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Abstract

As a fundamental issue in lifelong learning, catastrophic forgetting is directly
caused by inaccessible historical data; accordingly, if the data (information) were
memorized perfectly, no forgetting should be expected. Motivated by that, we
propose a GAN memory for lifelong learning, which is capable of remembering a
stream of datasets via generative processes, with no forgetting. Our GAN memory
is based on recognizing that one can modulate the “style” of a GAN model to form
perceptually-distant targeted generation. Accordingly, we propose to do sequential
style modulations atop a well-behaved base GAN model, to form sequential targeted
generative models, while simultaneously benefiting from the transferred base
knowledge. The GAN memory – that is motivated by lifelong learning – is therefore
itself manifested by a form of lifelong learning, via forward transfer and modulation
of information from prior tasks. Experiments demonstrate the superiority of our
method over existing approaches and its effectiveness in alleviating catastrophic
forgetting for lifelong classification problems. Code is available at https://
github.com/MiaoyunZhao/GANmemory_LifelongLearning.

1 Introduction

Lifelong learning (or continual learning) is a long-standing challenge for machine learning and
artificial intelligence systems [76, 28, 73, 11, 14, 60], concerning the ability of a model to continually
learn new knowledge without forgetting previously learned experiences. An important issue associated
with lifelong learning is the notorious catastrophic forgetting of deep neural networks [48, 36, 87],
i.e., training a model with new information severely interferes with previously learned knowledge.

To alleviate catastrophic forgetting, many methods have been proposed, with most focusing on
discriminative/classification tasks [36, 65, 95, 55, 94]. Reviewing existing methods, [77] revealed
generative replay (or pseudo-rehearsal) [72, 69, 86, 66, 88] is an effective and general strategy for
lifelong learning, with this further supported by [40, 78]. That revelation is anticipated, for if the
characteristics of previous data are remembered perfectly (e.g., via realistic generative replay), no
forgetting should be expected for lifelong learning. Compared with the coreset idea, that saves
representative samples of previous data [55, 65, 11], generative replay has advantages in addressing
privacy concerns and remembering potentially more complete data information (via the generative
process). However, most existing generative replay methods either deliver blurry generated samples
[10, 40] or only work well on simple datasets [40, 78, 40] like MNIST; besides, they often don’t scale
well to practical situations with high resolution [60] or a long sequence [86], sometimes even with
negative backward transfer [96, 82]. Therefore, it’s challenging to continually learn a well-behaved
generative replay model [40], even for moderately complex datasets like CIFAR10.

We seek a realistic generative replay framework to alleviate catastrophic forgetting; going further,
we consider developing a realistic generative memory with growing (expressive) power, believed to
be a fundamental building block toward general lifelong learning systems. We leverage the popular
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GAN [25] setup as the key component of that generative memory, which we term GAN memory,
because (i) GANs have shown remarkable power in synthesizing realistic high-dimensional samples
[9, 51, 33, 34]; (ii) by modeling the generative process of training data, GANs summarize the data
statistical information in the model parameters, consequently also protecting privacy (the original data
need not be saved); and (iii) a GAN often generates realistic samples not observed in training data,
delivering a synthetic data augmentation that potentially benefits better performance of downstream
tasks [80, 8, 9, 21, 33, 26, 27]. Distinct from existing methods, our GAN memory leverages transfer
learning [6, 16, 46, 92, 58] and (image) style transfer [18, 30, 41]. Its key foundation is a discovery
that one can leverage the modified variants of style-transfer techniques [64, 98] to modulate a
source generator/discriminator into a powerful generator/discriminator for perceptually-distant target
domains (see Section 4.1), with a limited amount of style parameters. Exploiting that discovery,
our GAN memory sequentially modulates (and also transfers knowledge from) a well-behaved
base/source GAN model to realistically remember a sequence of (target) generative processes with
no forgetting. Note by “well-behaved” we mean the shape of source kernels is well trained (see
Section 4.1 for details); empirically, this requirement can be readily satisfied if (i) the source model
is pretrained on a (moderately) large dataset (e.g., CelebA [43]; often a dense dataset is preferred
[85]) and (ii) it’s sufficiently trained and shows relatively high generation quality. Therefore, many
pretrained GANs can be “well-behaved”,2 showing great flexibility in selecting the base/source model.
Our experiments will show that flexibility roughly means source and target data should have the same
data type (e.g., images).

