
APPENDIX

A Simplicial complex, Persistent homology, and Distance between sets on
metric spaces

Throughout, we will let X denotes a subset of Rd, and X denotes a finite collection of points from an
arbitrary space X.

A simplicial complex can be seen as a high dimensional generalization of a graph. Given a set V , an
(abstract) simplicial complex is a set K of finite subsets of V such that α ∈ K and β ⊂ α implies
β ∈ K. Each set α ∈ K is called its simplex. The dimension of a simplex α is dimα = cardα− 1,
and the dimension of the simplicial complex is the maximum dimension of any of its simplices. Note
that a simplicial complex of dimension 1 is a graph.

When approximating the topology of the underlying space by observed samples, a common choice is
the Čech complex, defined next. Below, for any x ∈ X and r > 0, we let BX(x, r) denote the open
ball centered at x and radius r > 0 intersected with X.

Definition A.1 (Čech complex) Let X ⊂ X be finite and r > 0. The (weighted) Čech complex is
the simplicial complex

Čech
X
X (r) := {σ ⊂ X : ∩x∈σBX(x, r) 6= ∅}. (7)

The superscript X will be dropped when understood from the context.

Another common choice is the Vietoris-Rips complex, also referred to as Rips complex, where
simplexes are built based on pairwise distances among its vertices.

Definition A.2 (Vietoris-Rips complex) Let X ⊂ X be finite and r > 0. The Vietoris-Rips complex
RipsX (r) is the simplicial complex defined as

RipsX (r) := {σ ⊂ X : d(xi, xj) < 2r, ∀xi, xj ∈ σ}. (8)

Note that from (7) and (8), the Čech complex and Vietoris-Rips complex have the following inter-
leaving inclusion relationship

ČechX (r) ⊂ RipsX (r) ⊂ ČechX (2r).

In particular, when X ⊂ Rd is a subset of a Euclidean space of dimension d, then the constant 2 can

be tightened to
√

2d
d+1 (e.g., see Theorem 2.5 in de Silva and Ghrist [2007]):

ČechX (r) ⊂ RipsX (r) ⊂ ČechX

(√
2d

d+ 1
r

)
.

Persistent homology [Barannikov, 1994, Zomorodian and Carlsson, 2005, Edelsbrunner et al., 2000,
Chazal et al., 2014a] is a multiscale approach to represent topological features of the complex K. A
filtration F is a collection of subcomplexes approximating the data points at different resolutions,
formally defined as follows.

Definition A.3 (Filtration) A filtration F = {Ka ⊂ K}a∈R is a collection of subcomplexes of K
such that a ≤ b implies that Ka ⊂ Kb.

For a filtration F and for each k ∈ N0 = N ∪ {0}, the associated persistent homology PHkF is an
ordered collection of k-th dimensional homologies, one for each element of F .

Definition A.4 (Persistent homology) Let F be a filtration and let k ∈ N0. The associated k-th
persistent homology PHkF is a collection of groups {Hk(Ka)}a∈R of each subcomplex Ka in F
equipped with homomorphisms {ıa,bk }a≤b, where Hk(Ka) is the k-th dimensional homology group of
Ka and ıa,bk : HkKa → HkKb is the homomorphism induced by the inclusion Ka ⊂ Kb.
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For the k-th persistent homology PHkF , the set of filtration levels at which a specific homology
appears is always an interval [b, d) ⊂ [−∞,∞], i.e. a specific homology is formed at some filtration
value b and dies when the inside hole is filled at another value d > b. To be more formally, the image
of a specific homology class α in Hk(Ka) is nonzero if and only if b ≤ a < d. We often say that α is
born at b and dies at d. By considering these pairs as points in the plane, one obtains the persistence
diagram as below.

Definition A.5 (Persistence diagram) Let R2
∗ := {(b, d) ∈ (R∪∞)2 : d > b}. LetF be a filtration

and let k ∈ N0. The corresponding k-th persistence diagram Dgmk(F) is a finite multiset of R2
∗,

consisting of all pairs (b, d), where [b, d) is the interval of filtration values for which a specific
homology class appears in PHkF . b is called a birth time and d is called a death time.

When topological information of the underlying space is approximated by the observed points, it
is often needed to compare two sets with respect to their metric structures. Here we present two
distances on metric spaces, Hausdorff distance and Gromov-Hausdorff distance. We refer to Burago
et al. [2001] for more details and other distances.

The Hausdorff distance [Burago et al., 2001, Definition 7.3.1] is on sets embedded in the same
metric spaces. This distance measures how two sets are close to each other in the embedded metric
space. When S ⊂ X, we denote by Ur(S) the r-neighborhood of a set S in a metric space, i.e.
Ur(S) =

⋃
x∈S BX(x, r).

Definition A.6 (Hausdorff distance) Let X be a metric space, and X,Y ⊂ X be a subset. The
Hausdorff distance between X and Y , denoted by dH(X,Y ), is defined as

dH(X,Y ) = inf{r > 0 : X ⊂ Ur(Y ) and Y ⊂ Ur(X)}.

The Gromov-Hausdorff distance measures how two sets are far from being isometric to each other.
To define the distance, we first define a relation between two sets called correspondence.

Definition A.7 Let X and Y be two sets. A correspondence between X and Y is a set C ⊂ X × Y
whose projections to both X and Y are both surjective, i.e. for every x ∈ X , there exists y ∈ Y such
that (x, y) ∈ C, and for every y ∈ Y , there exists x ∈ X with (x, y) ∈ C.

For a correspondence, we define its distortion by how the metric structures of two sets differ by the
correspondence.

Definition A.8 Let X and Y be two metric spaces, and C be a correspondence between X and Y .
The distortion of C is defined by

dis(C) = sup {|dX(x, x′)− dY (y, y′)| : (x, y), (x′, y′) ∈ C} .

