
Sub-linear Regret Bounds for Bayesian Optimisation
in Unknown Search Spaces - Supplementary Material

In section 1, we first provide some auxiliary results which facilitate the proofs. We present the proofs
of Theorem 1, Theorem 2, Theorem 3 and Theorem 4 in next sections. Finally, we provide additional
benchmarking results in section 6.

1 Auxiliary Results

1.1 Properties of the Volume Expansion Strategy

Lemma 1. For every t ≥ 1, the search space Xt has the [at, bt]
d form where bt − at = (b− a)(1 +∑t

j=1 j
α).

Proof. We prove the statement by induction. If t = 1 then by definition of the transformation in
section 4, X ′1 = [a′1, b

′
1]d where a′1 = a0− b−a

2 1α and b′1 = b0 + b−a
2 1α. Hence, b′1−a′1 = 2(b−a).

By definition of the transformation X ′1 → X1, the size and the form of X1 is preserved from X ′1.
Therefore X1 = [a1, b1]d and b1 − a1 = 2(b− a).

We assume that the statement is true for t ≥ 1. We consider the transformation Xt → X ′t+1 → Xt+1.
We have a′t+1 = at− b−a

2 (t+1)α and b′t+1 = bt+
b−a

2 (t+1)α. Hence, b′t+1−a′t+1 = bt−at+(b−
a)(t+1)α. By the inductive hypothesis, we have Xt = [at, bt]

d and bt−at = (b−a)(1+
∑t
j=1 j

α).
Therefore, b′t+1−a′t+1 = (b−a)(1+

∑t+1
j=1 j

α). By the transformation, the size and the form ofXt+1

is preserved from X ′t+1. Thus, Xt+1 = [at+1, bt+1]d where bt+1 − at+1 = (b− a)(1 +
∑t+1
j=1 j

α).
The statement holds for any t ≥ 1.

Given a finite domain X , we denote the volume of X by V ol(X ).

Lemma 2. For every horizon T > 0, set CT = [cmin− (b−a)(1+
∑T
j=1 j

α)/2, cmax+(b−a)(1+∑T
j=1 j

α)/2]d. Then for every 1 ≤ t ≤ T , Xt ⊆ CT .

Proof. We also prove this statement by induction. If T = 1 then by Lemma 1, X1 = [a1, b1]d where
b1 − a1 = 2(b− a). By the transformation, the center of X1 only moves in the domain Cinitial. If we
set CT = [cmin − (b− a), cmax + (b− a)]d then X1 ⊆ CT .

We assume that the statement is true for T ≥ 1. By the inductive hypothesis, for every 1 ≤ t ≤
T , Xt ⊆ CT = [cmin − (b − a)(1 +

∑T
j=1 j

α)/2, cmax + (b − a)(1 +
∑T
j=1 j

α)/2]d. We set

CT+1 = [cmin − (b − a)(1 +
∑T+1
j=1 j

α)/2, cmax + (b − a)(1 +
∑T+1
j=1 j

α)/2]d. First, we have
CT ⊂ CT+1. Next we prove that XT+1 ⊆ CT+1. Indeed, by Lemma 1, XT+1 = [aT+1, bT+1]d

where bT+1 − aT+1 = (b − a)(1 +
∑T+1
j=1 j

α). By the transformation, the center of XT+1 only
moves in the domain Cinitial. It implies that XT+1 belongs to CT+1. The statement holds for any
T ≥ 1.
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1.2 Properties of The Gamma Function and The Hyperharmonic Series

Lemma 3. (Lower bounds of a partial sum of a hyperharmonic series,[2]) Given a partial sum of a
hyperharmonic series pn =

∑n
j=1 j

α, where n ∈ N. Then,

• pn > (n+1)α+1−1
α+1 if −1 ≤ α < 0,

• pn > ln(n+ 1) if α = −1.

Lemma 4. (Upper Bounds of a Hyperharmonic Series, [2]) Given a hyperharmonic series pn =∑n
j=1 j

α, where n ∈ N. Then,

• pn < 1 + n1+α−1
1+α if −1 ≤ α < 0,

• pn < 1 + ln(n) if α = −1

Lemma 5. (Bounding p-series when p > 1, [1]) Given a p-series sn =
∑n
k=1

1
kp , where n ∈ N.

Then,

sn < ζ(p) <
1

p− 1
+ 1

for any n, where ζ(p) =
∑∞
k=1

1
kp is Euler–Riemann zeta function that always converges. For

example, ζ(3/2) ≈ 2.61, ζ(2) = π2

6 .

Lemma 6. Γ(d2 + 1)
1
d <
√
d+ 2

Proof. We consider two cases:

• if d = 2n, where n ∈ N then Γ(d2 + 1) = Γ(n+ 1) = n!

• if d = 2n+ 1, where n ∈ N then Γ(d2 + 1) = Γ(n+ 1 + 1
2 ) = n!Γ( 1

2 ) =
√
πn! < 2n!

Hence, in both case, Γ(d2 + 1) < 2n!. By Cauchy-Schwarz, we have:n! < ( 1+2+...+n)
n )n = (n+1

2 )n.
However, n ≤ d

2 . Thus, (Γ(d2 + 1))
1
d < 2(n+1

2 )
n
d <

√
2(n+ 1) <

√
d+ 2.

2 Proof of Theorem 1

Theorem 1 (Reachability). If α ≥ −1, then the HuBO algorithm guarantees that there exists a
constant T0 > 0 (independent of t) such that when t > T0, Xt contains x∗.

We denote the center of the user-defined finite region Cinitial = [cmin, cmax]d as c0. By the
assumption of x∗ being not at infinity, there exists a smallest range [ag, bg]

d so that both x∗ and c0

belong to [ag, bg]
d. By induction, the search spaceXt at iteration t is a hypercube, denoted by [at, bt]

d.
Following our search space expansion, the center of Xt only moves in region Cinitial. Therefore, for
each dimension i, we have in the worst case, (bt−[c0]i) is at least cmin−cmax2 + bt−at

2 and ([c0]i−at) is
at most cmax−cmin2 − bt−at

2 . By Lemma 1, the size of Xt as bt−at : bt−at = (b−a)(1+
∑t
j=1 j

α).
Therefore, (bt − [c0]i) is at least cmin−cmax

2 + b−a
2 (1 +

∑t
j=1 j

α) and ([c0]i − at) is at most
cmax−cmin

2 − b−a
2 (1 +

∑t
j=1 j

α).