Our GAN memory serves as a solution to the fundamental memory issue of general lifelong learning,
and its construction also leverages a form of lifelong learning. In practice, the GAN memory
can be used, for example, as a realistic generative replay to alleviate catastrophic forgetting for
challenging downstream tasks with high-dimensional data and a long (and varying) task sequence.
Our contributions are as follows.

• Based on FiLM [64] and AdaFM [98], we develop modified variants, termed mFiLM and mAdaFM,
to better adapt/transfer the source fully connected (FC) and convolutional (Conv) layers to target
domains, respectively. We demonstrate that mFiLM and mAdaFM can be leveraged to modulate
the “style” of a source GAN model (including both the generator and discriminator) to form a
generative/discriminative model capable of addressing a perceptually-distant target domain.

• Based on the above discovery, we propose our GAN memory, endowed with growing (expressive)
generative power, yet with no forgetting of existing capabilities, by leveraging a limited amount of
task-specific style parameters. We analyze the roles played by those style parameters and reveal
their further compressibility.

• We generalize our GAN memory to its conditional variant, followed by empirically verifying its
effectiveness in delivering realistic synthesized samples to alleviate catastrophic forgetting for
challenging lifelong classification tasks.

2 Related work

Lifelong learning Exiting lifelong learning methods can be roughly grouped into three categories,
i.e., regularization-based [36, 69, 95, 55, 68], dynamic-model-based [47, 68, 47], and generative-
replay-based methods [72, 42, 86, 66, 88, 78]. Among these methods, generative replay is believed
an effective and general strategy for lifelong learning problems [66, 88, 40, 78], as discussed above.
However, most existing methods of this type often have blurry/distorted generation (for images)
or scalability issues [86, 66, 59, 60, 96, 54, 82]. MeRGAN [86] leverages a copy of the current
generator to replay previous data information, showing increasingly blurry historical generations with
reinforced generation artifacts [96] as training proceeds. CloGAN [66] uses an auxiliary classifier to
filter out a portion of distorted replay but may still suffer from the reinforced forgetting, especially in
high-dimensional situations. OCDVAE [54] unifies open-set recognition and VAE-based generative
replay, whereas showing blurry generations for high-resolution images. Based on a shared generator,
DGMw [59] introduces task-specific binary masks to the generator weights, accordingly suffering
from scalability issues when the generator is large and/or the task sequence is long. Lifelong GAN
[96] employs cycle consistency (via an auxiliary encoder) and knowledge distillation (via copies of

2 One can of course expect better performance if a better source model (pretrained on a large-scale dense and
diverse dataset) is used.
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that encoder and the generator) to remember image-conditioned generation; however, it still shows
decreased performance on historical tasks. By comparison, our GAN memory delivers realistic
synthesis with no forgetting and scales well to high-dimensional situations with a long task-sequence,
capable of serving as a realistic generative memory for general lifelong learning systems.

Transfer learning Being general and effective, transfer learning has attracted increasing attention
recently in various research fields, with a focus on discriminative tasks like classification [6, 70, 90,
93, 16, 24, 44, 46, 74, 92] and those in natural language processing [3, 63, 53, 52, 2]. However for
generative tasks, only a few efforts have been made [85, 58, 98]. For example, a GAN pretrained
on a large-scale source dataset is used in [85] to initialize the GAN model in a target domain, for
efficient training or even better performance; alternatively, [58] freezes the source GAN generator
only to modulate its hidden-layer statistics to “add” new generation power with L1/perceptual loss;
observing the general applicability of low-level filters in GAN generator/discriminator, [98] transfers-
then-freezes them to facilitate generation with limited data in a target domain. Those methods either
only concern synthesis in the target domain (completely forgetting source generation) [85, 98] or
deliver blurry target generation [58]. Our GAN memory provides both realistic target generation and
no forgetting on source generation.