Now the Gromov-Hausdorff distance [Burago et al., 2001, Theorem 7.3.25] is defined as the smallest
possible distortion between two sets.

Definition A.9 (Gromov-Hausdorff distance) Let X and Y be two metric spaces. The Gromov-
Hausdorff distance between X and Y , denoted as dGH(X,Y ), is defined as

dGH(X,Y ) =
1

2
inf
C
dis(C),

where the infimum is over all correspondences between X and Y .

B Bottleneck distance and Wasserstein distance

Our stability bound in Theorem 4.1 is based on the bottleneck distance, while the stability bound in
Hofer et al. [2017] is based on Wasserstein distance. Hence to compare these bounds, we need to
understand the relationship between the bottleneck distance and Wasserstein distance. We already
know that the Wasserstein distance is lower bounded by the bottleneck distance. Here, we will find a
tighter lower bound for the ratio of the Wasserstein distance to the bottleneck distance.

Before analyzing the relationship between them, we first show a claim.
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Claim B.1 LetD,D′ be two persistence diagrams. For t > 0, let nt ∈ N be satisfying the followings:
for any two diagrams Dt,D′t with dB(D,Dt) ≤ t and dB(D′,D′t) ≤ t, either |Dt\D′t| ≥ nt or
|D′t\Dt| ≥ nt holds. Then for any bijection γ : D̄ → D̄′, the number of paired points with being at
least 2t apart in L∞ distance is greater or equal to nt, i.e.,∣∣{p ∈ D̄ : ‖p− γ(p)‖∞ > 2t

}∣∣ ≥ nt.
And then, we get a lower bound for the ratio of Wasserstein distance to the bottleneck distance.

Proposition B.1 Let D,D′ be two persistence diagrams. For t > 0, let nt ∈ N be satisfying
the followings: for any two diagrams Dt,D′t with dB(D,Dt) ≤ t and dB(D′,D′t) ≤ t, either
|Dt\D′t| ≥ nt or |D′t\Dt| ≥ nt holds. Then, the ratio of q-Wasserstein distance to the bottleneck
distance is bounded as

Wq(D,D′)
dB(D,D′) ≥

(
1 +

(
2t

dB(D,D′)

)q
(nt − 1)

) 1
q

.

C Stability for Vietoris-Rips and Cech filtration

When we use Vietoris-Rips or Čech filtration, our result can be turned into the stability result with
respect to points in Euclidean space. Let X,Y ⊂ Rd be two bounded sets. The next corollary re-states
our stability theorem with respect to points in Rd.

Corollary C.1 Let X,Y be any ε-coverings of X,Y, and let DX ,DY denote persistence diagrams
induced from the Vietoris-Rips or Čech filtration on X,Y respectively. Then we have

|Sθ,ω(DX ; ν)− Sθ,ω(DY ; ν)| ≤ 2Lg (dGH(X,Y) + 2ε) . (9)

The proof is given in Appendix E.7. Corollary C.1 implies that if we assume our observed data
points are sufficiently decent quality in the sense that ε→ 0, then our topological layers constructed
on those observed points are stable with respect to small perturbations of the true representation
under proper persistent homologies. Here, ε could be interpreted as uncertainty from incomplete
sampling. This means the topological information embedded in the proposed layer is robust against
small sampling noise or data corruption by missingness.

Moreover, since Gromov-Hausdorff distance is upper bounded by Hausdorff distance, the result in
Corollary C.1 also holds when we use dH(X,Y ) in place of dGH(X,Y ) in RHS of (9).

Remark 2 In fact, when we have very dense data that have been well-sampled uniformly over the
true representation so that ε→ 0, our result in (9) converges to the following:

|Sθ,ω(DX; ν)− Sθ,ω(DY; ν)| ≤ 2LgdGH(X,Y).

D Differentiability of DTM function

Here we provide a specific example of computing ∂f(ς)
∂Xj

when f is the DTM filtration which has not
been explored in previous approaches. We first consider the case of (4) where Xj’s are data points,
as in Proposition D.1. See Appendix E.8 for the proof.

Proposition D.1 When Xj’s and ς satisfy that
∑
Xi∈Nk(y)$i ‖Xi − yl‖r are different for each

yl ∈ ς , then f(ς) is differentiable with respect to Xj and

∂f(ς)

∂Xj
=
$′j ‖Xj − y‖r−2

(Xj − y)I(Xj ∈ Nk(y))(
d̂m0

(y)
)r−1

m0

∑n
i=1$i

,

where I is an indicator function and y = arg maxz∈ς d̂m0
(z). In particular, f is differentiable a.e.

with respect to Lebesgue measure on X .

Similarly, we consider the case of (5) whereXj’s are weights, as in Proposition D.2. See Appendix E.9
for the proof.
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Proposition D.2 When Xj’s and ς satisfy that
∑
Yi∈Nk(y)X

′
i ‖Yi − yl‖r are different for each

yl ∈ ς , then f(ς) is differentiable with respect to Xj and

∂f(ς)

∂Xj
=
‖Yj − y‖r I(Yj ∈ Nk(y))−m0

(
d̂m0

(y)
)r

r
(
d̂m0

(y)
)r−1

m0

∑n
i=1Xi

,

where y = arg maxy∈ςi d̂m0
(y). In particular, f is differentiable a.e. with respect to Lebesgue

measure on X and Y .

Computation of ∂htop

∂µi
, ∂htop

∂ςi
are simpler and can be done in a similar fashion. In the experiments, we

set r = 2.

