
APPENDIX

A Adversarial attacks on OOD detection

It has been demonstrated [2, 36, 4, 7] that without strong countermeasures, DNNs are very susceptible
to adversarial attacks changing the classification result. The goal of adversarial attacks in our setting is
to fool the OOD detection which is based on the confidence in the prediction. Thus the attacker aims
at maximizing the confidence in a neighborhood around a given out-distribution input x so that the
adversarially modified image will be wrongly assigned to the in-distribution. In this paper, we regard
as threat model/neighborhood an l∞-ball of a given radius ε, that is {z ∈ [0, 1]d | ‖z − x‖∞ ≤ ε};
note that in our case the disturbed inputs have to be valid images, hence the additional constraint
z ∈ [0, 1]d.

For evaluation, we use Auto-PGD [8], which is a state-of-the-art implementation of PGD (projected
gradient descent) using adaptive step sizes and random restarts. We use additionally backtracking.
Since Auto-PGD has been designed for finding adversarial samples around the in-distribution, we
change the objective of Auto-PGD to be the confidence of the classifier. We use Auto-PGD with
500 steps and 5 random restarts which is a quite strong attack. By default, the random initialization
is drawn uniformly from the ε-ball. However, we found that for MNIST the attack very often got
stuck for our GOOD models, because a large random perturbation of size 0.3 would move the sample
directly into a region of the input space where the model is completely flat and thus no gradients are
available (in this sense adversarial attacks on OOD inputs are more difficult than usual adversarial
attacks on the in-distribution). We instead use a modified version of the attack for MNIST which
starts within short distance of the original point. Thus we use as initialization a random perturbation
from [−0.01, 0.01]d (note that for our evaluation on CIFAR10, this choice coincides with the default
settings).

Nevertheless, for MNIST most out-distribution points lie in regions where the predictions of our
GOOD models are flat, i.e. the gradients are exactly zero. Because of this, Auto-PGD is unable to
effectively explore the search space around those points. Thus, for MNIST we created an adaptive
attack which partially circumvents these issues. First, we use an initialization scheme that mitigates
lack of gradients by increasing the contrast as much as the threat model allows. All pixel values
xi that lie above 1 − ε get set to xi = 1 and all values xi ≤ 1 − ε get set to max{0, xi − ε}.
In our experience these points are more likely to yield gradients, so we use them as initialization
for a 200-step PGD attack with backtracking, adaptive step size selection and momentum of 0.9.
Concretely, we use a step size of 0.1, and whenever a PGD step does not increase the confidence we
backtrack and halve the step size. After every successful gradient step we multiply the step size by
1.1. Using backtracking and adaptive step size is necessary because otherwise one can easily step
into regions where gradient information is no longer available.

Additionally, to further mitigate the problem of gradient-masking at initialization, for each model we
use the final best points of all other models and use those as starting points for the same monotone
PGD as described before. We use the sample-wise worst-case confidence to compute the final
AAUC. Especially CEDA displays much higher apparent robustness if one omits the transfer attacks.
Surprisingly, in this respect CEDA behaves very differently from OE, even though they pursue very
similar objectives during training.

B A review of robust OOD detection

ACET A method that was proposed in order to achieve adversarially robust low confidence on
OOD data is Adversarial Confidence Enhancing Training (ACET) [16] which is based on adversarial
training on the out-distribution. However, similar to adversarial training on the in-distribution,
typically this does not lead to any guarantees, whereas our goal is to get guarantees on the confidences
of worst-case out-distribution inputs. ACET has the following objective:
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They use LOUT = logConff with low frequency noise as their training out-distribution. We found
firstly that training an ACET model with 80M as out-distribution yields much better results than the
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smoothed uniform noise used in [16] and secondly using the cross-entropy loss with respect to the
uniform prediction instead of log Conff also leads to improvements. For training ACET models,
we employ a standard PGD attack with 40 steps of size 2ε

41 with initialization at the target input
for maximizing the loss around xOUT

j . As usual for a l∞-attack, we use the sign of the gradient as
direction and project onto the intersection of the image domain [0, 1]d and the l∞-ball of radius ε
around the target. Finally, the attack returns the image with the highest confidence found during the
iterations. For the attack at training time we use no backtracking or adaptive stepsizes. ACET does
not provide any guaranteed confidence bounds.

CCU Certified Certain Uncertainty (CCU) [28] gives low confidence guarantees around certain
OOD data that is far away from the training dataset in a specific metric. Those bounds do hold on
such far-away datasets, but do not generalize to inputs relatively close to the in distribution, like for
example CIFAR-10 vs. CIFAR-100. Moreover, even in the regime where CCU yields meaningful
guarantees, they are given in terms of a data-dependent Mahalanobis distance rather than the l∞-
distance. However, due to norm equivalences, one can still extract l∞-guarantees from CCU and we
evaluated the CCU guarantees as follows. We use the corollary 3.1 from [28] which states that for a
CCU model that is written as

p(y|x) =
p(y|x, i)p(x|i) + 1

K p(x|o)
p(x|i) + p(x|o)

(12)

with p(y|x, i) being the softmax output of a neural network and p(x|i) and p(x|o) Gaussian mixture
models for in-and out-distribution, one can bound the confidence in a certain neighborhood around
any point x ∈ Rd via

max
dM (x̂,x)≤R

p(y|x) ≤ 1

K

1 +K b(x,R)