3 Preliminary

We briefly review two building blocks on which our method is constructed: generative adversarial
networks (GANs) [25, 33] and style-transfer techniques [64, 98].

Generative adversarial networks (GANs) GANs have shown increasing power to synthesize highly
realistic observations [32, 45, 51, 9, 33, 34], and have found wide applicability in various fields
[39, 1, 19, 81, 83, 84, 12, 89, 37]. A GAN often consists of a generator G and a discriminator D,
with both trained adversarially with objective

min
G

max
D

Ex∼qdata(x)

[
logD(x)

]
+ Ez∼p(z)

[
log(1−D(G(z)))

]
, (1)

where p(z) is a simple distribution (e.g., Gaussian) and qdata(x) is the underlying (unknown) data
distribution from which we observe samples.

Style-transfer techniques An extensive literature [23, 71, 79, 13, 62, 38] has explored how one can
manipulate the style of an image (e.g., the texture [18, 30, 41] or attributes [33, 34]) by modulating the
statistics of its latent features. These methods use style-transfer techniques like conditional instance
normalization [18] or adaptive instance normalization [30], most of which are related to Feature-wise
Linear Modulation (FiLM) [64]. FiLM imposes simple element-wise affine transformations to latent
features of a neural network, showing remarkable effectiveness in various domains [30, 17, 33, 58].
Given a d-dimensional feature h ∈ Rd from a layer of a neural network,3 FiLM yields

ĥ = γ � h+ β, (2)

where ĥ is forwarded to the next layer, � denotes the Hadamard product, and the scale γ ∈ Rd

and shift β ∈ Rd may be conditioned on other information [18, 64, 17]. Different from FiLM
modulating latent features, another technique named adaptive filter modulation (AdaFM) modulates
source convolutional (Conv) filters to manipulate its “style” to deliver a boosted transfer performance
[98]. Specifically, given a Conv filter W ∈ RCout×Cin×K1×K2 , where Cin/Cout denotes the number of
input/output channels and K1 ×K2 is the kernel size, AdaFM yields

Ŵ = Γ�W + B, (3)

where the scale matrix Γ ∈ RCout×Cin , the shift matrix B ∈ RCout×Cin , and the modulated Ŵ is used
to convolve with input feature maps for output ones.

4 Proposed method

Targeting the fundamental memory issue of lifelong learning, we propose to exploit popular GANs
to design a realistic generative memory (named GAN memory) to sequentially remember data-
generating processes. Specifically, we consider a lifelong generation problem: the GAN memory

3For simplicity, we omit layer-index notation throughout the paper.
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sequentially accesses a stream of datasets/tasks {D1,D2, · · · }4 (during task t, only Dt is accessible);
after task t, the GAN memory should be able to synthesize realistic samples resembling {D1, · · · ,Dt}.
Below we first reveal a surprising discovery that lays the foundation of the paper. We then build on
top of it our GAN memory followed by a detailed analysis, and finally compression techniques are
presented to facilitate our GAN memory for lifelong problems with a long task sequence.

4.1 A surprising discovery

Moving well beyond the style-transfer literature modulating image features to manipulate its style
[18, 30, 17], we discover that one can even modulate the “style” of a source generative/discriminative
process (e.g., a GAN generator/discriminator trained on a source dataset D0) to form synthesis
power for a perceptually-distant target domain (e.g., a generative/discriminative power on D1), via
manipulating its FC and Conv layers with the style-modulation techniques developed below. Note
different from the classical style-transfer literature, the “style” terminology here is associated with
the characteristics of a function (e.g., for a GAN generator, its style manifests as the generation
content); because of the similarity in mathematics, we reuse that terminology but name our approach
as style-modulation techniques.

