
Domain Generalization via Entropy Regularization
-Supplementary Materials-

Shanshan Zhao
The University of Sydney

Australia
szha4333@uni.sydney.edu.au

Mingming Gong
University of Melbourne

Australia
mingming.gong@unimelb.edu.au

Tongliang Liu
The University of Sydney

Australia
tongliang.liu@sydney.edu.au

Huan Fu
Alibaba Group

China
fuhuan.fh@alibaba-inc.com

Dacheng Tao
The University of Sydney

Australia
dacheng.tao@sydney.edu.au

Here, we provide the proofs and the illustration of our framework supporting the contents in the
submission.

S. 1 Proof of Theorem 1

Proof. According to the definition of mutual information and under the assumption that all classes
are equally likely, we have:
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(S. 1)

Since H(Y ) is a constant, then minimizing −HPi
(Y |F (X)) is equivalent to minimizing

JSD(Pi(F (X)|Y = 1), Pi(F (X)|Y = 2), · · · , Pi(F (X)|Y = C)), the global minimum of which
is achieved at Pi(F (X)|Y = 1) = Pi(F (X)|Y = 2) = · · · = Pi(F (X)|Y = C).
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S. 2 Proof of Theorem 2

S. Proposition 1. Let V (F, {T ′i}) =
∑K
i=1 E

(X,Y )∼Pi(X,Y )
[logQ

T ′i
i (Y |F (X))]. Then the optimal

prediction probabilities of T ′i are
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, (S. 2)

where 〈z〉i denotes the ith element of z, and x′i = F (xi).

Proof. For a fixed F , minF max{T ′i} V (F, {T ′i}) reduces to maximizing V (F, {T ′i}Ki=1) w.r.t.
{T ′1, T ′2, · · · , T ′K}1:
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(S. 3)

Maximizing the value function point-wisely and applying Lagrange multipliers, we obtain the
following problem:
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(S. 4)

Setting the derivative of Eq. S. 4 w.r.t. 〈T ′i (x′i)〉c to zero, we obtain 〈T ′∗i (xi)〉c = −Pi(x
′
i|Y=c)
λi

.

Through substituting the value of 〈T ′∗i (xi)〉c into the constraint
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.

S. Theorem 1. If U(F ) is the maximum value of V (F, {T ′i}Ki=1), i.e.,
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the global minimum of the minimax game is attained if and only if Pi(X ′i|Y = 1) = Pi(X
′
i|Y =

2) = · · · = Pi(X
′
i|Y = C) for any i ∈ {1, 2, · · · ,K}, where U(F ) achieves the value −KC logC.

Proof. Adding KC logC to U(F ) can obtain:
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According to the definition of the Jensen-Shannon divergence, we can obtain U(F ) = −KC logC +∑K
i=1 C · JSD(Pi(X

′
i|Y = 1), Pi(X

′
i|Y = 2), · · · , Pi(X ′i|Y = C)). Since the JSD between

1Here, we only consider T ′
i for simplicity.
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S. Figure 1: Illustration of our framework. GRL represents the gradient reversal layer. All components
are trained, but only F and T are preserved for test.

multiple distributions is always non-negative, and zero iff they are equal, then we have

P1(X
′
1|Y = 1) = P1(X

′
1|Y = 2) = · · · = P1(X

′
1|Y = C),

P2(X
′
2|Y = 1) = P2(X

′
2|Y = 2) = · · · = P2(X

′
2|Y = C),

· · ·
PK(X ′K |Y = 1) = PK(X ′K |Y = 2) = · · · = PK(X ′K |Y = C),

(S. 7)

and the global minimum of U(F ) is −KC logC.

S. 3 Framework

Here, we provide an illustration of our framework in S. Figure 1 for better understanding of the
proposed components. The main module consists of a feature extractor F and a classifier T . In
addition, we exploit a domain discriminator D to discriminate domains, and 2K classifiers ({Ti}Ki=1

and {T ′i}Ki=1) to regularize the generated features. We insert a gradient reversal layer (GRL) [1]
between F and D, and F and T ′i , respectively. In the inference stage, only the main module (F and
T ) is required.
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