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1 Amodal-VAE Analysis

In this section, we further analyze Amodal-VAE.

We show generative samples from the model in Figure 3. We randomly sample from the factorial
Normal prior distribution p(z) ∼ N (0, I) and transform the samples into masks using the decoder
pw1

(y|z). The masks obtained by sampling from the prior resemble diverse car-like and pedestrian-
like shapes. This validates that Amodal-VAE correctly learnt a generative model of realistic instance
masks during training stage (1).

Next, we explore how Amodal-VAE captures the ambiguity inherent in the mask completion task.
Intuitively, we expect the approximate posterior distribution to be wider when the partial input mask
corresponds to a very occluded object and to be narrower when most of the object is visible. Since
our approximate posterior is also modeled using a factorial Normal distribution, this can be tested
easily. We calculate the standard deviations predicted for all samples from the KINS test set, which
we partition into three categories based on the amount of occlusion. The results are shown in Figure 4
and validate our intuition. The more occluded an object is, the wider is the corresponding predicted
approximate posterior distribution in latent space. In other words, Amodal-VAE correctly models
shape uncertainty caused by occlusion. It is more certain when completing masks of mostly visible
objects, but it also captures the increased uncertainty when completing masks of very occluded
objects. We can make use of this and calculate different plausible completions by sampling from the
approximate posterior and decode to the corresponding masks (as shown in Figures 6 and 7 in the
main text and Figure 9 below).

Furthermore, we report mIOU versus occlusion percentage in Figure 1. For the Amodal-VAE best in
samples curve, we sample 20 latent codes from the approximate posterior distribution and decode
to the corresponding completed masks. We then calculate mIOU using masks with the best amodal
GT IOU. This is a similar experiment like the posterior sampling experiments shown in the main
paper. The results demonstrate that by sampling we can find better masks than using the approximate
posterior mode. Importantly, the gap between the curves narrows as the occluded area becomes
smaller. This is in line with the previous analyses, since less occlusion implies less ambiguity in the
mask completion task. Hence, the approximate posterior distributions are narrower and we profit less
from sampling.

2 Amodal Segmentation

We provide additional experiments on amodal segmentation using the KINS dataset in Table 1. We
crop the images by GT bounding box and train a ResNet-PSP segmentation model [2, 7]. Then, we
predict the instance masks on the test set, yielding 80.83% amodal mIOU. We use the predicted
instance masks as input to perform amodal completion using both our Amodal-VAE and the baseline,
which we outperform. We also find that our model is robust to instance mask corruptions. Even
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though full mIOU drops by 8.65% (94.68% vs. 86.03%, also see Table 1 in main text), mIOU on
invisible area only drops by just 2.14% (62.85% vs. 60.71%).

Method Full mIOU Inv. mIOU

GT Instance Mask 87.03 0

Pred. Mask 80.83 0

Amodal-VAE 86.03 60.71

Deocclusion 84.94 52.93

Table 1: Amodal Segmentation on KINS. Models take predicted partial segmentation masks as input.

Figure 1: Amodal Segmentation mIOU with different occlusion ratios on KINS. X-axis represents visible
area ratio.

3 Implementation Details

In this section, we provide implementation details. All models are trained on Nvidia Tesla V100
GPUs.

3.1 Training Details:

We train all three steps described in Sec 4.1 of the main text until the model converges on the
validation set. Following [6] and for a fair comparison, we use the validation set to search for an
optimal threshold t to use when calculating binary masks from the probabilistic output of the decoder
pw1

(y|z). This resulted in a threshold t = 0.1, which we use to complete masks at test time.

We train the model using the Adam optimizer [3] with learning rate 10−3 in the first training stage
and 10−4 in the second and third stages. To prevent posterior collapse during training in the first
stage, we slowly anneal the KL weight λ, stopping at 0.5 [1]. This improved the performance on the
mask completion task. Specifically, we implement λ as a function of training step t:

λ(t) = λfinal − (λfinal − λstart)× αmax(0,t−tbegin) (1)

We use λfinal = 0.5, λstart = 0.01, α = 0.9995 and tbegin = 2000.