Before introducing the technical details, we emphasize our basic assumption of well-behaved source
FC and Conv parameters; often parameters from a GAN model trained on large-scale datasets satisfy
that assumption, as discussed in the Introduction. To highlight our discovery, we choose a moderately
sophisticated GP-GAN model [49] trained on the CelebA [43] (containing only faces) as the source,5
and select perceptually-distant target datasets including Flowers, Cathedrals, Cats, Brain-tumor
images, Chest X-rays, and Anime images (see Figure 5 and Section 5.1). With the style-modulation
techniques detailed below, we observe realistic generations in all target domains (see Figure 5), even
though the generation power is modulated from an entirely different source domain. Alternatively,
given a specific target domain, that observation also implies the flexibility in choosing a source model
(see also Appendix H), i.e., the source (with well-behaved parameters) should have the same target
data type, but it need not be related to the target domain. In the context of image-based data, this
implies a certain universal structure to images, that may be captured within a GAN by one (relatively
large) image dataset. Via appropriate style modulation of this model, it can be adapted to new and
very different image classes, using potentially limited observations from those target domains.

We next present the style-modulation techniques employed here, modified FiLM (mFiLM) and
modified AdaFM (mAdaFM), for modulating FC and Conv layers, respectively.

FC layers Given a source FC layer hsource=Wz+b with weight W ∈ Rdout×din , bias b ∈ Rdout , and
input z ∈ Rdin , mFiLM modulates its parameters to form a target function htarget = Ŵz + b̂ with

Ŵ = γ � W − µ
σ

+ β, b̂ = b+ bFC, (4)

where µ,σ ∈ Rdout , with the elements µi,σi denoting the mean and standard derivation of the vector
Wi,:, respectively; γ,β, bFC ∈ Rdout are target-specific scale, shift, and bias style parameters trained
with target data (W and b are frozen – from learning on the original source domain – during target
training). One may interpret mFiLM as applying FiLM [64] (or batch normalization [31]) to a source
FC weight to modulate its (row) statistics/style (encoded in µ and σ) to adapt to a target domain.

Conv layers Given a source Conv layer Hsource = W ∗ H′ + b with input feature maps H′, Conv
filters W ∈ RCout×Cin×K1×K2 , and bias b ∈ RCout , we leverage mAdaFM to modulate its parameters
to form a target Conv layer as Htarget = Ŵ ∗H′ + b̂, where

Ŵ = Γ� W −M

S
+ B, b̂ = b+ bConv, (5)

where M,S ∈ RCout×Cin with the elements Mi,j ,Si,j denoting the mean and standard derivation
of the vector vec(Wi,j,:,:), respectively. The trainable target-specific style parameters are Γ,B ∈

4This setup is not limited, as it’s often convenient to use a physical memory buffer to form the dataset stream.
Note concerning practical applications, it’s often unnecessary to consider the extreme case where each dataset
Dt contains only one data sample; accordingly, we assume a moderate number of samples per dataset by default.

5See Appendix A for the detailed architectures. Note our method is deemed considerably robust to the
(pretrained) source model, as discussed in Appendix H, where additional experiments are conduced based on a
different source GAN model pretrained on LSUN Bedrooms [91].
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Figure 1: (a) Style modulation of a source GAN model (demonstrated with the generator, but it is also applied to
the discriminator). Source parameters (green {W,W}) are frozen, with limited trainable style parameters (i.e.,
red {γ,β, bFC,Γ,B, bConv}) introduced to form the augmentation to the target domain. (b) Comparing our style
modulation to the strong fine-tuning baseline (see Appendix B for details). (c) The architecture of our GAN
memory for a stream of target generation tasks.

RCout×Cin and bConv ∈ RCout , with W and b frozen. Similar to mFiLM, mAdaFM first removes the
source style (encoded in M and S), followed by leveraging Γ and B to learn the target style.

The adopted style modulation process (shown with the generator) is illustrated in Figure 1(a).
Given a source GAN model, we transfer and freeze all its parameters to a target domain, fol-
lowed by using mFiLM/mAdaFM in (4)/(5) to modulate its FC/Conv layers (with style parameters
{γ,β, bFC,Γ,B, bConv}) to yield the target generation model. With that style modulation, we transfer
the source knowledge (within the frozen parameters) to the (potentially) perceptually-distant target
domain to facilitate a realistic generation therein (see Figure 5 for generated samples). For quanti-
tative evaluations, comparisons are made with a strong baseline, i.e., fine-tuning the whole source
model (including both generator and discriminator) on target data, which is expected to outperform
training from scratch in both efficiency and performance by referring to [85] and the transfer learning
literature. The FID scores (lower is better) [29] from both methods are summarized in Figure 1(b),
where our method consistently outperforms that strong baseline by a large margin, on both training
efficiency and performance,6 highlighting the valuable knowledge within frozen source parameters
(apparently a type of universal information about images) and showing a potentially better way for
transfer learning.

