure 7, where we
denote the mth residual block as Bm and the nth convolutional layer within residual block as Ln.
In the implementation of GAN memory, we apply style modulation on all layers except the last
Conv layer for generator, and apply the proposed style modulation on all layers except the last FC
layer for discriminator. Adam is used as the optimizer with learning rate 1× 10−4 and coefficients
(β1, β2) = (0.0, 0.99). For the discriminator, gradient penalty on real samples (R1-regularizer) is
applied with γ = 10.0. For MeRGAN, the Replay alignment parameter is set as λRA = 1× 10−3,
which is the same as their publication.

FC

Residual Block

Residual Block

Residual Block

Residual Block

Residual Block

Residual Block

Convolution

(a)

LeakyReLU

Convolution

LeakyReLU

Convolution

(b)

Residual BlockB0

B1

B2

B3

B4

B5

B6

L0

L1

(a) Generator,

Residual

Block

Figure 7: (a) The generator architecture adopted in this paper. (b) The detailed architecture of the residual block.

All images are resized to 256× 256 for consistency. The dimension of the input noise is set to 256
for all tasks. The FID scores are calculated using N real and generated images, for the dataset with
less than 10,000 images, we set N as the number of data samples; for the dataset with larger than
10,000 samples, we set N as 10,000.

B On Figure 1(b)

To demonstrate that the introduced trainable parameters in our GAN memory is enough to manage a
decent performance on new task. We test its performance via FID and compare with a strong baseline
Fine-tuning.

On the Fine-tuning method. It inherits the architecture from GP-GAN which is the same as the
green/frozen part of our GAN memory (see Figure 1(a)). Given a target task/data (e.g., Flowers,
Cathedrals, or Cats), all the parameters are trainable and fine-tuned to fit the target data. We consider
Fine-tuning as a strong baseline because it utilizes the whole model power on the target data.

15

C On Figure 2

For all illustrations, we train GAN memory on the target data and record the well trained style
parameters as {γ,β, bFC,Γ,B, bConv}t=1. According to equation (4) and (5), we can represent the
style parameters for the source data CelebA as {γ,β, bFC,Γ,B, bConv}t=0 = {µ,σ,0,M,S,0}.
Then, we can get the generation by selectively replacing {γ,β, bFC,Γ,B, bConv}t=0 with
{γ,β, bFC,Γ,B, bConv}t=1. Note, for Figure 2(a)(b) the operations are explained within one specific
FC/Conv layer, one need to apply it to all layers in real implementation. The detailed techniques are
as follows.

On Figure 2(a). Take the target data Flowers as an example,

• “None” means no modulation from target data is applied, we only use the modulation from the
source data {µ,σ,0,M,S,0} and get face images;

• “γ/Γ Only” means that we replace the γ/Γ parameters from source data with the one from target
data, namely using the modulation {{γ}t=1,σ,0, {Γ}t=1,S,0} for generation;

• “β/B Only” means that we replace the β/B parameters from source data with the one from target
data, namely using the modulation {µ, {β}t=1,0,M, {B}t=1,0} for generation;

• “bFC/bConv Only” means that we replace the bFC/bConv parameters from source data with the one
from target data, namely using the modulation {µ,σ, {bFC}t=1,M,S, {bConv}t=1} for generation;

• “All” means all style parameters from target data {γ,β, bFC,Γ,B, bConv}t=1 are applied and the
model generates flowers;

On Figure 2(b).

• “All” is obtained via a similar way to that of Figure 2(a);
• “w/o bFC/bConv” means using the style parameters from target data without bFC/bConv, namely

using the modulation {{γ}t=1, {β}t=1,0, {Γ}t=1, {B}t=1,0} for generation;

On Figure 2(c).

• “None” and "All” are obtained via a similar way to that of Figure 2(a);
• “FC” is obtained by applying a newly designed style parameters which copies the style parameters

for source data and replaces these style parameters within FC layer with the style parameters within
the FC layer for target data;

• “B0” is obtained by copying the designed style parameters under the “FC” setting and replacing
these style parameters within B0 block with those from target data;

• “B1” is obtained by copying the designed style parameters under the “B0” setting and replacing
these style parameters within B1 block with those from target data;

• and so forth for the later blocks.

D On Figure 3

D.1 On Figure 3(a)

The ablation study is conducted to test the effect the normalization operation and the bias term on
GAN memory.