1 + b(x,R)
. (13)

Here b : Rd × R+ → R+ is a positive function that increases monotonically in the radius R
and that depends on the parameters of the Gaussian mixture models (details in [28]). The metric
dM : Rd × Rd → R+ that they used for their CCU model is given as

dM (x, y) =
∥∥∥C− 1

2 (x− y)
∥∥∥ , (14)

where C is a regularized version of the covariance matrix, calculated on the augmented in-distribution
data. Note that this Mahalanobis metric is strongly equivalent to the metric induced by the l2-norm and
consequently to the metric induced by the l∞-norm. By computing the equivalence constants between
these metrics we can extract the l∞-guarantees that are implicit in the CCU model. Geometrically
speaking, we compute the size a an ellipsoid (its shape determined by the eigenvalues of C) that
is large enough to fit a cube inside it with a radius given by our threat model r = 0.3 or r = 0.01,
respectively. Via norm equivalences one has

dM (x, y) ≤
√
λ1d2(x, y) ≤

√
dλ1d∞(x, y) ≤

√
dλ1r, (15)

where λ1 is the largest eigenvalue of C. This means that the confidence upper bounds from (13) on a
Mahalanobis-ball of radius R = (dλ)

1
2 r automatically apply to an l∞-ball of radius r. However, the

covariance matrix C is highly ill-conditioned, which means that λ1 is fairly high. On top of that, in
high dimensions

√
d is big as well so that in practice the required radius R becomes too large for

CCU to certify meaningful guarantees. Even on uniform noise, the upper bounds were larger than the
highest confidence on the in-distribution test set, with the consequence that there are no lower-bounds
on the AAUC. However, we want to stress that at least for uniform noise the lack of guarantees of
CCU is due to the incompatability of the threat models used in our paper and [28].

Another type of guarantee that certifies a detection rate for OOD samples by applying probably
approximately correct (PAC) learning considerations has been proposed in [26]. Their problem
setting and nature of guarantees are not directly comparable to ours, since their guarantees handle
behaviour on whole distributions while our guarantees are given for individual datapoints.

C AUC and Conservative AUC

As a measure for the separation of in- vs. out-distribution data we use the Area Under the Receiver
Operating Characteristic curve (AUROC or AUC) using the confidence of the classifier as the feature.
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The AUC is equal to the empirical probability of a random in-sample to be assigned a higher
confidence than a random out-sample, plus one half times the probability of the confidences being
equal. Thus, the standard way (as e.g. implemented in scikit-learn [32]) to calculate the AUC from
given confidence values on sets of in- and out-distribution samples Sin and Sout is

AUC(f, Sin, Sout) =
1

|Sin||Sout|

(
|{xin ∈ Sin, xout ∈ Sout | Conff (xin) > Conff (xout)}|

+
1

2
|{xin ∈ Sin, xout ∈ Sout | Conff (xin) = Conff (xout)}|

)
,

(16)

where for a set S, |S| indicates the number of its elements. The half-weighted equality term gives
this definition certain symmetry properties. However, it assigns a positive score to some completely
uninformed functions f . For example, a constant uniform classifier with pk(x) = 1

K receives an
AUC value of 50%. Similarly, a classifier that assigns 100% confidence to most in-distribution inputs
would have positive AUC and even GAUC statistics, even if it fails to have confidence below 100%
on any OOD inputs. In order to regard only example pairs where the distributions are positively
distinguished, we define the Conservative AUC (cAUC) by dropping the equality term:

cAUC(f, Sin, Sout) :=
1

|Sin||Sout|
|{xin ∈ Sin, xout ∈ Sout | Conff (xin) > Conff (xout)}| .

(17)

While in general cAUC(f, Sin, Sout) ≤ AUC(f, Sin, Sout), the confidences of all models presented
in the paper are differentiated enough so that for all shown numbers actually cAUC = AUC.
However, we have experienced that one can have models where the confidences (uniform or one-hot
predictions) cannot be distinguished due to limited numerical precision. In these cases the normal
AUC definition would indicate a certain discrimination where it is actually impossible to discriminate
the confidences.

D Experimental details

The layer compositions of the architectures used for all GOOD and baseline models are laid out in
Table 2. No normalization of inputs or activations is used. Weight decay (l2) is set to 0.05 for MNIST
and 0.005 for SVHN and CIFAR-10. For all runs, we use a batch size of 128 samples from both the
in- and the out-distribution (where applicable). At https://gitlab.com/Bitterwolf/GOOD you
can find the exact implementation.

Table 2: Model architectures used for MNIST (L), SVHN (XL) and CIFAR-10 (XL) experiments.
Each convolutional and non-final affine layer is followed by a ReLU activation. All convolutions use
a kernel size of 3, a padding of 1, and stride of 1, except for the third convolution which has stride=2.