E Proofs

E.1 Proof of Theorem 3.1

For computing ∂htop

∂Xj
, note that it can be expanded using the chain role as

∂htop

∂Xj
=
∑
i

∂htop

∂bi

∂bi
∂Xj

+
∑
i

∂htop

∂di

∂di
∂Xj

, (10)

and hence we need to compute ∂DX
∂X =

{(
∂bi
∂Xj

, ∂di∂Xj

)}
(bi,di)∈DX ,Xj∈X

and ∂htop

∂DX ={(
∂htop

∂bi
,
∂htop

∂di

)}
(bi,di)∈DX

to compute ∂htop

∂Xj
.

We first compute ∂DX
∂X . Let K be the simplicial complex, and suppose all the simplices are ordered in

the filtration so that the values of f are nondecreasing, i.e. if ς comes earlier than τ then f(ς) ≤ f(τ).
Note that the map ξ from each birth-death point (bi, di) ∈ DX to a pair of simplices (βi, δi) is
simply the pairing returned by the standard persistence diagram [Carlsson et al., 2005]. Let γ be the
homological feature corresponding to (bi, di), then the birth simplex βi is the simplex that forms
γ in Kbi = f−1(−∞, bi], and the death simplex δi is the simplex that causes γ to collapse in
Kdi = f−1(−∞, di]. For example, if γ were to be a 1-dimensional feature, then βi is the edge
in Kbi that forms the loop corresponding to γ, and δi is the triangle in Kdi which incurs the loop
corresponding to γ can be contracted in Kdi .

Now, f(ξ(bi)) = f(βi) = bi and f(ξ(di)) = f(δi) = di, and from ξ being locally constant on X ,
∂bi
∂Xj

=
∂f(ξ(bi))

∂Xj
=
∂f(βi)

∂Xj
,
∂di
∂Xj

=
∂f(ξ(di))

∂Xj
=
∂f(δi)

∂Xj
. (11)

Therefore, the derivatives of the birth value and the death value are the derivatives of the filtration func-
tion evaluated at the corresponding pair of simplices. And ∂DX

∂X =
{(

∂bi
∂Xj

, ∂di∂Xj

)}
(bi,di)∈DX ,Xj∈X

is the collection of these derivatives, hence applying (11) gives
∂DX
∂X

=

{(
∂bi
∂Xj

,
∂di
∂Xj

)}
(bi,di)∈DX ,Xj∈X

=

{(
∂f(βi)

∂Xj
,
∂f(δi)

∂Xj

)}
ξ−1(βi,δi)∈DX ,Xj∈X

.

(12)

Now, we compute ∂htop

∂DX =
{(

∂htop

∂bi
,
∂htop

∂di

)}
(bi,di)∈DX

. Computing ∂htop

∂bi
can be done by applying the

chain role on htop = Sθ,ω = gθ ◦Λω as

∂htop

∂bi
=
∂Sθ,ω
∂bi

=
∂(gθ ◦Λω)

∂bi
= ∇gθ ◦

∂Λω
∂bi

=

m∑
l=1

∂gθ
∂xl

∂λω(lν)

∂bi
, (13)

where we use xl as the shorthand notation for the input of the function gθ . Then, applying λω(lν) =∑Kmax
k=1 ωkλk(lν) to (13) gives

∂htop

∂bi
=

m∑
l=1

∂gθ
∂xl

Kmax∑
k=1

ωk
∂λk(lv)

∂bi
. (14)
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Similarly, ∂htop

∂di
can be computed as

∂htop

∂di
=

m∑
l=1

∂gθ
∂xl

Kmax∑
k=1

ωk
∂λk(lv)

∂di
. (15)

And therefore, ∂htop

∂DX is the collection of these derivatives from (14) and (15), i.e.,

∂htop

∂DX
=

{(
m∑
l=1

∂gθ
∂xl

Kmax∑
k=1

ωk
∂λk(lv)

∂bi
,

m∑
l=1

∂gθ
∂xl

Kmax∑
k=1

ωk
∂λk(lv)

∂di

)}
(bi,di)∈DX

. (16)

Hence, ∂htop

∂X can be computed by applying (12) and (16) to (10) as

∂htop

∂Xj
=
∑
i

∂htop

∂bi

∂bi
∂Xj

+
∑
i

∂htop

∂di

∂di
∂Xj

=
∑
i

∂f(βi)

∂Xj

m∑
l=1

∂gθ
∂xl

Kmax∑
k=1

ωk
∂λk(lv)

∂bi
+
∑
i

∂f(δi)

∂Xj

m∑
l=1

∂gθ
∂xl

Kmax∑
k=1

ωk
∂λk(lv)

∂di
.

E.2 Proof of Theorem 4.1

Let D and D′ be two persistence diagrams and let λ and λ′ be their persistence landscapes. All
the quantities derived from D′ are denoted by a variable name with the superscript ′ hereafter (e.g.,
λ′k(t),Λ′

ω).

For the stability of the structure element Sθ,ω, we first expand the difference between Sθ,ω(D; ν)

and Sθ,ω(D′; ν) using Sθ,ω = gθ ◦Λω as

|Sθ,ω(D; ν)− Sθ,ω(D′; ν)| =
∣∣∣gθ (Λω)− gθ (Λ′

ω

)∣∣∣ . (17)

Then, RHS of (17) is bounded by applying the Lipschitz condition of the function gθas∣∣∣gθ (Λω)− gθ (Λ′
ω

)∣∣∣ ≤ Lg ∥∥∥Λω −Λ′
ω

∥∥∥
∞
. (18)

Then for
∥∥∥Λω −Λ′

ω

∥∥∥
∞

, note that Λω,Λ
′
ω ∈ Rm, the L∞ difference of Λω and Λ′

ω is bounded
as ∥∥∥Λω −Λ′

ω

∥∥∥
∞

= max
0≤i≤m−1

∣∣∣λω(Tmin + iν)− λ′ω(Tmin + iν)
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣λω(t)− λ′ω(t)
∣∣∣ = m1/2