If there exists a T0 such that two conditions satisfy: (1) cmin−cmax2 + b−a
2 (1 +

∑T0

j=1 j
α) ≥ bg , and

(2) cmax−cmin
2 − b−a

2 (1 +
∑T0

j=1 j
α) < ag, then we can guarantee that for all t > T0, the search

space Xt will contain [ag, bg]
d and thus also contain x∗.

Such a T0 exists because pt =
∑t
j=1 j

α is a diverging sum with t when α ≥ −1. Indeed, by Lemma
3, we have

• pt > (t+1)α+1−1
α+1 if −1 ≤ α < 0,

2



• pt > ln(t+ 1) if α = −1.

For both cases, limt→∞ pt →∞. From the conditions (1) and (2), we can see that T0 is a function
of parameters a, b, cmin, cmax, α and ag, bg. Since a, b, cmin, cmax and α are determined at the
beginning of the HuBO algorithm and do not change, such a constant (although unknown) T0 exists.

3 Proof of Theorem 2

To derive an upper bound of the cumulative regret of the HuBO algorithm for SE kernels and Matérn
kernels, we first derive an upper bound of the cumulative regret for a general class of kernels according
to the maximum information gain. We do this in the following Proposition 1. Next, we provide
upper bounds for the maximum information gain on SE kernels and Matérn kernels. We do that
in Proposition 2. Finally, we prove the correctness of Theorem 2 by combining Proposition 1 and
Proposition 2.
Proposition 1. Let f ∼ GP(0, k) with a stationary covariance function k. Assume that−1 ≤ α < 0

and there exist constants s1, s2 > 0 such that P[supx∈X |∂f/∂xi| > L] ≤ s1e
−(L/s2)2

for all
L > 0 and for all i ∈ {1, 2, ..., d}. Pick a δ ∈ (0, 1). Set βT = 2log(4πt/δ) + 4dlog(dTs2(b −
a)(1 +

∑T
j=1 j

α)
√
log(4ds1/δ)). Thus, there is a constant C such that for any horizon T > T0, the

cumulative regret of the proposed HuBO algorithm is bounded as

RT ≤ C +
√
C1TβT γT (CT ) +

π2

6

, with probability 1 − δ, where the domain CT = [cmin − (b − a)(1 +
∑T
j=1 j

α)/2, cmax + (b −
a)(1 +

∑T
j=1 j

α)/2]d, and γT (CT ) is the maximum information gain for any T observations in the
domain CT (see [4]).

Proof. Let us denote by f∗t the optimum in the search space Xt, and denote by gt the gap between the
global optimum and the optimum in the search space Xt. Formally, gt = f(x∗)− f∗t . We consider
two cases:

• 1 ≤ t ≤ T0. Then with the probability 1− δ, rt can be bounded as follows:

rt = f(x∗)− f(xt) (1)
= f∗t − f(xt) + gt (2)
= f∗t − µt−1(x∗) + µt−1(x∗)− f(xt) + gt (3)
≤ f(x∗)− µt−1(x∗) + µt−1(x∗)− f(xt) + gt (4)

≤
√
βtσt−1(x∗) + µt−1(x∗)− f(xt) + gt (5)

≤
√
βtσt−1(xt) + µt−1(xt)− f(xt) + gt (6)

≤ 2
√
βtσt−1(xt) + gt (7)

where the inequality (4) holds as f∗t ≤ f(x∗), the inequality (5) holds as f(x∗) ≤
µt−1(x∗) +

√
βtσt−1(x∗) with probability 1 − δ ( the proof is similar to Lemma 5.5

of [4]), the inequality (6) holds as
√
βtσt−1(x∗) + µt−1(x∗) = µt(x

∗) ≤
√
βtσt−1(xt) +

µt−1(xt) = µt(xt) ( recall that xt = argmaxx∈Xtut(x)), and finally inequality (7) holds as
µt−1(xt)−

√
βtσt−1(xt) ≤ f(xt) with probability 1− δ ( the proof is similar to Lemma

5.1 of [4]).

• t > T0. By Theorem 1, the search space Xt contains x∗. Similar to the idea of [4], we can
use a set of discretizations of Xt to achieve a valid confidence interval on x∗. By proof
similar to Lemma 5.8 of [4], we achieve: rt ≤ 2

√
βtσt−1(xt) + 1

t2 .

Combining the two cases, we achieve RT =
∑T
t=1 rt ≤

∑T0

t=1 gt + 2
∑T
t=1

√
βtσt−1(xt) +∑T

t=T0+1
1
t2 ≤ C+2

∑T
t=1

√
βtσt−1(xt)+

∑T
t=1

1
t2 ≤ C+2

∑T
t=1

√
βtσt−1(xt)+

∑T
t=1

1
t2 + π2

6 ,
where we set C =

∑T0

t=1 gt. To make our problem in context of unknown search spaces tractable, we
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assume that the function f is finite on any finite domain of Rd. It implies that for every 1 ≤ t ≤ T0,
gt is finite. Further, by definition of T0, T0 is the constant and independent of T . Thus, C is also a
constant and is independent of T .

Next, we derive an upper bound on
∑T
t=1

√
βtσt−1(xt). By Lemma 2, for every 1 ≤ t ≤ T ,

Xt ⊆ CT . Similar to the proof of Lemma 5.4 of [4] we can achieve

T∑
t=1

4βtσ
2
t−1(xt) ≤ C1βT γT (CT ), (8)

where C1 = 8/log(1 + σ2), βt = 2log(4πt/δ) + 4dlog(dts2(b− a)(1 +
∑t
j=1 j

α)
√
log(4ds1/δ)).

By Cauchy-Schwarz, we have:

T∑
t=1

√
βtσt−1(xt) ≤

√
C1TβT γT (CT ) (9)

Therefore, RT ≤ C +
√
C1TβT γT (CT ) + π2

6 .