• “Our” is our GAN memory;
• “NoNorm” is a modified version of our GAN memory which removes the normalization on W/W

in Equation (4)/(5) and results in,

Ŵ = γ �W + β

and
Ŵ = Γ�W + B

• “NoBias” is a modified version of our GAN memory which removes the bias term bFC/bConv in
Equation (4)/(5) and results in,

b̂ = b

16

D.2 On Figure 3(b)

Here we discuss the detailed techniques for interpolation among different generative processes
with our GAN memory and show more examples in Figure 8, 9, 10, and 11. Taking the smooth
interpolation between flowers and cats generative processes as an example, we do the following
procedures to get the results.

• Train GAN memory on Flowers and Cats independently and get the well trained style parameters
for Flowers as {γ,β, bFC,Γ,B, bConv}t=1 and for Cats as {γ,β, bFC,Γ,B, bConv}t=2;

• Sample a bunch of random noise z (e.g., 8 random noise vectors) and fix it;
• Get the interpolated generation by dynamically combining the two sets of style parameters via

(1− λInterp){γ,β, bFC,Γ,B, bConv}t=1 + λInterp{γ,β, bFC,Γ,B, bConv}t=2,

with λInterp varying from 0 to 1.

Note, the task CelebA has been well pretrained and we can obtain the style parameters directly as
{γ,β, bFC,Γ,B, bConv}t=0 = {µ,σ,0,M,S,0}.

17

Figure 8: Smooth interpolations between faces and flowers generative processes via GAN memory.

18

Figure 9: Smooth interpolations between flowers and cats generative processes via GAN memory.

19

Figure 10: Smooth interpolations between cats and cathedrals generative processes via GAN memory.

20

Figure 11: Smooth interpolations between cathedrals and Brain-tumor images generative processes via GAN
memory.

E More results for Section 5.1

Given the same model pretrained for CelebA, we train GAN memory and MeRGAN on a sequence of
tasks: Flowers (8,189 images), Cathedrals (7,350 images), Cats (9,993 images), Brain-tumor images
(3,064 images), Chest X-rays (5,216 images), and Anime images (115,085 images). When task t
presents, only the data from Dt is available, and GAN memory/MeRGAN is expected to generate
samples for all learned tasks D1, · · · ,Dt. Due to the limited space, we only show part of the results
in Figure 5. To make it clearer, Figure 12 shows a complete results with the generations for all tasks
along the training process listed.

21

T3T2T1T0 T4 T5 T6

T3T2T1T0 T4 T5 T6

(a) GAN Memory

(b) MeRGAN

Figure 12: Comparing the generated samples from GAN memory (top) and MeRGAN (bottom) on lifelong
learning of a sequential generation tasks: Flowers, Cathedrals, Cats, Brain-tumor images, Chest X-rays, and
Anime images. MeRGAN shows an increasing blurriness along the task sequence, while GAN memory can
learn to perform the current task and remembering the old tasks realistically.

F Experimental settings for lifelong classification

Given a sequence of 6 tasks: fish, bird, snake, dog, butterfly, and insect selected from ImageNet.
Each task is a classification problem over six categories/sub-classes. We employ the challenging
class-incremental learning setup, when task t presents, the classifier (have been trained on previous
t− 1 tasks) is expected to accurately classify all observed 6t categories (namely, the previous 6(t− 1)
categories plus the current 6 categories). There are 6 × 6 = 36 categories/sub-classes in total, for
each category/sub-class, we randomly select 1200 images for training and 100 for testing.

As for the classification model, we select the pretrained ResNet18 model for ImageNet. The optimizer
for classification is selected as Adam with learning rate 1 × 10−4 and coefficients (β1, β2) =
(0.9, 0.999).

For EWC, we adopt the code from [78], and set the parameters as λEWC = 104. We also tried the
setting λEWC = 109 used in [86], however, the results shows that λEWC = 109 is too strong in our
case, e.g., when the learning proceeds to task 5/6, the parameters are strongly pinned to the one
learned for previous tasks, which makes it difficult to learn the new/current task, and the accuracy for
the current task kept almost 0. For GAN memory and MeRGAN, we adopt the two step framework
from [72], every time a new task t presents, we (i) train GAN memory/MeRGAN (which has already
remembered all the previous tasks 1 ∼ t− 1) to remember the generation for both the previous tasks
and the current task; (ii) at the same time, train the classifier/solver on a combined dataset: real
samples for current task with their labels provided and generated samples for previous tasks replayed
by GAN memory/MeRGAN. Since we apply label conditioned generation, where the category is an
input, the replay process can be readily controlled with the reliable sampling of (x,y) pairs (e.g.,
sample the label y and noise z first and then sample data x via the generator x = G(z,y)), which is
considered effective in avoiding potential classification errors and biased sampling towards recent
categories [86]. Note, for both GAN memory and MeRGAN, we used the GP-GAN model pretrained
on CelebA.