∥∥∥λω − λ′ω∥∥∥∞ . (19)

Now, for bounding
∥∥∥λω − λ′ω∥∥∥∞, we first consider the pointwise difference |λω(t)− λ′ω(t)|. For all

t ∈ [0, T ], the difference between λω(t) and λ
′
ω(t) is bounded as∣∣∣λω(t)− λ′ω(t)

∣∣∣ =

∣∣∣∣∣ 1∑
k ωk

Kmax∑
k=1

ωkλk(t)− 1∑
k ωk

Kmax∑
k=1

ωkλ
′
k(t)

∣∣∣∣∣
≤ 1∑

k ωk

Kmax∑
k=1

ωk |λk(t)− λ′k(t)|

≤ sup
1≤k≤Kmax,t∈[0,T ]

|λk(t)− λ′k(t)| = max
1≤k≤Kmax

‖λk − λ′k‖∞ . (20)

And hence
∥∥∥λω − λ′ω∥∥∥∞ is bounded by max1≤k≤Kmax

‖λk − λ′k‖∞ as well, i.e.,∥∥∥λω − λ′ω∥∥∥∞ = sup
t∈[0,T ]

∣∣∣λω(t)− λ′ω(t)
∣∣∣ ≤ max

1≤k≤Kmax

‖λk − λ′k‖∞ . (21)
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Then for all k = 1, . . . ,Kmax, the∞-landscape distance ‖λk − λ′k‖∞ is bounded by the bottleneck
distance dB(D,D′) from Theorem 13 in Bubenik [2015], i.e.

‖λk − λ′k‖∞ ≤ dB(D,D′). (22)

Hence, applying (18), (19), (21), (22) to (17) gives the stated stability result as

|Sθ,ω(D; ν)− Sθ,ω(D′; ν)| =
∣∣∣gθ (Λω)− gθ (Λ′

ω

)∣∣∣ ≤ Lg ∥∥∥Λω −Λ′
ω

∥∥∥
∞

≤ Lg
∥∥∥λω − λ′ω∥∥∥∞ ≤ Lg max

1≤k≤Kmax

‖λk − λ′k‖∞
≤ LgdB(D,D′).

E.3 Proof of Corollary 4.1

First note that the result of Hofer et al. [2017] used W1 Wasserstein distance with Lr norm for
∀r ∈ N, which will be denoted by WLr

1 in this proof. That is,

WLr
1 (D,D′) := inf

γ

∑
p∈DX

‖p− γ(p)‖r

where γ ranges over all bijections D → D′ (i.e., WL∞
1 corresponds to W1 in our definition 2.2).

Then, ‖·‖r ≥ ‖·‖∞ implies that WLr
1 is lower bounded by W1, i.e.

WLr
1 (D,D′) ≥W1(D,D′). (23)

Now, let cK denote the Lipschitz constant in Hofer et al. [2017, Theorem 1] and cgθ denote the

constant term in our result in Theorem 4.1, i.e. cgθ = Lg
(
T
ν

)1/2
. We want to upper bound the ratio

cgθdB(D,D′)
cKW

Lr
1 (D,D′)

. This directly comes from (23) and Proposition B.1 as

cgθdB(D,D′)
cKW

Lr
1 (D,D′)

≥ cgθ
cK

dB(D,D′)
W1(D,D′) ≥

cgθ
cK

1

1 + 2t
dB(D,D′) (nt − 1)

.

Finally, we define Cgθ,T,ν :=
cgθ,T,ν
cK

, and the result follows.

It should be noted that the bound is actually very loose. However, we can still conclude that our
bound is tighter than that of Hofer et al. [2017] at polynomial rates.

E.4 Proof of Theorem 4.2

We first bound the difference between Sθ,ω(DX ; ν) and Sθ,ω(DP ; ν) using Theorem 4.1 as

|Sθ,ω(DX ; ν)− Sθ,ω(DP ; ν)| ≤ LgdB(DX ,DP ). (24)

It is left to further bound the bottleneck distance dB(DX ,DP ). The bottleneck distance between two
diagrams DX and DP is bounded by the stability theorem of persistent homology as

dB(DX ,DP ) ≤ ‖dPn,m0
− dP,m0

‖∞ . (25)

Then, from r = 2 in the DTM function, the L∞ distance between dPn,m0 and dP,m0 is bounded by
the stability of DTM function (Theorem 3.5 from Chazal et al. [2011]) as

‖dPn,m0
− dP,m0

‖∞ ≤ m
−1/2
0 W2(Pn, P ). (26)

Hence, combining (24), (25), and (26) altogether gives the stated stability result as

|Sθ,ω(DX ; ν)− Sθ,ω(DP ; ν)| ≤ Lgm−1/2
0 W2(Pn, P ).
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E.5 Proof of Claim B.1

Let γ : D → D′ be any bijection and let S :=
{
p ∈ D̄ : ‖p− γ(p)‖∞ > 2t

}
. Then for p ∈ D̄ with

‖p− γ(p)‖∞ ≤ 2t, there exists β(p) ∈ R2
∗ such that ‖p− β(p)‖∞ ≤ t and ‖β(p)− γ(p)‖∞ ≤ t.

Now, define two diagrams Dt,D′t as follows:

Dt = S ∪
{
β(p) : p ∈ D̄\S

}
\Diag,

D′t = S ′ ∪
{
β(p) : p ∈ D̄\S

}
\Diag,

where S ′ :=
{
γ(p) : p ∈ D̄

}
. Then, dB(D,Dt) ≤ t and dB(D′,D′t) ≤ t from the construction.