Proposition 2. We assume the kernel function k satisfies k(x, x′) ≤ 1. Then,

• For SE kernels: γT (CT ) = O(T (α+1)d),

• For Matérn kernels with ν > 1: γT (CT ) = O(T
d2(α+2)+d
2ν+d(d+1) )

Proof. For SE kernels, by the proof similar as in Theorem 5 of [4], we can bound γT (CT ) as
γT (CT ) ≤ O(V ol(CT )log(T )). By definition, CT = [cmin− (b− a)(1 +

∑T
j=1 j

α)/2, cmax + (b−
a)(1 +

∑T
j=1 j

α)/2]d. Hence, V ol(CT ) = (cmax − cmin + (b− a)(1 +
∑T
j=1 j

α))d. We consider
two cases on α:

• α = −1. By Lemma 4,
∑T
j=1 j

α < 1 + ln(T ). Hence, V ol(CT ) < (cmax − cmin + (b−
a)(2 + ln(T )))d. Therefore, γT (CT ) ≤ O((ln(T ))d+1).

• if −1 < α < 0. By Lemma 4,
∑T
j=1 j

α < 1 + T 1+α−1
1+α . Hence, V ol(CT ) = (cmax −

cmin + (b − a)(1 +
∑T
j=1 j

α))d < (cmax − cmin + b−a
(1+α)d

(2α + 1 + Tα+1))d. Thus,

V ol(CT ) = O(T (α+1)d).

Thus, γT (CT ) = O(T (α+1)d).

For Matérn kernels, by the proof similar as in Theorem 5 of [4], we can bound γT (CT )
as γT (CT ) = O(T∗log(TnT ))), where nT = 2V ol(CT )(2τ + 1)T τ (logT ) and T∗ =
(TnT )d/(2ν+d)(log(TnT ))−d/(2ν+d), τ is a parameter. We consider two cases:

• if α = −1,
∑T
j=1 j

α < 1 + ln(T ). We have V ol(CT ) = O(logT ) and O(T∗log(TnT )) =

O(T
(τ+1)d
2ν+d (logT ). We choose τ = 2νd

2ν+d(d+1) to match this term with O(T 1− τd ). Thus,

γT (CT ) = O(T 1− τd ) = O(T
d(d+1)

2ν+d(d+1) ).

• if −1 < α < 0, we obtain V ol(CT ) = O(T (α+1)d). Thus, O(T∗log(TnT )) =

O(T
((α+1)d+τ+1)d

2ν+d (logT ). To match this term with O(T 1− τd ) we choose τ such that:

((α+ 1)d+ τ + 1)d

2ν + d
= 1− τ

d

This is equivalent to τ = 2νd−d3(α+1)
2ν+d(d+1) . Thus, γT (CT ) = O(T 1− τd ) = O(T

d2(α+2)+d
2ν+d(d+1) ).
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Since, when α = −1, γT (CT ) = O(T
d2(α+2)+d
2ν+d(d+1) ) = O(T

d(d+1)
2ν+d(d+1) ). Thus, we can write γT (CT ) =

O(T
d2(α+2)+d
2ν+d(d+1) ) for −1 ≤ α < 0.

Combining Proposition 1 and Proposition 2, we achieve Theorem 2.
Theorem 2 (Cumulative Regret RT of HuBO Algorithm). Let f ∼ GP(0, k) with a stationary
covariance function k. Assume that there exist constants s1, s2 > 0 such that P[supx∈X |∂f/∂xi| >
L] ≤ s1e

−(L/s2)2

for all L > 0 and for all i ∈ {1, 2, ..., d}. Pick a δ ∈ (0, 1). Thus, if −1 ≤ α < 0
then for any horizon T > T0, the cumulative regret of the proposed HuBO algorithm is bounded as

• RT ≤ O∗(T
(α+1)d+1

2 ) if k is a SE kernel,

• RT ≤ O∗(T
d2(α+2)+d
4ν+2d(d+1) ) if k is a Matérn kernel

with probability greater than 1− δ.

Proof. By Proposition 1, we have RT ≤ C +
√
C1TβT γT (CT ) + π2

6 , where βT = 2log(4πt/δ) +

4dlog(dTs2(b − a)(1 +
∑T
j=1 j

α)
√
log(4ds1/δ)). By Lemma 4, if α = −1 then

∑T
j=1 j

α <

1 + ln(T ), if −1 < α < 0 then
∑T
j=1 j

α < 1 + T 1+α−1
1+α . For both cases, βT ≤ O(log(T )). By

Proposition 2, the Theorem 2 holds.

4 Proof of Theorem 3

Figure 1: An illustration of the case where a hypercube (the yellow square) intersects the sphere
Sθ (the red circle) in two-dimensional space. In this case, the inscribed sphere (the yellow circle
centered at z1

t with the radius lh
2 ) of the hypercube intersects the sphere Sθ since z1

t is within the
circle centered at x∗ with the radius θ + lh

2 (the green circle).

Theorem 3. Pick a δ ∈ (0, 1). Let x∗t ∈ Ht be the closest point to x∗ in the search space Ht. For
any t > T0 and −1 ≤ α < 0, with probability greater than 1− δ, we have

||x∗t − x∗||2 <
2(b− a)

π
(Γ(

d

2
+ 1))

1
d (log(

1

δ
))

1
dMt, (10)

where the constant T0 is defined in Theorem 1, Γ is the gamma function, and Mt = (2 + ln(t))t−
λ
d

if α = −1, otherwise, Mt = 2(α+ 1)−1t−
λ
d if −1 < α < 0.

Proof. The proof idea is to estimate the probability that x∗t lies in a sphere around x∗ with a small
radius. Formally, we seek to bound P[||x∗t − x∗||2 ≤ θ] given a small θ > 0.

It is hard to estimate directly P[||x∗t − x∗||2 ≤ θ]. Instead, our idea is as follows. Since x∗t ∈ Ht,
there exists a hypercube which contains x∗t . We estimate the probability that this hypercube intersects
the sphere Sθ = {x ∈ Rd|||x− x∗||2 ≤ θ} which is centered at the optimum x∗ with the radius θ.