Complementing the common knowledge of transfer learning, i.e., low-level filters (those close to
observations) are generally applicable, while high-level ones are task-specific [90, 93, 44, 4, 5, 20,
58, 98], the above discovery reveals an orthogonal dimensionality for transfer learning. Specifically,
the shape of kernels (i.e., relative relationship among kernel elements {Wi,j,1,1,Wi,j,1,2, · · · }) may
be generally transferable whereas the statistics of kernels (the mean Mi,j or standard derivation Si,j)
or among-kernel correlations (e.g., relative relationship among kernel statistics) are task-specific. A
similar conjecture on low-level Conv filters was discussed in [98]; we reveal such patterns even hold
for the whole GAN model (for both low-level and high-level kernels of the generator/discriminator),
which is unanticipated because common experience associates high-level kernels with task-specific
information. This insight might reveal a new avenue for transfer learning.

4.2 GAN memory to sequentially remember a stream of generative processes

Based on the above observations, we propose a GAN memory that has the power to realistically
remember a stream of generative processes with no forgetting. The key observation here is that when
modulating a source GAN model for a target domain, the source model is frozen (thus no forgetting
of the source) with a limited set of target-specific style parameters (i.e., no influence among tasks)
introduced to form a realistic target generation. Accordingly, we can use a well-behaved source GAN
model as a base, followed by sequentially modulating its “style” to deliver realistic generation power
on a stream of target datasets,7 as illustrated in Figure 1(c). We use the same settings as in Section

6 The newly-introduced style parameters {γ,β, bFC,Γ,B, bConv} of our method are only about 20% of those
of the fine-tuning baseline, yet they deliver better efficiency and performance. This is likely because the target
data are not sufficient enough to train well-behaved parameters like the source ones, when performing fine-tuning
alone. Note that with the techniques from Section 4.3, one can use much less style parameters (e.g., 7.3% of
those of the fine-tuning baseline) to yield a comparable performance.

7 Our GAN memory is amenable to streaming training, parallel training, and even their flexible combinations,
thanks to the frozen base model and task-specific style parameters.
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Figure 2: (a) Style parameters modulate different generation perspectives. (b) The biases model sparse objects.
(c) Modulations in different blocks have different strength/focus over the generation. Bm is the mth residual
block. B0/B6 is closest to the noise/observation. See Appendix C for details.

4.1. As style parameters are often limited (and can be further compressed as in Section 4.3), one
could expect from our GAN memory a substantial compression of a stream of datasets, while not
forgetting realistic generative replay (see Figure 5). To help better understand how/why our GAN
memory works, we next reveal five of its properties.

Each group of style parameters modulates a different generation perspective. Style parameters consist
of three groups, i.e., scales {γ,Γ}, shifts {β,B}, and biases {bFC, bConv}. Taking as examples the
style parameters trained on the Flowers, Cathedrals, and Brain-tumor images, Figure 2(a) demon-
strates the generation perspective modulated by each group: (i) when none/all groups are applied,
GAN memory generates realistic source/target images (see the first/last column, respectively); (ii)
when only modulating via the scales (denoted as γ/Γ Only, the second column), the generated
samples show textural/structural information from target domains (like the textures on petals or
the contours of buildings/skulls); (iii) as shown in the third column, the shifts if solely applied
principally control the low-frequency color information from target domains; (iv) finally the biases
(see the forth column) control the illumination and localized objects (not obvious here). To clearly
reveal the role played by the biases, we keep both scales and shifts fixed, and compare the generated
samples with/without biases on the Brain-tumor dataset; Figure 2(b) shows the biases are important
in modeling localized objects like the tumor or tissue details, which may be valuable in pathological
analysis. Also the following Figure 3(a) shows that the biases help with a better training efficiency.