Hence from the definition of nt, either |Dt\D′t| ≥ nt or |D′t\Dt| ≥ nt holds. Now, note that

Dt\D′t ⊂ S and D′t\Dt ⊂ S ′.
And |S|=|S′|, and hence we get the claimed result as

|S| ≥ nt.

E.6 Proof of Proposition B.1

We consider a bijection γ∗ that realizes the q-Wasserstein distance between D and D′: i.e. γ∗ =
arginf

γ

∑
p∈D
‖p− γ(p)‖q∞. Then we have that

dB(D,D′)q ≤ sup
p∈D
‖p− γ∗(p)‖q∞. (27)

On the other hand, if we let p∗ = argsup
p∈D

‖p− γ∗(p)‖∞, we have

Wq(D,D′)q =
∑
p∈D
‖p− γ∗(p)‖q∞ = sup

p∈D
‖p− γ∗(p)‖q∞ +

∑
p 6=p∗

‖p− γ∗(p)‖q∞.

Note that from Claim B.1,
∣∣{p ∈ D̄ : ‖p− γ∗(p)‖∞ > 2t

}∣∣ ≥ nt. And hence Wq(D,D′)q can be
lower bounded as

Wq(D,D′)q = sup
p∈D
‖p− γ∗(p)‖q∞ +

∑
p 6=p∗

‖p− γ∗(p)‖q∞ (28)

≥ sup
p∈D
‖p− γ∗(p)‖q∞ + (2t)q(nt − 1). (29)

Now, we lower bound the ratio Wq(D,D′)q
dB(D,D′)q . By (27) and (29), this can be done as follows.

Wq(D,D′)q
dB(D,D′)q ≥

sup
p∈D
‖p− γ∗(p)‖q∞ + (2t)q(nt − 1)

dB(D,D′)q

≥ 1 +

(
2t

dB(D,D′)

)q
(nt − 1).

And hence the ratio of the Wasserstein distance to thw bottleneck distance Wq(D,D′)
dB(D,D′) is correspond-

ingly lower bounded as

Wq(D,D′)
dB(D,D′) ≥

(
Wq(D,D′)q
dB(D,D′)q

) 1
q

≥
(

1 +

(
2t

dB(D,D′)

)q
(nt − 1)

) 1
q

.

E.7 Proof of Corollary C.1

The difference between Sθ,ω(DX ; ν) and Sθ,ω(DY ; ν) is bounded by Theorem 4.1 as

|Sθ,ω(DX ; ν)− Sθ,ω(DY ; ν)| ≤ LgdB (DX ,DY ) , (30)

hence it suffices to show
dB (DX ,DY ) < 2 (dGH (X,Y) + 2ε) . (31)
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To show (31), we first apply the triangle inequality as

dB (DX ,DY ) ≤ dB (DX ,DX) + dB (DX,DY) + dB (DY,DY ) . (32)

And note that since X,Y, X, Y are all bounded in Euclidean space, they are totally bounded metric
spaces. Thus by Theorem 5.2 in Chazal et al. [2014a], the bottleneck distance between any two
diagrams is bounded by Gromov-Hausdorff distance, and in particular,

dB (DX,DY) ≤ 2dGH (X,Y) ,

dB (DX ,DX) ≤ 2dGH (X,X) , dB (DY,DY ) ≤ 2dGH (Y, Y ) . (33)

And then since the Gromov-Hausdorff distance is bounded by the Hausdorff distance,

dGH (X,X) ≤ dH (X,X) , dGH (Y, Y ) ≤ dH (Y, Y ) . (34)

And the Hausdorff distance between X and X or Y and Y is bounded by ε by the assumption that
X,Y are ε-coverings of X,Y, respectively, i.e.,

dH (X,X) < ε, dH (Y, Y ) < ε. (35)

Hence combining (32), (33), (34), and (35) gives (31) as

dB (DX ,DY ) ≤ dB (DX ,DX) + dB (DX,DY) + dB (DY,DY )

≤ 2 (dGH (X,X) + dGH (X,Y) + dGH (Y, Y ))

≤ 2 (dH (X,X) + dGH (X,Y) + dH (Y, Y ))

< 2 (dGH (X,Y) + 2ε) .

Now, the results follows from (30) and (31).

E.8 Proof of Proposition D.1

From (4), note that for any y ∈ ς , d̂m0
(y) is expanded as

d̂m0
(y) =

(∑
Xi∈Nk(y)$

′
i ‖Xi − y‖r

m0

∑n
i=1$i

)1/r

, (36)

where k is such that
∑
Xi∈Nk−1(y)$i < m0

∑n
i=1$i ≤

∑
Xi∈Nk(y)$i, and $′i =∑

Xj∈Nk(y)$j − m0

∑n
j=1$j for one of Xi’s that is k-th nearest neighbor of y and ω′i = ωi

otherwise. Hence, by letting y = arg maxz∈ς d̂m0
(z) applying to (36), the filtration function fX at

simplex ς becomes

fX(ς) = d̂X,m0(y) =

(∑
Xi∈Nk(y)$

′
i ‖Xi − y‖r

m0

∑n
i=1$i

)1/r

, (37)

where the notations fX and d̂X,m0
are to clarify the dependency of f on X . And from the condition,

d̂m0
(y) > d̂m0

(z) holds for all z ∈ ς . Hence for sufficiently small ε > 0 and for any Z ′ =
{Z1, . . . , Zn} with ‖Zj −Xj‖ < ε, (37) becomes

fZ(ς) = d̂Z,m0
(y) =

(∑
Xi∈Nk(y)$

′
i ‖Zi − y‖r

m0

∑n
i=1$i

)1/r

. (38)

Hence by differentiating (38), the derivative of f with respect to X is calculated as