We consider the case of t > T0. By Theorem 1, Xt contains x∗ for every t > T0, where Xt is the
search space of the HuBO algorithm . We recall that Xt is different from Ht which is the search
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space of the HD-HuBO algorithm that we are considering in this section. However, since the search
spaceHt is defined via Xt, we need to use Xt to boundHt.
There are two cases to consider: Case 1: the whole sphere Sθ is within Xt; Case 2: the only part of
Sθ is within Xt. Note that it is impossible that the whole sphere Sθ is outside of Xt since at least we
have x∗ ∈ Xt for t > T0.

Figure 2: An illustration of the case where the global optimum x∗ is a vertex of the square Xt in
two-dimensional space. In this case, only a 1/4 volume of the sphere S

θ+
lh
2

centered at x∗ with the

radius θ + lh
2 (the green circle) is inside of Xt.

• Case 1 where the whole sphere Sθ is within Xt. We seek to bound the probability that a
hypercube H(zit, lh) intersects the sphere Sθ, 1 ≤ i ≤ Nt. We denote this probability by p0.
This probability is greater than the probability that the inscribed sphere of the hypercube
H(zit, lh), denoted by S(zit,

lh
2 ) that has the center at zit and the radius lh

2 intersects the
sphere Sθ. Let us define this probability as p1. Further, p1 is greater than the probability
that the point zit is within the sphere around x∗ with the radius θ + lh

2 . Let us define this
probability as p2. To explain the connection p1 ≥ p2, we can see that the condition so that
the sphere S(zit,

lh
2 ) intersects the sphere Sθ is the distance between two centers x∗ and zit

is less than or equal to the total of two radius. Figure 1 illustrates our situation.

The probability p2 can be computed by

V ol(S
θ+

lh
2

)

V ol(Xt)
,

where V ol(Xt) denotes the volume of the Xt and V ol(S
θ+

lh
2

) denotes the volume of the

sphere S
θ+

lh
2

centered at x∗ with the radius θ + lh
2 .

Since p0 > p2, we achieve

p0 >
V ol(S

θ+
lh
2

)

V ol(Xt)
.

By Lemma 1, the volume of Xt can be computed as V ol(Xt) = ((b− a)(1 +
∑t
j=1 j

α))d.

By [5], the volume of the d-dimensional sphere with radius θ+ lh
2 in L2 norms is (π(θ+

lh
2 ))d

Γ( d2 +1)
.

Thus, the probability can be re-write as

1

Γ(d2 + 1)
[

2Γ( 3
2 )(θ + lh

2 )

(b− a)(1 +
∑t
j=1 j

α))
]d.

• Case 2 where the only part of Sθ is withinXt. We only consider the case where θ+ lh
2 < b−a.

Note that b− a is the size of the initial space X0 as defined in Algorithm 1. lh denotes the
size of hypercubes and lh is a parameter of the HD-HuBO algorithm. Hence, we can choose
lh so that lh < b− a and θ < b− a− lh

2 . It means that the sphere Sθ is small compared to
Xt.
In the worst case where x∗ is at the boundary of Xt for all dimensions. See Figure 2
for an explanation. In this case, the size of the space part of S

θ+
lh
2

in Xt halves in each
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dimension and therefore, the volume of the space part of S
θ+

lh
2

in Xt, represented by

V ol(S
θ+

lh
2

)∩V ol(Xt) is reduced by 2d times, compared to the whole volume of the sphere

S
θ+

lh
2

. Thus, similar to Case 1, the probability p0 that a hypercube H(zit, lh) intersects the
sphere Sθ is bounded as

p0 >
V ol(S

θ+
lh
2

) ∩ V ol(Xt)

V ol(Xt)
=

1

2d
1

Γ(d2 + 1)
[

2Γ( 3
2 )(θ + lh

2 )

(b− a)(1 +
∑t
j=1 j

α))
]d.

Thus, in both Case 1 and Case 2, we have that the probability that a hypercube H(zit, lh) intersects
the sphere Sθ is bounded as

p0 >
1

2d
1

Γ(d2 + 1)
[

2Γ( 3
2 )(θ + lh

2 )

(b− a)(1 +
∑t
j=1 j

α))
]d.

It implies that the probability that a hypercube H(zit, lh) does not intersect the sphere Sθ is computed
as

1− p0 < 1− 1

2d
1

Γ(d2 + 1)
[

2Γ( 3
2 )(θ + lh

2 )

(b− a)(1 +
∑t
j=1 j

α))
]d

= 1− 1

Γ(d2 + 1)
[

Γ( 3
2 )(θ + lh

2 )

(b− a)(1 +
∑t
j=1 j

α))
]d

< e
− 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ+
lh
2

)

(b−a)(1+
∑t
j=1

jα))
]d

,

where we use the inequality 1− x ≤ e−x.

Therefore, if we consider the set of Nt hypercubes then the probability that no hypercube H(zit, lh)
intersects the sphere Sθ is less than

∏
1≤i≤Nt

e
− 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ+
lh
2

)

(b−a)(1+
∑t
j=1

jα))
]d

= e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ+
lh
2

)

(b−a)(1+
∑t
j=1

jα))
]d

Note that this is achieved because the set of centres of hypercubes is sampled uniformly at random
(hence independently). Thus, the probability that there is at least a hypercube from the set of Nt
hypercubes which intersects the sphere Sθ is at least:

1− e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ+
lh
2

)

(b−a)(1+
∑t
j=1

jα))
]d

.

Further, since lh ≥ 0, 1−e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ+
lh
2

)

(b−a)(1+
∑t
j=1

jα))
]d

≥ 1−e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ)

(b−a)(1+
∑t
j=1

jα))
]d

. Thus,
the probability that there is at least a hypercube from the set of Nt hypercubes which intersects the
sphere Sθ is greater than:

1− e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ)

(b−a)(1+
∑t
j=1

jα))
]d

.

Note that here, we omit the influence of the size of hypercubes. In fact, the larger the lh, the higher
the probability that there is at least a hypercube from the set of Nt hypercubes which intersects the
sphere Sθ.