L XL

CONV2D(64) CONV2D(128)
CONV2D(64) CONV2D(128)
CONV2D(128)S=2 CONV2D(256)S=2
CONV2D(128) CONV2D(256)
CONV2D(128) CONV2D(256)
LINEAR(512) LINEAR(512)
LINEAR(10) LINEAR(512)

LINEAR(10)

For the MNIST experiments, we use as optimizer SGD with 0.9 Nesterov momentum, with an
initial learning rate of 0.005

128 that is divided by 5 after 50, 100, 200, 300 and 350 epochs, with a total
number of 420 training epochs. For the GOOD, CEDA and OE runs, the first two epochs only use
in-distribution LCE; over the next 100 epochs, the value of κ is ramped up linearly from zero to its
final value of 0.3 for GOOD/OE and 1.0 for CEDA, where it stays for the remaining 318 epochs. The
ε value in the LCUB loss for GOOD is also increased linearly, starting at epoch 10 and reaching its
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final value of 0.3 on epoch 130. CCU is trained using the publicly available code from [28], where
we modify the architecture, learning rate schedule and data augmentation to be the same as OE. The
initial learning rate for the Gaussian mixture models is 1e − 5/batchsize and gets dropped at the
same epochs as the neural network learning rate. Our more aggressive data augmentation implies
that our underlying Mahalanobis metric is not the same as they used in [28]. The ACET model for
MNIST is warmed up with two epochs on the in-distribution only, then four with κ = 1.0 and ε = 0,
and the full ACET loss with κ = 1.0 and ε = 0.3 for the remaining epochs. The reason why we chose
a smaller κ of 0.3 for the MNIST GOOD runs is that considering the large ε for which guarantees are
enforced, training with higher κ values makes training unstable without improving any validation
results.

For the SVHN and CIFAR-10 baseline models, we used the ADAM optimizer [20] with initial
learning rate 0.01

128 for SVHN and 0.1
128 for CIFAR-10 that was divided by 5 after 30 and 100 epochs,

with a total number of 420 training epochs. For OE, κ is increased linearly from zero to one between
epochs 60 and 360. The same holds for CCU which again uses the same hyperparameters as OE.
Again, ACET is warmed up with two in-distribution-only and four OE epochs. Then it is trained with
κ = 1.0 and ε = 0.03/0.01 (SVHN/CIFAR-10), with a shorter training time of 100 epochs (the same
number as used in [16]).
In line with the experiences reported in [13] and [41], for GOOD training on SVHN and CIFAR-10
longer training schedules with slower ramping up of the LCUB loss are necessary, as adding the
out-distribution loss defined in Equation (8) to the training objective at once will overwhelm the
in-distribution cross-entropy loss and cause the model to collapse to uniform predictions for all
inputs, without recovery. In order to reduce warm-up time, we use a pre-trained CEDA model for
initialization and train for 900 epochs. The learning rate is 10-4 in the beginning and is divided by 5
after epochs 450, 750 and 850. Due to the pre-training, we begin training with a small κ and already
start with non-zero ε after epoch 4. Then, ε is increased linearly to its final value of 0.03 for SVHN
and 0.01 for CIFAR-10, which is reached at epoch 204. Simultaneously, κ is increased linearly with
a virtual starting point at epoch -2 to its final value of 1.0 at epoch 298.

Due to the tendency of IBP based training towards instabilities, the selection of hyper-parameters was
based on finding settings where training is reliably stable while guaranteed bounds over meaningful
ε-radii are possible.

For the accuracy, AUC and GAUC evaluations in Table 1 the test splits of each (non-noise) dataset
were used, with the following numbers of samples: 10,000 for MNIST, FashionMNIST, CIFAR-10,
CIFAR-100 and Uniform Noise; 20,800 for EMNIST Letters; 26,032 for SVHN; 300 for LSUN
Classroom. Due to the computational cost of the employed attacks, the AAUC values are based on
subsets of 1000 samples for each dataset.

All experiments were run on Nvidia Tesla P100 and V100 GPUs, with GPU memory requirement
below 16GB.

E Depiction of GOOD Quantile-loss

In Quantile-GOOD training, the out-distribution part of each batch is split up into “harder” and
“easier” parts, since trying to enforce low confidence guarantees on out-distribution inputs that are
very close to the in-distribution leads to low confidences in general, even on the in-distribution.
In Table 3, we show example batches of GOOD60 models with MNIST, SVHN and CIFAR-10 as
in-distribution near the end of training (from epochs 410, 890 and 890, respectively). Even though
the actual CIFAR images were filtered out, some images containing objects from CIFAR-classes are
still present. For the CIFAR-10 model, such samples (among others) get sorted above the quantile.
For MNIST, lower brightness images appear to be more difficult, while for SVHN images with fewer
objects seem to be comparably hardest to distinguish from the house numbers of the in-distribution.

F Confidences on EMNIST

Figure 3 shows samples of the letters “k” through “z” together with the predictions and confidences
of the GOOD100 MNIST model and four baseline models, complementing Figure 2. We see that
GOOD100 produces low confidences for most letters when they show no digit-specific features.
Interestingly it even rejects some letters that could easily be mistaken for digits by humans (“o”). The
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mean confidence values of the same selection of MNIST models for each letter of the alphabet for
EMNIST are plotted in Figure 4. We observe that the mean confidence often aligns with the intuitive
likeness of a letter with some digit: GOOD100 has the highest mean confidence on the letter inputs “i”
and “l”, which in many cases do look like the digit “1”. Again, the confidence of GOOD100 on the
letter “o”, which even humans often cannot distinguish from a digit “0”, is generally low. On the
other hand, “y” receives a surprisingly high confidence, compared to other letters, so we conclude
that GOOD100 uses different features than humans in order to achieve its impressive performance on
EMNIST.