∂f(ς)

∂Xj
=

(∑
Xi∈Nk(y)$

′
i ‖Xi − y‖r

m0

∑n
i=1$i

) 1
r−1

×
$′j ‖Xj − y‖r−2

(Xj − y)I(Xj ∈ Nk(y))

m0

∑n
i=1$i

=
$′j ‖Xj − y‖r−2

(Xj − y)I(Xj ∈ Nk(y))(
d̂m0

(y)
)r−1

m0

∑n
i=1$i

.
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E.9 Proof of Proposition D.2

From (5), note that for any y ∈ ς , d̂m0(y) is expanded as

d̂m0(y) =

(∑
Xi∈Nk(y)X

′
i ‖Yi − y‖r

m0

∑n
i=1Xi

)1/r

, (39)

where k is such that
∑
Yi∈Nk−1(y)Xi < m0

∑n
i=1Xi ≤

∑
Yi∈Nk(y)Xi, and X ′i =∑

Xj∈Nk(y)Xj − m0

∑n
j=1Xj for one of Yi’s that is k-th nearest neighbor of y and X ′i = Xi

otherwise. Hence, by letting y = arg maxz∈ς d̂m0(z) and applying to (39), the filtration function fX
at simplex ς becomes

fX(ς) = d̂X,m0
(y) =

(∑
Xi∈Nk(y)X

′
i ‖Yi − y‖r

m0

∑n
i=1Xi

)1/r

, (40)

where the notations fX and d̂X,m0
are to clarify the dependency of f on X . And from the condition,

d̂m0
(y) > d̂m0

(z) holds for all z ∈ ς . Hence for sufficiently small ε > 0 and for any Z ′ =
{Z1, . . . , Zn} with ‖Zj −Xj‖ < ε, (40) becomes

fZ(ς) = d̂Z,m0
(y) =

(∑
Xi∈Nk(y) Z

′
i ‖Yi − y‖r

m0

∑n
i=1 Zi

)1/r

. (41)

Hence by differentiating (41), the derivative of f with respect to X is calculated as

∂f(ς)

∂Xj

=
1

r

(∑
Xi∈Nk(y)X

′
i ‖Yi − y‖r

m0

∑n
i=1Xi

) 1
r−1

×

‖Yj − y‖r I(Yj ∈ Nk(y)) (m0

∑n
i=1Xi)−m0

(∑
Xi∈Nk(y)X

′
i ‖Yi − y‖r

)
(m0

∑n
i=1Xi)

2

=
‖Yj − y‖r I(Yj ∈ Nk(y))−m0

(
d̂m0

(y)
)r

r
(
d̂m0

(y)
)r−1

m0

∑n
i=1Xi

.
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F Guideline for choosing TDA parameters

PLLay has several TDA parameters to choose: Kmax, Tmin, Tmax, m, and m0 if DTM filtration is
used. One can try grid search but it could be too time-consuming. More affordable approach is
to compute the DTM filtration and the persistence diagram for some data and choose appropriate
parameters that can reveal the topological and geometrical information of the data. Figure 5 illustrates
one example of the digit 8 in MNIST data. Figure 5(a) shows the contour plot of the chosen data.

When using a DTM filtration, we need to choose m0 first. DTMs with different m0 values extract
different topological and geometrical information. When m0 is small, a DTM filtration aggregates the
data more locally, and the geometrical and homological information formed from the local structure is
extracted. When m0 is large, a DTM filtration aggregates the data more globally, and the geometrical
and homological information formed from the global structure is extracted. From the digit 8, we
would first like to see the two-loop structure. And if we choose m0 = 0.05, then as can be seen
in Figure 5(b) and (c), the 1st persistent homology extracts the two-loop structure, which is more
directly expected from the contour plot of the data itself in Figure 5(a). However, if we choose
m0 = 0.2, then as can be seen in Figure 5(d) and (e), the two-loop structure disappears, since the
two-loop structure is coming from more local geometry of the data. Meanwhile, as the DTM filtration
aggregates the data more globally, the global geometry information that three points on the digit 8(top,
center, bottom) being close to neighboring points and being centers of local clusters is extracted in
the 0th persistent homology. For MNIST data, DTM filtrations with m0 = 0.05 and m0 = 0.2 extract
different topological and geometrical information of the data. Hence for MNIST data, we used two
parallel PLLays with m0 = 0.05 and m0 = 0.2, respectively.

After choosing m0, choosing other TDA parameters Kmax, Tmin, Tmax, m is more straightforward.
One can choose parameters so that the desired topological features are well extracted in the landscape.
For m0 = 0.05, as can be seen from Figure 5(c), choosing Kmax = 2, Tmin = 0.06, Tmax = 0.3,
m = 25 will extract two 1-dimensional features of the persistence diagram in the corresponding
landscape. For m0 = 0.2, as can be seen from Figure 5(e), choosing Kmax = 3, Tmin = 0.14,
Tmax = 0.4, m = 27 will extract two 1-dimensional features of the persistence diagram in the
corresponding landscape.

G Experiment Details.

All the experiments were implemented using GUDHI The GUDHI Project [2020] and Tensorflow
library in Python and TDA package Fasy et al. [2014] in R. We use mean and standard deviation across
20 runs of simulations with different network initializations. We remark that the basic purpose of our
experiment design is to highlight the prospects and possibilities of using topological layer, not to win
state-of-the-art performances.

23



0 5 10 15 20 25

0

5

10

15

20

25

(a) Digit 8 in MNIST data.
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(b) Contour plot of DTM filtration, m0 = 0.05.
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(c) Persistence Diagram of DTM filtration, m0 = 0.05.
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(d) Contour plot of DTM filtration, m0 = 0.2.
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(e) Persistence Diagram of DTM filtration, m0 = 0.2.