Style parameters within different blocks show different strength/focus over the generation. Figure
2(c) shows the generated samples on the Flowers dataset when gradually and accumulatively adding
modulations to each block (from FC to B6). To begin with, the FC modulation changes the overall
contrast and illumination of the generation; then the style parameters in B0-B3 make the most effort
to modulate the face manifold into a flower, followed by modulations in B4-B6 refining the generation
details. Such patterns are somewhat consistent with existing practice, in the sense that high-level/low-
level kernel statistics are more task-specific/generally-applicable. It’s therefore interesting to consider
combining the two orthogonal dimensions, i.e., the existing low-layer/high-layer split and the revealed
kernel-shape/kernel-statistics split, for potentially better transfer learning.

Normalization contributes significantly to better training efficiency and performance. To investigate
how the weight normalization and the biases in (4)/(5) contribute, ablation studies are conducted,
with the results shown in Figure 3(a). With the weight normalization to remove the source “style,” our
method shows both an improved training efficiency and a boosted performance; the biases contribute
to a better efficiency but with minimal influence on the performance.

GAN memory enables smooth interpolations among generative processes, by dynamically combining
two (or more) sets of style parameters. Figure 3(b) demonstrates smooth interpolations between flower
and cat generative processes. Such a property can be used to deliver versatile data augmentation
among different domains, which may, for example, benefit a downstream robust classification [61, 7].

GAN memory readily generalizes to label-conditioned generation problems, where each task dataset
Dt contains both observations {x} and the paired labels {y} with y ∈ {1, · · · , Ct}. Mimicking the
conditional GAN [50], we specify one FC bias per class to model the label information; accordingly,
the style parameters for the tth task are {γ,β, {bFC}Ct

i=1,Γ,B, bConv}. Figure 3(c) shows the realistic
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Figure 3: (a) Ablation study on Flowers. (b) Smooth interpolations between flower and cat generative processes.
(c) Realistic replay from our conditional-GAN memory. See Appendix D for details and more demonstrations.
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Figure 4: (a) Normalized singular values of Γ at all blocks/layers on Flowers (see Appendix Figure 15 for B).
Maximum normalization is applied to both axes. BmLn stands for the nth Conv layer of the mth block. (b)
Influence of truncation (via preserving X% matrix energy [56]) on generation. (c) GAN memory with further
compression and knowledge sharing. See Appendix G for details.

replay from our conditional-GAN memory after sequential training on five tasks (exampled with bird,
dog, and butterfly; see Section 5.2 for details).

4.3 GAN memory with further compression

Delivering realistic sequentially learned generations with no forgetting, the GAN memory presented
above is expected to be sufficient for many practical applications with a moderate number of tasks.
However, for challenging situations with many tasks, to save a set of style parameters for each task
might become prohibitive.8 For that problem, we reveal below (i) style parameters (i.e., the expensive
matrices Γ and B) can be compressed to lower the memory cost for each task; (ii) one can exploit
sharing parameters among tasks to further enhance memory savings.9

We first investigate the singular values of Γ and B learned at different blocks/layers, and summarize
them in Figure 4(a). It’s clear the Γ and B parameters are in general low-rank; moreover, the closer
a Γ or B is to the noise (often with a larger matrix size and thus more expensive), the stronger its
low-rank property (yielding better compressibility). Accordingly, we truncate/zero-out small singular
values at each block/layer to test the corresponding performance decline. Figure 4(b) summarizes the
results, where keeping 80% matrix energy [56] (≈ 35% top singular values) of Γ and B in B0-B4
almost has the same performance, verifying the compressibility of Γ and B.