3.2 Amodal-VAE Implementation Details:

Model Design: The input and output masks of Amodal-VAE are tightly cropped and resized to
28×28 resolution. As shown in Figure 2, both encoder and decoder are convolutional neural networks
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followed by two residual blocks and fully connected layers. We use ReLU activation functions and
batch normalization, which we apply before the activation functions. As discussed in Section 4.2
in the main text, the input and output correspond to different scales with respect to the underlying
image. This is corrected using a spatial transformer, which is also parametrized as a convolutional
neural network with max pooling. Our latent space is 64-dimensional.

3.3 Inpainting implementation details

Background Inpainting: We inherit implementation details and code from [4]. Similar to [6],
we randomly crop 256×256 patches from the image as input. We simulate background holes by
randomly placing instance masks on patches. We randomly dilate instance masks from 5 to 25 pixels.

Instance Inpainting: We slightly modify [4] to accept cropped instances as input. We resize in-
stance images to 256×256 resolution. At training time, based on the full mask data and RGB images,
we simulate various occlusions by randomly placing one instance onto another, hence generating a
synthetic dataset of paired RGB images with holes and complete RGB images. We fill the holes with
the corresponding class label as the final input to the inpainting model. At test time, given a full mask
generated by Amodal-VAE, we create holes according to the invisible area of the completed full mask.

3.4 GauGan Implementation Details:

We inherit implementation details and code from [5]. We slightly modify the code and provide
instances as input, such that the inputs to the SPADE layers are single-channel full masks. We train
GauGan based on full masks and the corresponding RGB images for 200 epochs.

4 Additional Qualitative Results

In this section, we provide additional qualitative results. We visualize and compare Amodal-VAE
predictions and human-annotated amodal masks in Figure 5. Figure 6 demonstrates background and
instance inpainting when removing foreground objects and completing shapes of previously occluded
objects. We also show failure cases of Amodal-VAE in Figures 7 and 8. Notice that most failure
cases are due to incorrect bounding box predictions and can be solved by asking humans to draw
amodal bounding boxes. We show more posterior sampling results in Figure 9. We also show how
we can use GauGAN [5] to change instances’ poses in Figure 10.
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Figure 2: Architecture of Amodal-VAE.

Figure 3: Samples from the prior, decoded to masks before binarization. The greyscale pixel values indicate
Bernoulli probabilities ∈ [0, 1].

Figure 4: We demonstrate that the width of the approximate posterior distribution depends on the amount of
occlusion in the partial mask input to Amodal-VAE. We are looking at the 15 latent variables with the smallest
predicted approximate posterior standard deviations. For each, we are calculating the average predicted standard
deviations for partial masks from the KINS test set when partitioned into three categories: Cases with without
any occlusion (blue). Cases with 1-50% of the object being occluded (orange). Cases with more than 50% of the
object being occluded (green). We see that a higher level of occlusion implies a wider approximate posterior,
demonstrating that Amodal-VAE correctly captures the ambiguity in the mask completion task. Note that the
last 3 latent variables shown have standard deviations ≈ 1, independent of occlusion level. Hence, they match
the prior and are effectively turned off. All other latent variables that are not shown are similarly turned off.
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GT Pred

Figure 5: Predicted mask completions of Amodal-VAE (Pred) vs human-annotated ground truth (GT) amodal
masks. Results are shown on the KINS test set.
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Figure 6: Examples showing our shape and appearance completion on KINS. We remove a foreground instance,
complete the previously occluded object, and inpaint the previously invisible part of the object as well as the
background. 5
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Figure 7: Examples of Amodal-VAE failure cases when completing masks. The failures can be solved by
providing the ground truth (GT) amodal box.
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Figure 8: Examples of Amodal-VAE failure cases when completing masks. The failures can be solved by
providing the ground truth (GT) amodal box.
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Figure 9: We complete partial masks by decoding different approximate posterior distribution samples. Results
shown on Cityscapes dataset.

Figure 10: We demonstrate that we can generate instances with modified poses, relying on GauGAN.
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