On the other hand, if let x∗t ∈ Ht be the closest point to x∗ in the search spaceHt then the probability
that there is at least a hypercube from the set of Nt hypercubes which intersects the sphere Sθ is
equal to the probability that ||x∗t − x∗||2 ≤ θ. Thus, we have

P[||x∗t − x∗||2 ≤ θ] > 1− e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ)

(b−a)(1+
∑t
j=1

jα))
]d

.

Now set e
−Nt 1

Γ( d
2

+1)
[

Γ( 3
2

)(θ)

(b−a)(1+
∑t
j=1

jα))
]d

= δ. We achieve θ = (b−a)

Γ( 3
2 )

(1 +
∑t
j=1 j

α)(Γ(d2 +

1))
1
d ( 1
Nt
log( 1

δ ))
1
d = 2(b−a)√

π
(1 +

∑t
j=1 j

α)(Γ(d2 + 1))
1
d ( 1
Nt
log( 1

δ ))
1
d . Here, we use Γ( 3

2 ) =
√
π

2 .
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Thus, given a δ ∈ (0, 1), we have

||x∗t − x∗||2 <
2(b− a)√

π
(1 +

t∑
j=1

jα)(Γt(
d

2
+ 1))

1
d (

1

Nt
log(

1

δ
))

1
d ,

with the probability 1− δ.

By definition, Nt = N0

⌈
tλ
⌉
≥ tλ. Using the results from Lemma 2, we consider two cases of α:

• if α = −1, 1 +
∑t
j=1

1
j < 2 + ln(t). In this case, ||x∗t − x∗||2 ≤

2(b−a)√
π

(2 + ln(t))(Γ(d2 +

1))
1
d ( 1
Nt
log( 1

δ ))
1
d ≤ 2(b−a)√

π
(Γ(d2 + 1))

1
d (log( 1

δ ))
1
d

2+ln(t)

t
λ
d

.

• if −1 < α < 0, 1 +
∑t
j=1 j

α < 2 + tα+1−1
α+1 = tα+1+2α+1

1+α . Since α ≤ 0, t
α+1+2α+1

1+α ≤
tα+1+1

1+α ≤ 2
α+1 . Thus, ||x∗t − x∗||2 ≤

2(b−a)√
π

(Γ(d2 + 1))
1
d (log( 1

δ ))
1
d

2
α+1 t

−λd .

Let

Mt =

{
(2 + ln(t))t−

λ
d , if α = −1.

2
α+1 t

−λd , if −1 < α < 0.

, we have

||x∗t − x∗||2 <
2(b− a)√

π
(Γ(

d

2
+ 1))

1
d (log(

1

δ
))

1
dMt,

with the high probability 1− δ. The Theorem holds.

5 Proof of Theorem 4

Similar to HuBO, to derive the upper bounds of the cumulative regret of HD-HuBO for SE kernels
and Matérn kernels, we first derive an upper bound of the cumulative regret for a general class of
kernels as the following Proposition 3. We use Theorem 3 to prove this. Next, by combining results
from Proposition 2 and Proposition 3, we achieve upper bounds for HD-HuBO for SE kernels and
Matérn kernels.
Proposition 3. Let f ∼ GP(0, k) with a stationary covariance function k. Assume that there exist
constants s1, s2 > 0 such that P[supx∈X |∂f/∂xi| > L] ≤ s1e

−(L/s2)2

for all L > 0 and for
all i ∈ {1, 2, ..., d}. Pick a δ ∈ (0, 1). Set βt = 2log(π2t2/δ) + 2dlog(2s2lhd

√
log(6ds1/δ)t

2).
Then, there exists a constant C ′ such that with any horizon T > T0, under conditions λ

d > α + 1,
−1 ≤ α < 0, lh > 0, the cumulative regret of HD-HuBO Algorithm is bounded with probability
greater than 1− δ as

RT ≤ C ′+
√
C1TβT γT (CT ) +A(log( 6

δ ))
1
dBT + π2

6 , where A = s2

√
log( lhds1δ ) 2(b−a)

π d
√
d+ 2,

and where BT = UTVT such that UT = 2 + ln(T ) if α = −1, otherwise UT = 2(α + 1)−1, and
VT = 1 + ln(T ) if λ = d, otherwise VT = 1 + d

d−λmax{1, T 1−λd },

C1 = 8/log(1 +σ2), lh is the size of the hypercube, CT = [cmin− (b−a)(1 +
∑T
j=1 j

α)/2, cmax+

(b− a)(1 +
∑T
j=1 j

α)/2]d, and γT (CT ) is the maximum information gain about the function f from
any T observations from CT .

Our Idea To derive a cumulative regret RT =
∑T
t=1 rt, we will seek to bound rt = f(x∗)− f(xt)

for any t. If t ≤ T0, similar to the proof of Proposition 2, we achieve a bound on rt: rt ≤
2
√
βtσt−1(xt) + g′t, where βt is defined as in section 5 in the main paper, g′t is the is the gap between

the global optimum and the optimum inHt. Formally, g′t = f(x∗)− f∗(Ht).

Now we consider the case where t > T0. Let x∗t ∈ Ht be the closest point to x∗ in the search space
Ht. To obtain a bound on rt (t > T0), we write it as

rt = f(x∗)− f(xt) (11)
= f(x∗)− f(x∗t )︸ ︷︷ ︸

Part 1

+ f(x∗t )︸ ︷︷ ︸
Part 2

− f(xt)︸ ︷︷ ︸
Part 3

(12)

8



Now we start to bound the part 1, the part 2 and part 3.

Bounding Part 1
Lemma 7. Pick a δ ∈ (0, 1). For any t > T0, with probability at least 1− δ, we have

|f(x∗)− f(x)| ≤ s2

√
log(

2ds1

δ
)
2(b− a)√

π
d
√
d+ 2(log(

2

δ
))

1
dMt,

where

Mt =

{
(2 + ln(t))t−

λ
d , if α = −1.

2
α+1 t

−λd , if −1 < α < 0.