Figure 5: One example of the digit 8 in MNIST data, its contour plots and persistence diagrams of
DTM filtration at m0 = 0.05 and m0 = 0.2. When m0 = 0.05, DTM filtration aggregates more
locally, and the 1st persistent homology extracts two loop structures of the digit 8. When m0 = 0.2,
DTM filtration aggregates the digit 8 more globally, and the 0th persistent homology extracts three
connected component structures of the digit 8.
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Corruption and noise probability
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

MLP 0.8683 0.8425 0.8133 0.7850 0.7441 0.6997 0.6514 0.5732
(0.0063) (0.0061) (0.0087) (0.0086) (0.0098) (0.0090) (0.0124) (0.0155)

MLP+S 0.8597 0.8322 0.8060 0.7749 0.7364 0.6844 0.6372 0.5637
(0.0087) (0.0086) (0.0152) (0.0147) (0.0177) (0.0187) (0.0213) (0.0161)

MLP+P 0.8791 0.8538 0.8227 0.7910 0.7511 0.7045 0.6507 0.5753
(0.0062) (0.0061) (0.0103) (0.0121) (0.0109) (0.0087) (0.0120) (0.0135)

CNN 0.8506 0.8367 0.8030 0.7872 0.7541 0.7315 0.6778 0.6245
(0.0261) (0.0246) (0.0315) (0.0340) (0.0319) (0.0447) (0.0506) (0.0478)

CNN+S 0.8544 0.8058 0.7988 0.7938 0.7649 0.7055 0.6884 0.6281
(0.0194) (0.1081) (0.0252) (0.0326) (0.0215) (0.1268) (0.0372) (0.0407)

CNN+P 0.8790 0.8541 0.8364 0.8209 0.7855 0.7551 0.7044 0.6355
(0.0151) (0.0218) (0.0214) (0.0217) (0.0247) (0.0289) (0.0230) (0.0404)

CNN+P(i) 0.8635 0.8391 0.8113 0.7985 0.7671 0.7391 0.6841 0.6364
(0.0189) (0.0153) (0.0250) (0.0275) (0.0179) (0.0302) (0.0936) (0.0355)

Table 2: Test accuracy in MNIST experiments. In each cell, the top number corresponds to the average
accuracy of the model at the corruption and noise probability, and the bottom number corresponds
to the 1 standard deviation of the accuracies. At each column, the model with the best accuracy is
bolded.

G.1 MNIST handwritten digits.

For MNIST handwritten digits, we use MNIST dataset. Raw input data is a 784 dimensional vector
(reshaped from 28 by 28) of real values, each value being the pixel intensity. We use 1000 random
samples for the training set and 10000 samples for the test set. Cross-entropy loss was used to train
the network for 100 epochs, using Adam optimizer with mini-batches of size 16.

Topological layer. For MLP+P and CNN+P(i), we use two parallel PLLays at the beginning of MLP
and CNN models with 32 nodes each and affine transformation, which are concatenated to the raw
input to either MLP or CNN. We used the empirical DTM filtration in (5), where we define fixed
28× 28 points on grid on [−1, 1]2 and use X as a weight vector for the fixed points. For one PLLay,
we used m0 = 0.05, Kmax = 2, Tmin = 0.06, Tmax = 0.3, m = 25, and for the other PLLay, we
used m0 = 0.2, Kmax = 3, Tmin = 0.14, Tmax = 0.4, m = 27. For CNN+P, we additionally use
one PLLay after the convolutional layer, with Kmax = 3, Tmin = 0.05, Tmax = 0.95, m = 18.

Baselines. For the baselines, models were designed to have simple structures for quick comparisons:

• Vanilla MLP: one hidden layer with 64 units with ReLU activations.
• CNN: two convolution layers followed by two fully connected layers.
• SLay: for comparison with PLLay, two SLays are used with 10 nodes each, which are concatenated

to the raw input to either MLP or CNN. We used the value ν = 0.005 and ν = 0.01 for the
hyperparameter of each SLay, respectively.

Result. The Accuracy results for MNIST data in Figure 4 is represented with 1 standard errors in
Table 2 and Figure 6. In Figure 6, the results for MLP, MLP+S, MLP+P are in Figure 6(a), and the
results for CNN, CNN+S, CNN+P, CNN+P(i) are in Figure 6(b). We can see that PLLay consistently
improves the accuracies of all baselines. In particular from Table 2 and Figure 6(b), the improvement
on CNN is 1.7% ∼ 2.8% when the corruption and noise is 0% ∼ 5%, and then the improvement
goes up to 3.3% when the corruption and noise becomes 10% ∼ 15%, and then starts to decrease as
the corruption and noise further increases. As discussed in Section 5, this is because although the
DTM filtration can robustly capture homological signals up to a moderate amount of corruption and
noise, as seen in Figure 2, when the corruption and noise become too much, the topological structure
starts to dissolve in the DTM filtration. Also, the accuracies for CNN+P are consistently higher than
the accuracies for CNN+P(i), meaning that adding PLLay in the middle of the network indeed further
improves the accuracy.
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(a) Test accuracy in MNIST data for MLP, MLP+S, MLP+P.
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(b) Test accuracy in MNIST data for CNN, CNN+S, CNN+P, CNN+P(i).