The batch size for EWC is set as n = 36. For replay based method, the batch size for classification is
set as follows. When task t = 1, 2, · · · , T presents, the batch size is n× t: (i) n samples from the
current task; (ii) n× (t− 1) generated samples replayed by GAN memory/MeRGAN for previous
t− 1 tasks (each task with n replayed samples).

The classification accuracy shown in Figure 6 (right) is obtained by testing the classifier on the whole
test dataset for all tasks with 36× 100 = 3600 images. We also show in Figure 13 the evolution of
the classification accuracy for each task during the whole training process. Take Figure 13(a) as an

22

example, the shown classification accuracy for task 1 on D1 is obtained by testing the classifier on
the test images belonging to D1 with 6× 100 = 600 images.

We observe from Figure 13 that, (i) EWC forgets the previous task much quickly than the others,
e.g., when the learning proceeds to task D6, the knowledge/capability learned from task D1,D2,
and D3 are totally forgotten and the performances are seriously decreased; (ii) MeRGAN shows
clear performance decline on historical classifications due to its blurry rehearsal on complex datasets,
which is especially obvious when the task sequence becomes long (see Figure 13(a)(b)(c)). (iii) By
comparison, our (conditional) GAN memory succeeds in stably maintaining historical accuracy even
when the sequence becomes long thanks to its realistic pseudo rehearsal, highlighting its practical
values in serving as a generative memory for general lifelong learning problems.

(a) (b)

(c) (d)

(e) (f)

Figure 13: The evolution of the classification accuracy for each task during the whole training process: (a) Task
D1; (b) Task D2; (c) Task D3; (d) Task D4; (e) Task D5; (f) Task D6.

Figure 14 shows the realistic replay from our conditional-GAN memory after sequential training on
five tasks.12

12The last task have its real data available, thus there is no need to learn to replay

23

(a) fish

Class1

Class2

Class3

Class4

Class5

Class6

(b) bird

Class1

Class2

Class3

Class4

Class5

Class6

(c) snake

Class1

Class2

Class3

Class4

Class5

Class6 24

(d) dog

Class1

Class2

Class3

Class4

Class5

Class6

(e) butterfly

Class1

Class2

Class3

Class4

Class5

Class6

Figure 14: Realistic replay from our conditional-GAN memory. (a) fish; (b) bird; (c) snake; (d) dog; (e) butterfly.

G GAN memory with further compression

G.1 The compression method

Our proposed GAN memory is practical when the sequence of tasks is mediate. However when the
number of tasks is extremely large, e.g., 1000, the introduced parameters for GAN memory will be
expensive too. To make the GAN memory scalable to the number of tasks, we propose a naive method
to compress the scale and bias Γ,B by taking advantage of the redundancy (Low-rank) within it,
which is potential to remember extremely long sequence of tasks with finite parameters.

Similar to Figure 4(a), the singular values of scale Γ and bias B learned at different blocks/layers are
summarized in Figure 15. Obviously, those bias B are also generally low-rank and the closer a bias
B to the noise, the stronger low-rank property it shows.

25

Maximum normalization is applied for both Figure 4(a) and Figure 15 to provide a clear illustration.
Take curve “B0L0” as an example, given the singular values vector as y and the index13 of each
element as x, we do the Maximum normalization as x̂ = x/max(x), ŷ = y/max(y), and then
plot {x̂, ŷ}.

Figure 15: The singular value of the scale Γ (left) and bias B (right) within each Conv layer on Flowers.

Based on the discovered low-rank property, we test the compressibility of the learned parameters by
truncating/zero-out small singular values. The results in Figure 4(b) are obtained by only keeping
30% ∼ 100% matrix energy [56] at each block alternatively and evaluating their performance (FID).
Take B0 as an example, we keep 30% ∼ 100% matrix energy for all the scale Γ and bias B matrices
within block B0 with the other blocks/layers unchanged and evaluate the FID.

To have a straight forward understanding of the proposed compression method for our GAN memory
(see Figure 4(c)), we summarize the specific steps in Algorithm 1, where r = 0.01 works well in
the experiments. Given Et = UtStVt

T with St = Diag(st), the low-rank regularization for the
first task is simply implemented via min ‖E1‖∗ = min ‖s1‖1; the low-rank regularization for the
later tasks are implemented via min ‖Et‖∗ = min ‖η � st‖1, where η is a vector of same size as st
with non-negative values and is designed as η = 0.1 + σ(10·jJ) with σ(·) as a sigmoid function, J as
the length of st, j as the index of [st]j . This kind of designation forms a prior which imposes weak
sparse constraint on part of the elements in st and imposes strong constraint on the rest. This prior is
found effective in keeping a good performance.