Proof. Given any x ∈ Xt, by Assumption of Theorem 4 and the union bound, we have,

|f(x∗)− f(x)| ≤ L||x∗ − x)||1

with probability greater than 1− ds1e
−L2/s22 . Set ds1e

−L2/s22 = δ/2. Thus,

|f(x∗)− f(x)| ≤ s2

√
log(

2ds1

δ
)||x∗ − x||1 (13)

with probability greater than 1− δ/2.

On the other hand, By Theorem 3 we have:

||x∗t − x∗||2 ≤
2(b− a)√

π
(Γ(

d

2
+ 1))

1
d (log(

2

δ
))

1
dMt (14)

with probability 1− δ/2,

Mt =

{
(2 + ln(t))t−

λ
d , if α = −1.

2
α+1 t

−λd , if −1 < α < 0.

To transform from the L2 norms to the L1 norms, we use Cauchy-Schwarz:

||x∗t − x∗||1 ≤ d||x∗t − x∗||2 (15)

Combining Eq(13), Eq(14) and Eq(15), we have

|f(x∗)− f(x)| ≤ s2

√
log(

2ds1

δ
)d

2(b− a)√
π

(Γ(
d

2
+ 1))

1
d (log(

2

δ
))

1
dMt

with the probability 1− δ.

Further, by Lemma 6, we achieve (Γ(d2 + 1))
1
d <
√
d+ 2. Thus,

|f(x∗)− f(x)| ≤ s2

√
log(

2ds1

δ
)
2(b− a)√

π
d
√
d+ 2(log(

2

δ
))

1
dMt

with the probability 1− δ.

Bounding Part 2 Now, we continue to bound the part 2. By definition, x∗t ∈ Ht. Since Ht =

{H(z1
t , lh) ∪ ... ∪H(zNtt , lh)} ∩ Xt, x∗t is in some hypercube. Without the loss of generality, we

assume that x∗t is within the hypercube H(z∗t , lh), where z∗t is one centre among sampled centres
{z1
t , ..., z

Nt
t }.

Lemma 8 (Bounding Part 2). Pick a δ ∈ (0, 1) and set ζ1
t = 2log(π

2t2

3δ ) +

2dlog(2s1lhd
√
log( 2ds1

δ )t2). Then, there exists a x′ ∈ H(z∗t , lh) such that

f(x∗t ) ≤ µt−1(x′) +
√
ζ1
t σt−1(x′) +

1

t2
(16)

holds with probability ≥ 1− δ.
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Proof. We use the idea of proof of Lemma 5.7 in [4] for the hypercube H(z∗t , lh). We consider the
distance of any two points in the hypercube: ||x− x′||1. We have ||x− x′||1 ≤ lh, where lh is the
size of the hypercube.

By Assumption of Theorem 4 and the union bound, for ∀x, x′, we have

|f(x)− f(x′)| ≤ L||x− x′||1

with probability greater than 1− ds1e
−L2/s22 . Thus, by choosing ds1e

−L2/s22 = δ/2, we have

|f(x)− f(x′)| ≤ s2

√
log(

2ds1

δ
)||x− x′||1 (17)

with probability greater than 1− δ/2.

Now, on H(z∗t , lh), we construct a discretization Ft of size (τt)
d dense enough such that for any

x ∈ Ft
||x− [x]t]||1 ≤

lhd

τt
where [x]t denotes the closest point in Ft to x. In this manner, with probability greater than 1− δ/2,
we have

|f(x)− f([x]t)| ≤
s2

√
log( 2ds1

δ )||x− [x]t||1
τt

≤ s2

√
log(

2ds1

δ
)
lhd

τt

<
s2lhd

√
log( 2ds1

δ )

τt

Here, we use the inequality ||x − [x]t||1 ≤ lhd. Let τt = s2lhd
√
log( 2ds1

δ )t2. Thus, |Ft| =

(s2lhd
√
log( 2ds1

δ )t2)d. We obtain

|f(x)− f([x]t)| ≤
1

t2
(18)

with probability 1− δ/2 for any x ∈ Ft.

Similar to Lemma 5.6 of [4], if we set ζ1
t = 2log(|Ft|π

2t2

3δ ) = 2log(π
2t2

3δ ) +

2dlog(s2lhd
√
log( 2ds1

δ )t2), we have with probability 1− δ/2, we have

f(x) ≤ µt−1(x) +
√
ζ1
t σt−1(x) (19)

for any x ∈ Ft and any t ≥ 1. Thus, combining Eq(18) and Eq(19), if we let [x]t which is the closest
point in Ft to x, we have

f(x∗t ) ≤ µt−1([x∗t ]t) +
√
ζ1
t σt−1([x∗t ]t) +

1

t2

with probability 1− δ.

Bounding Part 3
Lemma 9. Pick a δ ∈ (0, 1) and set ζ0

t = 2log(π2t2/(6δ)). Then we have

f(xt) ≥ µt−1(xt)−
√
ζ0
t σt−1(xt) (20)

holds with probability ≥ 1− δ.

Proof. It is similar to Lemma 5.5 of [4].
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Now, we combine the results from Lemmas 7, 8 and 9 to obtain a bound on rt as in the following
Lemma.

Lemma 10 (Bounding rt). Pick a δ ∈ (0, 1) and set βt = 2log(π
2t2

δ )+2dlog(2s2lhd
√
log( 6s1d

δ )t2).

Then with t > T0, λd > α+ 1, −1 ≤ α < 0 and lh > 0, we have

rt ≤ 2β
1/2
t σt−1(xt) +

1

t2
+A(log(

6

δ
))

1
dMt (21)

holds with probability ≥ 1− δ, where A = s2

√
log( 2ds1

δ ) 2(b−a)√
π
d
√
d+ 2 and

Mt =

{
(2 + ln(t))t−

λ
d , if α = −1.

2
α+1 t

−λd , if −1 < α < 0.

Proof. We use δ
3 for Lemmas 7, 8 and 9 so that these events hold simultaneously with probability

greater than 1− δ. Formally, by Lemma 9 using δ
3 :

f(xt) ≥ µt−1(xt)−
√

2log(
π2t2

δ
)σt−1(xt)

holds with probability ≥ 1− δ
3 . As a result,

f(xt) ≥ µt−1(xt)−
√
ζ0
t σt−1(xt) (22)

> µt−1(xt)−
√
βtσt−1(xt) (23)

holds with probability ≥ 1− δ
3 .