Plain
OE
CCU
ACET

   GOOD100

6:   82.1 
6:   67.8 
8:   52.7 
6:   37.6 
8:   10.0 

6:   100.0 
6:   100.0 
6:   100.0 
6:   99.7 
6:   10.9 

4:   99.9 
4:   98.8 
4:   89.0 
4:   48.6 
4:   21.2 

7:   99.8 
7:   99.5 
7:   99.0 
7:   58.8 
8:   10.0 

0:   100.0 
0:   100.0 
0:   99.9 
0:   98.8 
8:   10.0 

4:   89.7 
1:   65.9 
1:   78.7 
1:   48.0 
1:   20.4 

8:   90.8 
8:   97.5 
8:   80.2 
8:   87.5 
8:   28.1 

8:   97.4 
8:   96.2 
8:   78.5 
8:   69.0 
8:   28.6 

Plain
OE
CCU
ACET

   GOOD100

5:   100.0 
5:   100.0 
5:   100.0 
5:   99.9 
5:   10.1 

4:   97.6 
4:   85.1 
4:   98.8 
4:   82.8 
4:   50.2 

0:   90.0 
0:   79.5 
0:   99.7 
0:   87.1 
0:   11.2 

4:   99.8 
4:   99.5 
4:   92.7 
4:   96.9 
4:   12.1 

6:   74.8 
4:   68.0 
4:   72.6 
0:   60.8 
8:   10.0 

4:   76.9 
4:   65.2 
4:   66.0 
6:   50.9 
8:   10.0 

4:   99.8 
4:   100.0 
4:   100.0 
4:   99.8 
4:   74.8 

2:   100.0 
2:   100.0 
2:   99.7 
2:   81.8 
8:   10.0 

Figure 3: Continuation of Figure 2. Random samples from the remaining letters in the out-distribution
dataset EMNIST. The predictions and confidences of different methods trained on MNIST are shown
on top.

Figure 4: Mean confidence of different models across the classes of EMNIST-Letters. GOOD100
only has high mean confidence on letters that can easily be mistaken for digits.

G Distributions of confidences and confidence upper bounds

Table 4 shows the mean confidences of all models on the in-distribution as well as the mean con-
fidences and the mean guaranteed upper bounds on the worst-case confidences on the evaluated
out-distributions. As discussed, GOOD100 training can reduce the confidence on the in-distribution,
with a particularly strong effect for CIFAR-10. By adjusting the loss quantile, this effect can be
significantly reduced while maintaining non-trivial guarantees.

The histograms of mean confidences on the in-distribution and mean guaranteed upper bounds on
the worst-case confidences on the samples from the evaluated out-distribution test sets for seven
models are shown in Tables 5 (MNIST), 6 (SVHN) and 7 (CIFAR-10). A higher GOOD loss quantile
generally shifts the distribution of the upper bounds on the worst-case confidence towards smaller
values, but in some cases, especially for GOOD100 on CIFAR-10, strongly lowers confidences in
in-distribution predictions as well.
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Table 3: Exemplary batch of out-distribution 80M Tiny Images (after augmentation) towards the end
of training of GOOD60 models. Top: The 52 Images with highest confidence upper bound. On these,
loss is based on standard output. Bottom: The remaining 76 Images with lowest confidence upper
bound. Here, loss is based on upper bounds within the ε-ball.

IN: MNIST IN: SVHN IN: CIFAR-10
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Table 4: Mean confidence on the in-distribution and mean confidence / mean upper bounds on the
confidence within the l∞-balls of radius ε on the evaluated out-distribution datasets.

IN: MNIST ε = 0.3

METHOD MNIST FASHIONMNIST EMNIST
LETTERS

CIFAR-10 UNIFORM NOISE

PLAIN 99.7 79.2 / 100.0 91.5 / 100.0 77.2 / 100.0 79.6 / 100.0
CEDA 99.7 22.0 / 100.0 88.3 / 100.0 10.0 / 100.0 10.0 / 100.0
OE 99.7 25.4 / 100.0 87.9 / 100.0 10.1 / 100.0 10.0 / 100.0
ACET 99.6 12.3 / 100.0 75.0 / 100.0 10.0 / 100.0 10.0 / 100.0
CCU 99.7 17.5 / 100.0 87.4 / 100.0 10.0 / 100.0 10.0 / 100.0
GOOD0 99.7 20.6 / 100.0 87.9 / 100.0 10.0 / 100.0 10.0 / 100.0
GOOD20 99.5 19.4 / 93.0 70.2 / 100.0 10.0 / 76.6 10.0 / 10.0
GOOD40 99.3 17.7 / 76.8 58.2 / 100.0 10.0 / 43.7 10.0 / 10.0
GOOD60 99.2 15.8 / 66.0 51.7 / 100.0 10.0 / 24.8 10.0 / 10.0
GOOD80 99.0 16.3 / 55.1 40.7 / 98.6 10.0 / 15.7 10.0 / 10.0
GOOD90 98.8 14.2 / 47.5 38.3 / 98.2 10.0 / 12.7 10.0 / 10.0
GOOD95 98.7 13.1 / 42.6 32.2 / 98.2 10.0 / 11.6 10.0 / 10.0
GOOD100 98.4 10.8 / 40.8 27.1 / 99.2 10.0 / 11.0 10.0 / 10.0