Based on the compressibility of Γ and B, we next reveal parameter sharing among tasks can be
exploited for further memory saving. Specifically, we propose to leverage matrix factorization and
low-rank regularization to form a lifelong knowledge base mimicking [68]. Taking the tth task as an
example, instead of optimizing over a task-specific Γt (similarly for Bt), we alternatively optimize
over its parameterization Γt

.
= LKB

t−1Λt(R
KB
t−1)

T + Et, where LKB
t−1 and RKB

t−1 are respectively
the existing left/right knowledge base, Λt = Diag(λt), and λt and Et are task-specific trainable
parameters. The nuclear norm ‖Et‖∗ is added to the loss to encourage a low-rank property. After
training on the tth task, we apply singular value decomposition to Et, keep the top singular values
to preserved X% matrix energy, and use the corresponding left/right singular vectors to update the
left/right knowledge base to LKB

t and RKB
t . The overall procedure is demonstrated in Figure 4(c).

8 A compromise may save limited task-specific style parameters to hard disks and only load them when used.
9 The cheap vector parameters {γ,β, bFC, bConv} can be similarly processed in a dictionary learning manner.

As they are often quite inexpensive to retain, we consider them being task-specific for simplicity.
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Figure 5: The task/dataset stream (left) and generated samples after training on each task/dataset (right).

Figure 6: (Left) FID curves on the lifelong generation problem of Section 5.1. (Right) Classification accuracy
on the lifelong classification problem of Section 5.2. The curve labeled “Joint” denotes the upper-bound, where
the classifier is trained jointly on all the data from the current and historical tasks.

5 Experiments

Experiments on high-dimensional image datasets from diverse fields are conducted to demonstrate the
effectiveness of the proposed techniques. Specifically, we first test our GAN memory to realistically
remember a stream of generative processes; we then show that our (conditional) GAN memory can
be used to form realistic pseudo rehearsal (synthesis of data from prior tasks) to alleviate catastrophic
forgetting for challenging lifelong classification tasks; and finally for long task sequences, we reveal
the techniques from Section 4.3 enable significant memory savings but with comparable performance.
Detailed experimental settings are given in Appendix A.

5.1 GAN memory on a stream of generation tasks

To demonstrate the superiority of our GAN memory over existing replay-based methods, we design
a challenging lifelong generation problem consisting of 6 perceptually-distant tasks/datasets (see
Figure 5): Flowers [57], Cathedrals [99], Cats [97], Brain-tumor images [15], Chest X-rays [35], and
Anime faces.10 The GP-GAN [49] trained on the CelebA [43] (D0) is selected as the base; other
well-behaved GAN models may readily be considered. We compare our GAN memory with the
memory replay GAN (MeRGAN) [86], which keeps another copy of the generator in memory to
replay historical generations, to mitigate catastrophic forgetting. Qualitative comparisons between
both methods along the sequential training are shown in Figure 5. It’s clear our GAN memory delivers
realistic generations with no forgetting on historical tasks, whereas MeRGAN shows increasingly
blurry historical generations with reinforced generation artifacts [85] as training proceeds. For
quantitative comparisons, the FID scores [29] along the training are summarized in Figure 6 (left),
highlighting the advantages of our GAN memory, i.e., realistic generations with no forgetting. Also
revealed is that our method even performs better with a better efficiency for the current task, likely
thanks to the transferred common knowledge within frozen base parameters.

5.2 Conditional-GAN memory as pseudo rehearsal for lifelong classifications

Witnessing the success of our (conditional) GAN memory in continually remembering realistic
generations, we next utilize it as a pseudo rehearsal to assist downstream lifelong classifications.
Specifically, we design 6 streaming tasks by selecting fish, bird, snake, dog, butterfly, and insect

10https://github.com/jayleicn/animeGAN
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images from the ImageNet [67]; each task is then formalized as a 6-classification problem (e.g., for
task bird, the goal is to classify 6 categories of birds). We employ the challenging class-incremental
learning setup [78], i.e., the classifier (after task t) is expected to accurately classify all observed (first
6t) categories. For comparisons, we employ the regularization-based EWC [36] and the generative-
replay-based MeRGAN [86]. For replay-based methods (i.e., the MeRGAN and our conditional-GAN
memory), at task t, we train the classifier with a combined dataset that contains both the current
observed data (from task t) and the generated/replayed historical samples (mimicking the data from
task 1 ∼ t − 1); after that, the MeRGAN/conditional-GAN-memory is updated to remember the
current data generative process [72, 86]. See Appendix F for more details.