Figure 6: Test accuracy in MNIST experiments. PLLay contributes to consistent improvement in
accuracy and robustness against noise and corruption. In particular, the improvement on CNN
increases up to the moderate level of corruption and noise (∼ 15%), and then start to decrease.
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Noise probability
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

MLP 0.2000 0.2001 0.1997 0.1994 0.1998 0.2003 0.2004 0.1999
(0.0014) (0.0031) (0.0020) (0.0029) (0.0009) (0.0010) (0.0016) (0.0011)

MLP+S 0.2054 0.2028 0.2171 0.2171 0.2121 0.2159 0.2115 0.2057
(0.0126) (0.0129) (0.0364) (0.0364) (0.0236) (0.0301) (0.0193) (0.0180)

MLP+P 0.8082 0.7906 0.7660 0.7456 0.7181 0.6942 0.6545 0.6218
(0.0103) (0.0082) (0.0115) (0.0104) (0.0100) (0.0130) (0.0110) (0.0102)

CNN 0.9466 0.9247 0.9053 0.8791 0.8224 0.8323 0.7963 0.7401
(0.0116) (0.0152) (0.0195) (0.0255) (0.1474) (0.0298) (0.0331) (0.1293)

CNN+S 0.9412 0.8881 0.8142 0.8142 0.8197 0.7777 0.6580 0.7195
(0.0182) (0.1612) (0.1900) (0.1900) (0.1473) (0.1875) (0.2622) (0.1778)

CNN+P 0.9511 0.9249 0.9095 0.8941 0.8619 0.8480 0.8087 0.7668
(0.0140) (0.0308) (0.0329) (0.0305) (0.0366) (0.0173) (0.0396) (0.0319)

CNN+P(i) 0.9449 0.9319 0.8965 0.8873 0.8577 0.8285 0.7954 0.7543
(0.0343) (0.0290) (0.0471) (0.0143) (0.0349) (0.0515) (0.0516) (0.0553)

Table 3: Test accuracy in ORBIT5K experiments. In each cell, the top number corresponds to the
average accuracy of the model at the noise probability, and the bottom number corresponds to the 1
standard deviation of the accuracies. At each column, the model with the best accuracy is bolded.

G.2 Orbit recognition.

For orbit recognition, we use ORBIT5K dataset [Adams et al., 2017, Carrière et al., 2020], a synthetic
dataset used as a benchmark in Topological Data Analysis. It consists of a point cloud generated by
the following discrete dynamical system: given an initial point (x1, y1) ∈ [0, 1]2 and a parameter
r > 0, we generate a point cloud {(xn, yn) ∈ [0, 1]2 : n = 1, . . . , N} as{

xn+1 = xn + ryn(1− yn) mod 1,

yn+1 = yn + rxn+1(1− xn+1) mod 1.

For comparison with Adams et al. [2017], Carrière et al. [2020], we use parameters r =
2.5, 3.5, 4.0, 4.1, 4.3, with random initialization of (x1, y1) and N = 1000 points in each simu-
lated orbit. We generated 1000 orbits per each value of r, and randomly split the 5000 observations
in 70% − 30% training-test sets as in Carrière et al. [2020]. Cross-entropy loss was used to train
the network for 100 epochs, using Adam optimizer with mini-batches of size 16. For the noiseless
case, the experiment for PointNet is repeated 5 times, and the experiment result for PersLay is from
Carrière et al. [2020].

Topological layer. For MLP+P and CNN+P(i), we use one PLLay at the beginning of MLP and
CNN models with 64 nodes and affine transformation, which is solely used as the input to MLP or
concatenated to the raw input to CNN. We used the empirical DTM filtration in (4), where we define
fixed 40× 40 points on grid on [0.0125, 0.9875]2 and use X as the empirical data points. We used
m0 = 0.01, Kmax = 2, Tmin = 0.03, Tmax = 0.1, m = 17. For CNN+P, we additionally use one
PLLay after the convolutional layer, with Kmax = 2, Tmin = 0.05, Tmax = 0.95, m = 18.

Baselines. For the baselines, models were designed to have simple structures for quick comparisons:

• Vanilla MLP: one hidden layer with 32 units with ReLU activations.

• CNN: two convolution layers followed by two fully connected layers.

• SLay: for comparison with PLLay, one SLay is used with 16 nodes, which is concatenated to the
raw input to either MLP or CNN. We used the value ν = 0.01 for the hyperparameter of SLay.

Result. The accuracy results for ORBIT5K data in Figure 4 is represented with 1 standard errors in
Table 3 and Figure 7. In Figure 7, the results for MLP, MLP+S, MLP+P are in Figure 7(a), and the
results for CNN, CNN+S, CNN+P, CNN+P(i) are in Figure 7(b). From Figure 7(a), we observe
that PLLay improves over MLP and MLP+S by a huge margin (42% ∼ 60%). In particular, without
PLLay, MLP and MLP+S remain at random classifiers, which implies that the topological information
is indeed critical for ORBIT5K. In Figure 7(b), PLLay improves over CNN or CNN+S consistently
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as well. Moreover, due to the high complexity of ORBIT5K, CNN suffers from high variance at
corruption and noise probability 0.2, 0.35, while PLLay can effectively reduce the variance at those
simulations and make the models more stable by utilizing robust topological information from the
DTM function. Also, the accuracies for CNN+P are almost always higher than the accuracies for
CNN+P(i), meaning that adding PLLay in the middle of the network indeed further improves the
accuracy.
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(a) Test accuracy in ORBIT5K data for MLP, MLP+S, MLP+P.

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3
Corrupt and noise probability

A
cc

ur
ac

y CNN

CNN+S

CNN+P

CNN+P(i)

Accuracy for ORBIT5K data, CNN based

(b) Test accuracy in ORBIT5K data for CNN, CNN+S, CNN+P, CNN+P(i).

Figure 7: Test accuracy in ORBIT5K experiments. PLLay contributes to consistent improvement in
accuracy and robustness against noise and corruption. In particular in (b), when the corruption and
noise probability is 0.1, 0.25, 0.35, PLLay effectively reduces the variance of classification accuracy.
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