IN: SVHN ε = 0.03

METHOD SVHN CIFAR-100 CIFAR-10 LSUN
CLASSROOM

UNIFORM NOISE

PLAIN 97.7 70.8 / 100.0 70.5 / 100.0 66.8 / 100.0 40.5 / 100.0
CEDA 97.1 10.2 / 100.0 10.1 / 100.0 10.0 / 100.0 10.0 / 100.0
OE 97.0 10.7 / 100.0 10.5 / 100.0 10.3 / 100.0 10.2 / 100.0
ACET 93.5 10.2 / 100.0 10.1 / 100.0 10.1 / 100.0 10.5 / 100.0
CCU 97.2 10.8 / 100.0 10.6 / 100.0 10.4 / 100.0 10.0 / 100.0
GOOD0 98.7 10.0 / 100.0 10.0 / 100.0 10.0 / 100.0 10.0 / 100.0
GOOD20 97.6 10.1 / 78.1 10.1 / 81.9 10.0 / 80.7 10.0 / 10.0
GOOD40 97.6 10.1 / 61.4 10.1 / 57.4 10.0 / 54.0 10.0 / 10.2
GOOD60 97.4 10.1 / 44.2 10.1 / 39.8 10.0 / 33.7 10.0 / 10.1
GOOD80 96.1 10.1 / 28.1 10.1 / 23.6 10.0 / 17.4 10.0 / 10.2
GOOD90 94.7 10.1 / 20.9 10.0 / 17.7 10.0 / 14.0 10.0 / 10.0
GOOD95 93.4 10.2 / 18.2 10.1 / 15.7 10.1 / 12.6 10.0 / 10.0
GOOD100 91.5 10.7 / 16.7 10.3 / 14.5 10.1 / 12.1 10.0 / 10.1

IN: CIFAR-10 ε = 0.01

METHOD CIFAR-10 CIFAR-100 SVHN LSUN
CLASSROOM

UNIFORM NOISE

PLAIN 95.1 79.0 / 100.0 75.8 / 100.0 73.9 / 100.0 73.2 / 100.0
CEDA 87.0 29.0 / 100.0 12.1 / 100.0 10.5 / 100.0 11.9 / 100.0
OE 85.1 31.6 / 100.0 19.1 / 100.0 14.6 / 100.0 15.6 / 100.0
ACET 71.8 25.3 / 100.0 16.7 / 100.0 13.7 / 100.0 11.2 / 100.0
CCU 89.4 32.5 / 100.0 20.5 / 100.0 12.6 / 100.0 10.0 / 100.0
GOOD0 81.0 18.9 / 100.0 10.8 / 100.0 10.1 / 100.0 10.0 / 100.0
GOOD20 78.9 23.8 / 91.4 13.0 / 87.8 10.7 / 97.9 10.1 / 22.7
GOOD40 77.1 21.4 / 84.7 11.2 / 85.4 10.7 / 89.5 11.7 / 12.4
GOOD60 71.7 21.7 / 75.4 11.5 / 72.0 10.5 / 67.3 13.2 / 13.4
GOOD80 64.1 23.1 / 64.4 13.3 / 67.5 13.5 / 51.8 12.0 / 12.3
GOOD90 55.6 24.2 / 54.8 15.4 / 56.2 16.1 / 44.9 17.2 / 18.1
GOOD95 53.1 25.8 / 52.0 16.9 / 57.2 18.1 / 43.6 12.6 / 12.6
GOOD100 49.6 34.7 / 46.0 30.4 / 44.0 30.6 / 41.5 11.6 / 12.0

18



Table 5: Histograms of the confidences on the MNIST in-distribution and guaranteed upper bounds
on the confidences on OOD datasets within the l∞-ball of radius 0.3. Each histogram uses 50 bins
between 0.1 and 1.0. For better readability, the scale is zoomed in by a factor 10 for numbers below
one fifth of the total number of datapoints of the shown datasets. The vertical dotted line shows the
mean value of the histogram’s data.

MODEL MNIST FASHIONMNIST GUB EMNIST LETTERS GUB CIFAR-10 GUB UNIFORM GUB

PLAIN

OE

ACET

GOOD40

GOOD80

GOOD90

GOOD100
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Table 6: Histograms of the confidences on the SVHN in-distribution and guaranteed upper bounds
on the confidences on OOD datasets within the l∞-ball of radius 0.03. Each histogram uses 50 bins
between 0.1 and 1.0. For better readability, the scale is zoomed in by a factor 10 for numbers below
one fifth of the total number of datapoints of the shown datasets. The vertical dotted line shows the
mean value of the histogram’s data.

MODEL SVHN CIFAR-100 GUB CIFAR-10 GUB LSUN CLASSROOM GUB UNIFORM GUB

PLAIN

OE

ACET

GOOD40

GOOD80

GOOD90

GOOD100
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Table 7: Histograms of the confidences on the CIFAR-10 in-distribution and guaranteed upper
bounds on the confidences on OOD datasets within the l∞-ball of radius 0.01. Each histogram uses
50 bins between 0.1 and 1.0. For better readability, the scale is zoomed in by a factor 10 for numbers
below one fifth of the total number of datapoints of the shown datasets. The vertical dotted line shows
the mean value of the histogram’s data.