Algorithm 1 GAN memory with further compression (exampled by Γt within a Conv layer)

Input: A sequence of T tasks, D1,D2, · · · ,DT , the knowledge base L = ∅ and R = ∅, a scale r to
balance between the low-rank regularization and the generator loss.

Output: The knowledge base L and R, the task-specific coefficients, c1, c2, · · · , cT
1: for t in task 1 to task T do
2: Train GAN memory on the current task t with the following settings:

(i) Γt
.
= LKB

t−1ΛtR
KB
t−1

T
+ Et with Λt = Diag(λt);

(ii) Generator loss with low-rank regularization r‖Et‖∗ considered;
3: Do SVD on Et as Et = UtStVt

T with St = Diag(st)
4: Zero-out the small singular values to keep X% matrix energy for Γt and obtains Et ≈

ÛtŜtV̂
T
t

5: Collect the task-specific coefficients for task t as ct = [λt, st]

6: Collect knowledge base L = [L, Ût],V = [V, V̂t];
7: end for

13The index here begins from 0.

26

G.2 Experiments on the compressibility of the GAN memory

From Figure 4(b), we observe that Γ/B from different blocks/layers have different compressibility:
the larger the matrix size for Γ/B (the closer to the noise), the larger the compression ratio is. Thus, it
is proper to keep different percent of matrix energy for different blocks/layers to minimize the decline
in final performance. The results shown in Table 1 are obtained by keeping {80%, 80%, 90%, 95%}
matrix energy for Γ/B within B0, B1, B2, B3 respectively. The compression techniques are not
considered for the other blocks/layers (i.e., B4, B5, B6 and FC) because these layers have a relatively
small amount of parameters.

Figure 16: The percentage of newly added bases for scale Γ(left) and bias B(right) after the sequential training
on each of the 6 butterfly tasks. Each bar value is a ratio between the number of newly added bases and the
maximum rank of Γ/B. The percentages are the ratio between the amount of newly added parameters with and
without using compression for each task.

By comparing to a naive implementation with task-specific style parameters (see Section 4.2), Figure
16 shows the the overall (and block/layer wise) compression ratios delivered by the compression
techniques as training proceeds. Each bar shows the ratio between the number of newly added bases
and the maximum rank of Γ/B. The shown percentages above each group of bars are the ratio
between the amount of newly added parameters with and without using compression for each task.
It’s clear that (i) even for task D1 (with an empty knowledge base), the low-rank property of Γ/B
enables a significant parameter compression; (ii) based on the existing knowledge base, much less
new parameters are necessary to form a new generation power (e.g., for task D2, D3, D4, and D5),
confirming the reusability/sharability of existing knowledge; and (iii) the lower the block (the closer
to the noise with a larger matrix size for Γ/B), the larger the compression. All these three factors
together lead to the significant overall compression ratios.

In addition, we also plot in Figure 17 the generated images along the task sequence, to show the
effectiveness of GAN memory in situations where the tasks in the sequence are related.

Intuitively, when more tasks are learned and the knowledge base is rich enough, no new bases would
be necessary for future tasks (despite we still need to save tiny task-specific coefficients). For the
proposed compression method, the selection of a proper threshold for keeping matrix energy is very
important in balancing between saving parameters and keeping performance (e.g., when the task
number becomes large, the negative effect of the selected threshold on FID performance emerges, see
Table 1), we leave this as future research direction.

H On the robustness of GAN memory to the source model

Our method is deemed considerably robust to the (pretrained) source model, because (i) when
we modulate a different source GAN model (pretrained on LSUN Bedrooms) to form the target
generation on Flowers, the resulting performance (FID=15.0) is comparable to that shown in the paper
(FID=14.8 with CelebA as source); similar property about FC→B6 (now B5 due to the architecture
change [49]) is also observed, as shown in Figure 18; (ii) the experiments of the paper have verified
that, with our style modulation process, various target domains consistently benefit from the same
source model (with a better performance than fine-tuning), in spite of their perceptual distances to

27

Figure 17: Realistic replay of GAN memory on a sequence of relatively related tasks: 6 categories of butterfly
images.

the source model; (iii) both (i) and (ii) further confirm our insights in Section 4.1 from the main
paper, i.e., GANs seem to capture an underlying universal structure to images (shape within kernels),
which may manifest as different content/semantics when modulated with different “styles;” from
another perspective, (i) and (ii) also imply that universal structure may be widely carried in various
“well-behaved” source models. Therefore, we believe our method and the properties in Section 4.2
could generalize well on different source models.

FC B0 B1 B2 B3 B4 B5None All

Figure 18: When selecting a GAN pretrained on LSUN Bedroom, similar properties discovered in Figure 2(c) of
the main paper are observed: modulations in different blocks have different strength/focus over the generation.

28