By Lemma 8 using δ
3 , there exists a x′ ∈ H(z∗t , lh) such that

f(x∗t ) ≤ µt−1(x′) +
√
ζ1
t σt−1(x′) +

1

t2

holds with probability ≥ 1− δ
3 . As a result,

f(x∗t ) ≤ µt−1(x′) +
√
ζ1
t σt−1(x′) +

1

t2

f(x∗t ) ≤ µt−1(x′) +
√
βtσt−1(x′) +

1

t2

= ut(x
′) +

1

t2

Recall that ut(x) is the acquisition function defined in the main paper. Since xt = argmaxx∈X ′tut(x)

and x′ ∈ H(z∗t , lh) ⊂ X ′t , we have ut(x′) ≤ ut(xt). Thus,

f(x∗t ) ≤ ut(xt) +
1

t2
(24)

holds with probability ≥ 1− δ
3 .

By Lemma 7 using δ
3 :

|f(x∗t )− f(x∗)| ≤ A(log(
6

δ
))

1
dMt (25)

holds with probability ≥ 1− δ
3 .
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Combing Eq(23), Eq(24) and Eq(25), we have

rt = f(x∗)− f(xt) (26)
= f(x∗)− f(x∗t )︸ ︷︷ ︸

Part 1

+ f(x∗t )︸ ︷︷ ︸
Part 2

− f(xt)︸ ︷︷ ︸
Part 3

(27)

≤ A(log(
6

δ
))

1
dMt + f(x∗t )︸ ︷︷ ︸

Part 2

− f(xt)︸ ︷︷ ︸
Part 3

(28)

≤ A(log(
6

δ
))

1
dMt +

1

t2
+ ut(xt)− f(xt) (29)

≤ A(log(
6

δ
))

1
dMt +

1

t2
+ 2(βt)

1/2σt−1(xt) (30)

holds with probability ≥ 1− δ.

Now we are ready to prove Proposition 3.

We have RT =
∑T
t=1 rt =

∑T0

t=1 rt +
∑T
t=T0+1 rt.

Similar to the proof of Proposition 1, we have
∑T0

t=1 rt ≤
∑T0

t=1(2
√
βtσt−1(xt) + g′t).

On the other hand, By Lemma 10, we have
∑T
t=T0+1 rt ≤

∑T
t=T0+1(2β

1/2
t σt−1(xt) +

1
t2 + A(log( 6

δ ))
1
dMt). Thus, RT =

∑T
t=1 rt ≤

∑T0

t=1 g
′
t + π2

6 +
∑T
t=1 2β

1/2
t σt−1(xt) +∑T

t=T0+1A(log( 6
δ ))

1
dMt. We set C ′ =

∑T0

t=1 g
′
t. To make our problem in context of unknown

search spaces tractable, we assume that the function f is finite on any finite domain of Rd. It
implies that for every 1 ≤ t ≤ T0, g′t is finite. Further, by definition of T0, T0 is the constant
and independent of T . Thus, C ′ is also a constant and is independent of T . Thus, we have
RT ≤ C ′ + π2

6 +
∑T
t=1 2β

1/2
t σt−1(xt) +

∑T
t=T0+1A(log( 6

δ ))
1
dMt

To bound
∑T

1 2β
1/2
t σt−1(xt), we use the property of CT and HT that HT ⊆ XT ⊆ CT . Hence,

similar to the proof of Lemma 5.4 of [4], we have
∑T

1 2β
1/2
t σt−1(xt) ≤

√
C1TβT γT (CT ). The

remaining problem is to bound
∑T
T0
A(log( 6

δ ))
1
dMt = A(log( 6

δ ))
1
d

∑T
T0
Mt, where

Mt =

{
(2 + ln(t))t−

λ
d , if α = −1.

2
α+1 t

−λd , if −1 < α < 0.

We consider two cases of α:

• If α = −1, then
∑T
t=T0

Mt ≤
∑T
t=1

2+ln(t)

t
λ
d

< (2 + ln(T ))
∑T
t=1

1

t
λ
d

. We consider three
cases of λ:

– if λ = d,
∑T
t=1

1

t
λ
d

=
∑T
t=1

1
t < 1 + ln(T ) (using Lemma 4). Therefore,∑T

T0
A(log( 6

δ ))
1
dMt < A(log( 6

δ ))
1
dBT , where BT = (2 + ln(T ))(1 + ln(T )).

– if λ > d,
∑T
t=1

1

t
λ
d

< 1 + 1
λ/d−1 = λ

λ−d (using Lemma 5). Thus,∑T
T0
A(log( 6

δ ))
1
dMt < A(log( 6

δ ))
1
dBT , where BT = (2 + ln(T ))(1 + d

d−λ ).

– if 0 < λ < d,
∑T
t=1

1

t
λ
d
< 1+ T 1−λ

d

1−λd
< 1+ d

d−λT
1−λd . Thus,

∑T
T0
A(log( 6

δ ))
1
dMt <

A(log( 6
δ ))

1
dBT , where BT = (2 + ln(T ))(1 + d

d−λT
1−λd ).

• If −1 < α < 0, then
∑T
t=T0

Mt ≤ 2
α+1 (

∑T
t=1

1

t
λ
d

). Similar to the above case, we consider
three cases of λ:

– if λ = d,
∑T
t=1

1

t
λ
d

=
∑T
t=1

1
t < 1 + ln(T ) (using Lemma 4). Therefore,∑T

T0
A(log( 6

δ ))
1
dMt < A(log( 6

δ ))
1
dBT , where BT = 2

α+1 (1 + ln(T )).

– if λ > d,
∑T
t=1

1

t
λ
d

< 1 + 1
λ/d−1 = λ

λ−d (using Lemma 5). Thus,∑T
T0
A(log( 6

δ ))
1
dMt < A(log( 6

δ ))
1
dBT , where BT = 2

α+1 (1 + d
d−λ ).
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– if 0 < λ < d,
∑T
t=1

1

t
λ
d
< 1+ T 1−λ

d

1−λd
< 1+ d

d−λT
1−λd . Thus,

∑T
T0
A(log( 6

δ ))
1
dMt <

A(log( 6
δ ))

1
dBT , where BT = 2

α+1 (1 + d
d−λT

1−λd ).