MODEL CIFAR-10 CIFAR-100 GUB SVHN GUB LSUN CLASSROOM GUB UNIFORM GUB

PLAIN

OE

ACET

GOOD40

GOOD80

GOOD90

GOOD100
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H Evaluation on additional datasets

Table 8: A continuation of Table 1 for additional out-distributions. As in Table 1 the guaranteed
AUCs (GAUC) of the highlighted GOOD models are in general better than the adversarial (AAUC)
of OE (with the exception of Omniglot for MNIST).

IN: MNIST ε = 0.3

METHOD ACC. 80M TINY IMAGES OMNIGLOT NOTMNIST
AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

PLAIN 99.4 98.7 36.9 0.0 97.9 38.6 0.0 91.9 38.8 0.0
CEDA 99.4 100.0 94.3 0.0 98.5 53.1 0.0 99.9 97.8 0.0
OE 99.4 100.0 91.5 0.0 98.5 51.0 0.0 99.9 96.8 0.0
ACET 99.4 100.0 99.2 0.0 99.5 76.5 0.0 100.0 99.5 0.0
CCU 99.5 100.0 75.0 0.0 98.1 3.4 0.0 100.0 99.6 0.0
GOOD0 99.5 100.0 93.8 0.0 98.6 55.7 0.0 99.9 97.7 0.0
GOOD20 99.0 100.0 97.1 32.7 97.0 42.4 0.0 100.0 99.6 19.3
GOOD40 99.0 100.0 97.2 59.5 96.9 36.8 0.0 100.0 99.7 44.7
GOOD60 99.0 100.0 97.3 77.8 96.3 31.3 0.0 100.0 99.8 76.2
GOOD80 99.1 100.0 97.8 89.4 96.9 34.2 1.2 100.0 99.9 96.7
GOOD90 98.8 100.0 98.7 94.2 97.8 40.5 2.2 100.0 99.9 99.2
GOOD95 98.8 100.0 99.2 96.1 97.8 42.2 2.4 100.0 100.0 99.5
GOOD100 98.7 100.0 99.5 97.7 98.6 50.7 1.8 100.0 99.9 99.3

IN: SVHN ε = 0.03

METHOD ACC. 80M TINY IMAGES IMAGENET- SMOOTH NOISE
AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

PLAIN 95.5 94.8 11.9 0.0 95.5 13.4 0.0 96.0 5.6 0.0
CEDA 95.3 99.9 64.4 0.0 99.9 75.3 0.0 96.8 5.9 0.0
OE 95.5 100.0 61.8 0.0 100.0 72.5 0.0 97.0 8.0 0.0
ACET 96.0 100.0 99.3 0.0 100.0 99.6 0.0 99.9 83.5 0.0
CCU 95.7 100.0 48.8 0.0 100.0 97.2 0.0 100.0 5.7 0.0
GOOD0 97.0 100.0 57.9 0.0 100.0 68.3 0.0 97.8 25.0 0.0
GOOD20 95.9 99.8 78.3 19.4 99.8 88.9 34.0 97.4 22.0 0.0
GOOD40 96.3 99.5 81.0 44.4 99.5 90.1 62.6 97.1 21.0 0.0
GOOD60 96.1 99.4 83.4 64.5 99.4 92.6 82.8 97.0 18.0 0.0
GOOD80 96.3 100.0 93.1 86.3 100.0 97.4 95.6 96.8 29.1 3.9
GOOD90 96.2 99.8 95.2 93.0 99.8 98.4 97.8 96.7 40.6 20.6
GOOD95 96.4 99.7 96.4 95.2 99.8 98.8 98.4 96.8 59.1 46.8
GOOD100 96.3 99.6 97.2 96.8 99.8 99.1 98.9 96.7 77.5 73.5

IN: CIFAR-10 ε = 0.01

METHOD ACC. 80M TINY IMAGES IMAGENET- SMOOTH NOISE
AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

PLAIN 90.1 85.6 15.5 0.0 83.5 15.5 0.0 90.5 18.8 0.0
CEDA 88.6 97.2 49.6 0.0 90.1 32.6 0.0 98.9 37.3 0.0
OE 90.7 97.3 20.5 0.0 90.3 12.1 0.0 99.5 11.3 0.0
ACET 89.3 96.7 88.8 0.0 89.5 74.7 0.0 99.9 98.8 0.0
CCU 91.6 96.8 33.7 0.0 92.0 30.0 0.0 99.5 38.0 0.0
GOOD0 89.8 96.9 42.7 0.0 91.0 19.8 0.0 96.9 30.0 0.0
GOOD20 88.5 96.6 48.5 16.3 88.8 30.5 6.9 96.5 64.5 17.8
GOOD40 89.5 94.8 56.8 36.4 88.0 39.3 24.6 96.4 86.4 27.5
GOOD60 90.2 95.2 60.7 48.7 87.4 46.1 36.7 97.5 81.4 47.8
GOOD80 90.1 93.1 62.8 55.9 84.0 50.0 42.3 95.1 74.1 59.4
GOOD90 90.2 90.6 63.4 60.8 79.6 53.0 49.1 98.9 72.8 62.3
GOOD95 90.4 88.9 63.4 62.0 77.6 54.3 50.3 92.0 61.8 59.4
GOOD100 90.1 78.7 66.7 66.3 69.0 56.9 53.9 82.2 67.9 66.8
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Extending the evaluation results presented in Table 1, we provide AUC, AAUC and GAUC values for
additional out-distribution datasets in Table 8. These datasets are:

• 80M Tiny Images, the out-distribution that was used during training. While it is the same
distribution as seen during training, the test set consists of 1,000 samples that are not part of
the training set.