Testing classification accuracy on all 36 categories from the compared methods along training are
summarized in Figure 6 (right), It’s clear that EWC barely works in the class-incremental learning
scenario [77, 40, 78]. MeRGAN doesn’t work well when the task sequence is long, because of its
increasingly blurry rehearsal as shown in Figure 5. By comparison, our conditional-GAN memory
with no forgetting succeeds in stably maintaining an increasing accuracy as new tasks come and shows
performance close to the joint-training upper-bound, highlighting its practical value in alleviating
catastrophic forgetting for general lifelong learning problems. See Appendix F for evolution of the
performance on each task along the training process.

5.3 GAN memory with parameter compression and sharing

Table 1: Comparisons of GAN memory with (Compr) or without (Naive) compression techniques. #Params
denotes the number of newly-introduced style parameters for each task. The number of the frozen source
parameters is 52.2M.

Task D1 D2 D3 D4 D5 D6

#ParamsNaive 10.6M 10.6M 10.6M 10.6M 10.6M 10.6M
#ParamsCompr 3.8M 1.7M 0.9M 0.8M 0.3M 0.3M

#ParamsCompr/#ParamsNaive 36.4% 16.0% 9.0% 7.6% 2.7% 2.9%
FID (Compr) 27.67 23.49 28.90 31.07 32.19 49.28
FID (Naive) 28.89 22.80 34.36 35.72 29.50 40.03

To verify the effectiveness of the compression techniques presented in Section 4.3, which are
believed valuable for lifelong learning with many tasks, we design another lifelong generation
problem based on the ImageNet for better demonstration.11 Specifically, we select 6 categories of
butterfly images to form a stream of 6 generation tasks/datasets (one category per task), among which
similarity/knowledge-sharability is expected. The procedure shown in Figure 4(c) is employed for our
method. See Appendix G for details. We compare our GAN memory with compression techniques
(denoted as Compr) to its naive implementation with task-specific style parameters (Naive), with the
results summarized in Table 1. It’s clear that (i) even for task D1 (with an empty knowledge base),
the low-rank property of Γ/B enables a significant parameter compression; (ii) based on the existing
knowledge base, much less new parameters are necessary to form a new generation model (e.g., for
task D2 or D3), confirming the reusability/sharability of existing knowledge; and (iii) though it has
significant parameter compression, Compr delivers comparable performance to Naive, confirming the
effectiveness of the presented compression techniques.

6 Conclusions

We reveal that one can modulate the “style” of a GAN model to accurately synthesize the statistics
of data from perceptually-distant targets. Based on that recognition, we propose our GAN memory
with growing generation power, but with no forgetting. We then analyze our GAN memory in detail,
reveal for it new compression techniques, and empirically verify its advantages over existing methods.
Concerning a better base model, one may leverage the generative replay ability of the GAN memory
to form a long-period update, mimicking human behavior during rapid-eye-movement sleep [75, 22].

11 The datasets from Section 5.1 are too perceptually-distant to illustrate parameter sharability among tasks.

9



Broader impact

Capable of remembering a stream of data generative processes with no forgetting, our GAN memory
has the following potential positive impact in the society: (i) it may serve as a powerful generative
replay for challenging lifelong applications such as self-driving; (ii) as no original data are saved,
the concerns on data privacy may be well addressed; (iii) GAN memory enables flexible control
over the replayed contents, which is of great value to practical applications, where training data
are unbalanced, or where one needs to flexibly select which model capability to maintain/forget
during training; (iv) the counter-intuitive discovery that lays the foundation of our GAN memory may
disclose another dimension for transfer learning, i.e., the kernel shape is generally applicable while
the corresponding kernel statistics/style is task-specific; similar patterns may also apply to classifiers.
Since our GAN memory is built on top of GANs, it may inherit their ethical and societal impact.
Despite being versatility, GANs may be improperly used to synthesize fake images/news/videos,
resulting in negative consequences. Furthermore, we should be cautious of the failure of adversarial
training due to mode collapse, which may compromise the generative capability on the current task.
Note that training failure, if it happens, will not hurt the performance on other tasks, showing certain
robustness of our GAN memory.
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