For all cases, with probability greater than 1 − δ we achieve RT ≤ C ′ +
√
C1TβT γT (CT ) +

A(log( 6
δ ))

1
dBT + π2

6 , where A = s2

√
log( lhds1δ ) 2(b−a)

π d
√
d+ 2, and BT = UTVT such that

UT = 2 + ln(T ) if α = −1, otherwise UT = 2(α+ 1)−1, and VT = 1 + ln(T ) if λ = d, otherwise
VT = 1 + d

d−λmax{1, T 1−λd }. Thus, Proposition 3 holds.

Theorem 4 (Cumulative Regret RT of HD-HuBO Algorithm). Let f ∼ GP(0, k) with a stationary
covariance function k. Assume that there exist constants s1, s2 > 0 such that P[supx∈X |∂f/∂xi| >
L] ≤ s1e

−(L/s2)2

for all L > 0 and for all i ∈ {1, 2, ..., d}. Pick a δ ∈ (0, 1). Then, with T > T0,
under conditions λ > d(α+ 1), −1 ≤ α < 0, lh > 0, the cumulative regret of proposed HD-HuBO
algorithm is bounded as

• RT ≤ O∗(T
(α+1)d+1

2 + (log( 6
δ ))

1
dBT ) if k is a SE kernel,

• RT ≤ O∗(T
d2(α+2)+d
4ν+2d(d+1)

+ 1
2 + (log( 6

δ ))
1
dBT ) if k is a Matérn kernel,

with probability greater than 1 − δ, where BT = UTVT such that UT = 2 + ln(T ) if α = −1,
otherwise UT = 2(α+1)−1, and VT = 1+ ln(T ) if λ = d, otherwise VT = 1+ d

d−λmax{1, T 1−λd }.

Proof. Theorem holds due to Proposition 2 and Proposition 3.

6 Experiments
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Figure 3: Comparison of baselines and the proposed methods when the initial search space is very
small fraction (2%) of the pre-defined space.

On the initial search space The initial search space is crucial to the optimisation efficiency of any
volume expansion strategy. However, since the search space is unknown, in reality it is possible that
the initial search domain is very far from the global optimum. We consider this situation by setting
the initial search space to be only 2% of the pre-defined domain. Under this setting, we optimise two
functions: Hartmann6 and 5-dims Ackley function. As seen in Figure 3, our algorithms outperform
baselines due to the expansion and especially translations of search spaces toward the promising
regions. This is a benefit of our algorithm compared to the previous works in unknown search spaces.

On the computational effectiveness The computational time is an important benefit for our al-
gorithms. In our experiments, Cinitial is set to 10 times to the size of the initial search space X0

along each dimension, it allows expanded spaces to move freely to any position in the pre-defined
domain. It follows that via the transformation, the center of the new search space is set closer to the
best solution found up to that iteration. Therefore, both the new bound and the new center are easy
to determine compared to previous works in unknown search spaces except the volume doubling
strategy. We note that in practice, if the search domain is unknown, our algorithm would typically
benefit by setting a large Cinitial as this allows the search space to be centered close to the best found
solution.
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Figure 4: The average runtime (seconds) of HD-HuBO over iterations.

Table 1: Average CPU time (seconds) at the final iteration for all algorithms.

Algorithms Beale Hartmann3 Hartmann6 Levy(d =20) Ackley(d =20)
HuBO 0.40 0.74 3.06 6.63 9.98
HD-HuBO 0.48 0.76 3.14 6.90 11.13
Re-H 0.49 0.84 0.91 7.22 12.96
Re-Q 0.47 1.52 6.12 6.97 13.21
Vol2 0.37 0.76 2.89 6.34 9.13
UBO 0.61 2.11 11.21 9.37 21.33
FBO 1.91 4.32 29.50 23.67 46.56

For HD-HuBO, to optimise over multiple disjoint hypercubes in the continuous input space, we
perform optimisation for each hypercube and then take the best maximum value found across all
hypercubes. For example, for synthetic functions we used λ = 1, N0 = 1 and thus Nt = t. This
means that at iteration t, we use t hypercubes for the maximisation of acquisition function. We
optimise the acquisition function using L-BFGS with 20 restarts on each hypercube. The maximum
number of acquisition function evaluations is set to 1000. The Figure 4 shows the average runtime
(seconds) of HD-HuBO over iterations on the 20-dims Levy function.

To compare the computational time of all algorithms, we give to all the algorithms the equal computa-
tional budget to maximise acquisition functions at each iteration. As seen in Table 1, our algorithms
are faster than UBO which needs to compute singular values of matrix (K + σI)−1, and faster than
FBO, which needs extra steps to numerically solve multiple optimisation problems for FBO.
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Figure 5: Optimisation efficiency with different sizes of the search space

Additional Results When the search space is unknown, one heuristic solution is to specify it
arbitrarily. However, there are two problems: (1) an arbitrary search space that is finite, no matter
how large, may not contain the global optimum (2) optimisation efficiency decreases with increasing
size of the search space. We below provide two examples to illustrate that the optimisation efficiency
decreases with increasing size of the search space.

In low dimensions, we consider the optimisation efficiency of BO algorithms such as EI and GP-UCB
on 5-dims Levy function when increasing the size of the search space. We consider two cases: (1) the
search space is set to [−10, 10] and (2) the search space is set to [−100, 100]. In high dimensions, we
consider the optimisation efficiency of REMBO algorithm [6] and LINEBO algorithm [3] on 20-dims
Levy function. Also, we consider two cases: (1) the search space is set to [−10, 10] and (2) the search
space is set to [−100, 100]. The Levy function achieves the minimum value at x∗ = (1, 1, ..., 1).
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As seen in Figure 5, the use of a larger space slows down fast the convergence. In contrast, our
approach using a volume expansion strategy starting from a small initial search space can avoid this
unnecessary sampling.
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