• Omniglot (Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level
concept learning through probabilistic program induction. Science, 350(6266), 1332-1338.)
is a dataset of hand drawn characters. We use the evaluation split consisting of 13180
characters from 20 different alphabets.

• notMNIST is a dataset of the letters A to J taken from different publicly available
fonts. The dataset was retrieved from https://yaroslavvb.blogspot.com/2011/09/
notmnist-dataset.html. We evaluate on the hand cleaned subset of 18724 images,

• ImageNet- [16], which is a subset of ImageNet [10] without images labelled as classes equal
or semantically similar to CIFAR-10 classes.

• Smooth Noise is generated as described by [16]. First, a uniform noise image is generated.
Then, a Gaussian filter with σ drawn uniformly at random between 1.0 and 2.5 is applied.
Finally, the image is re-scaled such that the minimal pixel value is 0.0 and the maximal one
is 1.0. We evaluate AUC and GAUC on 30,000 samples.

For MNIST, GOOD100 has an excellent GAUC for the training out-distribution 80M Tiny images as
well as for notMNIST. For Omniglot, GOOD100 is again better than OE/CEDA (similar to EMNIST)
in terms of clean AUC’s but here ACET is slightly better. However, again it is very difficult to provide
any guarantees for this dataset even though non-trival adversarial AUC’s against the employed attacks
are maintained.

For SVHN, the detection of smooth noise turns out to be the most difficult of the evaluated tasks.
There, the clean AUCs of all methods except ACET and CCU are lower than the perfect scores we
see on other out-distributions but still very high, and only the higher Quantile GOOD models can
give some guarantees. An explanation might be that the image features of SVHN house numbers
and of this kind of synthetic noise are similarly smooth. For 80M Tiny Images and Imagenet-, on
the other hand, the SVHN high quantile GOOD models, particularly GOOD100, are able to provide
almost perfect guaranteed AUCs.

For CIFAR-10, on all three out-distributions we again observe the trade-off between clean and
guaranteed AUC that comes with the choice of the loss quantile. Overall, the GOOD80 model again
retains reasonable AUC values for the clean data while also providing useful guaranteed AUCs.

I Generalization of provable confidence bounds to a larger radius

In Table 9, we evaluate the generalization of empirical worst case and guaranteed upper bound for
the confidence within a larger l∞-ball around OOD samples than what the model was trained for.

As expected, the adversarial AUC’s (AAUC) degrade for the larger radius ε for all methods. However,
ACET and the GOOD models with higher quantiles maintain their performance much better. Interest-
ingly, while ACET has for the smaller radii typically better AAUCs this is reversed for the larger radii
where now often the GOOD models are better, showing that our certified methods can in this aspect
sometimes outperform the “adversarial training” approach when it of generalization to higher radii.

On MNIST, GOOD100 not only still has a perfect guaranteed AUC for uniform noise for an ε of 0.4
but even on FashionMNIST and CIFAR-10 it still has substantial guarantees.

For SVHN, the excellent guarantees of GOOD100 for ε = 0.03 generalize well to the doubled radius
of ε = 0.06 but the gap between GAUC and AAUC increases quite significantly, except for uniform
noise where the GAUC is still high at 94.7%

For CIFAR-10, even when tripling the evaluation radius to ε = 0.03, the certified the bounds of
GOOD80 generalize surprisingly well: for all out-distributions, we only see an at most moderate drop
of the GAUC value compared to Table 1.
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In summary, GOOD in most cases still achieves reasonable guarantees for the larger threat model at
test time. Moreover, the AAUC for the GOOD models is in most cases better than that of ACET and
thus our guaranteed IBP training shows in this regard a better generalization to larger evaluation radii
than adversarial training on the out-distribution (ACET).

Table 9: Complementing Table 1, an evaluation of the generalization of worst-case OOD detection,
that is AAUC and GAUC, for ε-values larger than those of the threat models used during training.

