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Here, we provide the proofs and the illustration of our framework supporting the contents in the
submission.

S. 1 Proof of Theorem 1

Proof. According to the definition of mutual information and under the assumption that all classes
are equally likely, we have:
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=JSD(P(F(X))Y = 1), B(F(X)[Y =2),--, B(F(X)|Y = C)) = H(Y).

Since H(Y) is a constant, then minimizing —Hp,(Y|F (X)) is equivalent to minimizing
JSD(P,(F(X)|Y =1), B(F(X)|]Y =2),--- , P(F(X)|Y = C)), the global minimum of which
is achieved at P,(F(X)|Y = 1) = P(F(X)[Y =2) = --- = P,(F(X)|Y = C). O
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S. 2 Proof of Theorem 2

S. Proposition 1. Let V(F,{T!}) = X E  [logQ (Y|F(X))). Then the optimal
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where (z); denotes the i'" element of z, and X, = F(x;).

Proof. For a fixed F, ming maxgry V(F,{T}}) reduces to maximizing V (F,{T{}/<,) w.rt.
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Maximizing the value function point-wisely and applying Lagrange multipliers, we obtain the
following problem:
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Setting the derivative of Eq. w.rt. (T/(x})). to zero, we obtain (T}*(x;)). = _w
Through substituting the value of (7}*(x;)). into the constraint Zle (T!(x}))e = 1, we can obtain

A= — Zle P;(x;]Y = ¢), and thus get the optimal solution (T7*(x})). = % O

S. Theorem 1. IfU(F) is the maximum value of V (F,{T!}X), i.e.,
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the global minimum of the minimax game is attained if and only if P;(X[|Y = 1) = P(X[|Y =
2)=---=P(X[|Y =C) foranyi € {1,2,--- , K}, where U(F) achieves the value —K C'log C.

Proof. Adding KC'log C to U(F') can obtain:
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According to the definition of the Jensen-Shannon divergence, we can obtain U(F') = —KC'log C +
SR C-JSD(P(X]Y = 1), B(X)]Y = 2),---,P(X[|[Y = C)). Since the JSD between

"Here, we only consider 77 for simplicity.
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S. Figure 1: Illustration of our framework. GRL represents the gradient reversal layer. All components
are trained, but only F' and T are preserved for test.

multiple distributions is always non-negative, and zero iff they are equal, then we have

PUXIY = 1) = P(X]|Y =2) = - = Py(X]|Y = O),
PAXYY =1) = By(X4lY =2) = - = B(X}lY =), .
Pi(X5lV = 1) = Pic(Xk|V =2) = - = Pe(Xg]Y = ©),

and the global minimum of U (F') is —KC'log C. O

S. 3 Framework

Here, we provide an illustration of our framework in S. Figure [I] for better understanding of the
proposed components. The main module consists of a feature extractor F' and a classifier 7. In
addition, we exploit a domain discriminator D to discriminate domains, and 2K classifiers ({Ti}fil
and {T/}£ ) to regularize the generated features. We insert a gradient reversal layer (GRL) [T]]
between F' and D, and F and T7, respectively. In the inference stage, only the main module (¥ and
T) is required.
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