IN: MNIST ε = 0.4

METHOD ACC. FASHIONMNIST EMNIST LETTERS CIFAR-10 UNIFORM NOISE
AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

PLAIN 99.4 98.0 28.6 0.0 88.0 26.9 0.0 98.8 32.4 0.0 99.2 34.3 0.0
CEDA 99.4 99.9 69.9 0.0 92.6 49.1 0.0 100.0 82.8 0.0 100.0 100.0 0.0
OE 99.4 99.9 63.6 0.0 92.7 47.4 0.0 100.0 76.0 0.0 100.0 99.9 0.0
ACET 99.4 100.0 91.3 0.0 95.9 47.8 0.0 100.0 92.3 0.0 100.0 100.0 0.0
CCU 99.5 100.0 62.0 0.0 92.9 2.7 0.0 100.0 97.6 0.0 100.0 100.0 0.0
GOOD0 99.5 99.9 70.8 0.0 92.9 51.8 0.0 100.0 81.5 0.0 100.0 100.0 0.0
GOOD20 99.0 99.8 81.9 3.6 95.3 46.2 0.0 100.0 91.4 6.4 100.0 100.0 99.9
GOOD40 99.0 99.8 81.6 18.5 95.7 46.9 0.0 100.0 92.0 26.3 100.0 100.0 100.0
GOOD60 99.0 99.9 82.5 30.6 96.6 47.1 0.0 100.0 92.7 55.4 100.0 100.0 100.0
GOOD80 99.1 99.8 84.5 41.9 97.9 52.1 1.0 100.0 93.8 77.3 100.0 100.0 100.0
GOOD90 98.8 99.9 86.3 45.5 98.0 48.6 1.4 100.0 95.7 77.6 100.0 100.0 100.0
GOOD95 98.8 99.9 87.8 49.0 98.7 47.0 1.6 100.0 96.8 79.8 100.0 100.0 100.0
GOOD100 98.7 100.0 92.0 48.8 99.0 39.1 0.8 100.0 98.2 75.9 100.0 100.0 100.0

IN: SVHN ε = 0.06

METHOD ACC. CIFAR-100 CIFAR-10 LSUN CLASSROOM UNIFORM NOISE
AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

PLAIN 95.5 94.9 5.6 0.0 95.2 5.6 0.0 95.7 1.3 0.0 99.4 13.2 0.0
CEDA 95.3 99.9 19.3 0.0 99.9 24.2 0.0 99.9 43.5 0.0 99.9 21.6 0.0
OE 95.5 100.0 14.4 0.0 100.0 15.8 0.0 100.0 22.2 0.0 100.0 34.0 0.0
ACET 96.0 100.0 90.4 0.0 100.0 90.6 0.0 100.0 96.8 0.0 99.9 58.6 0.0
CCU 95.7 100.0 10.3 0.0 100.0 4.7 0.0 100.0 6.0 0.0 100.0 100.0 0.0
GOOD0 97.0 100.0 36.5 0.0 100.0 37.1 0.0 100.0 17.0 0.0 100.0 44.3 0.0
GOOD20 95.9 99.8 54.6 7.6 99.9 55.4 2.9 99.9 80.0 2.0 99.7 99.5 0.6
GOOD40 96.3 99.5 59.4 12.6 99.5 64.4 11.1 99.5 86.1 7.6 99.5 99.5 0.1
GOOD60 96.1 99.4 64.3 27.4 99.4 68.9 26.8 99.4 87.4 25.7 99.4 99.4 18.3
GOOD80 96.3 100.0 80.0 49.4 100.0 84.0 50.7 100.0 93.3 50.9 100.0 99.7 28.6
GOOD90 96.2 99.8 86.0 57.2 99.8 89.2 60.0 99.8 95.6 61.8 99.8 99.8 91.8
GOOD95 96.4 99.8 89.2 73.4 99.8 91.5 76.3 99.8 96.2 78.6 99.9 99.8 98.3
GOOD100 96.3 99.6 91.7 80.6 99.7 93.6 82.9 99.9 96.4 82.1 100.0 99.8 94.7

IN: CIFAR-10 ε = 0.03

METHOD ACC. CIFAR-100 SVHN LSUN CLASSROOM UNIFORM NOISE
AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

PLAIN 90.1 84.3 4.5 0.0 87.7 3.8 0.0 88.9 4.9 0.0 90.8 12.1 0.0
CEDA 88.6 91.8 5.2 0.0 97.9 3.8 0.0 98.9 7.5 0.0 97.4 18.6 0.0
OE 90.7 92.4 0.4 0.0 97.6 0.1 0.0 98.9 0.2 0.0 98.7 1.7 0.0
ACET 89.3 90.7 34.5 0.0 96.6 49.1 0.0 98.3 47.7 0.0 99.7 86.3 0.0
CCU 91.6 93.0 1.6 0.0 97.1 11.2 0.0 99.3 0.4 0.0 100.0 100.0 0.0
GOOD0 89.8 92.9 4.1 0.0 97.0 3.3 0.0 98.3 3.7 0.0 96.4 66.9 0.0
GOOD20 88.5 90.3 12.6 3.6 95.9 17.0 3.9 98.2 4.1 0.0 99.4 83.1 0.0
GOOD40 89.5 89.6 19.5 15.8 95.4 20.9 18.5 96.0 17.6 11.8 92.1 89.8 89.8
GOOD60 90.2 88.6 27.3 25.2 95.6 33.0 30.5 97.0 35.2 31.9 91.8 91.1 91.0
GOOD80 90.1 85.6 36.0 32.6 94.0 33.1 31.7 93.3 45.4 41.0 95.8 95.2 95.1
GOOD90 90.2 81.7 44.0 43.0 91.4 42.8 41.2 90.2 50.4 49.0 89.3 87.7 87.6
GOOD95 90.4 80.3 45.1 44.7 90.2 39.2 38.2 88.3 52.6 51.3 96.6 95.8 95.7
GOOD100 90.1 70.0 47.9 46.5 75.5 52.1 50.0 75.2 53.8 52.2 99.5 98.7 97.6
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