
A Complexity and Algorithm1

A.1 Complexity Analysis2

In this section, we provide the complexity analysis of the gradient approximation methods proposed3

in Section 4 and show the full algorithm for solving the bi-level optimization of parameterized reward4

shaping (BiPaRS) problem. We denote the number of parameters of the policy function πθ by n and5

the number of parameters of the shaping weight function zφ by m, respectively.6

Explicit Mapping: The explicit mapping (EM) method includes the shaping weight function zφ as7

an input of πθ and approximately computes ∇φ log πθ(s, a) as ∇z log πθ(s, a, z)|z=zφ(s)∇φzφ(s).8

Therefore, the computational complexity of the EM method is O(m).9

Meta-Gradient Learning: Given the shaping weight function parameter φ, let θ and θ′ denote the10

policy parameters before and after one round of low-level optimization, and assume that a batch of11

N (N > 0) samples B = {(si, ai)|i = 1, ..., N} is used for updating θ. The meta-gradient learning12

(MGL) method computes∇φθ′ as13

∇φθ′ ≈ α
N∑
i=1

gθ(si, ai)
>∇φ

|τi|−1∑
t=0

γt
(
rti + zφ(sti, a

t
i)f(sti, a

t
i)
)

= α

N∑
i=1

gθ(si, ai)
>
|τi|−1∑
t=0

γtf(sti, a
t
i)∇φzφ(sti, a

t
i).

(A.1)

It seems that the computational complexity and space complexity of the (MGL) method areO(Nnm).14

However, we can reduce both of them toO(N(n+m)). Note that Equation (A.1) should be integrated15

with Theorem 1 for computing the gradient of the expected true reward J(zφ) with respect to φ in the16

upper-level optimization. Without loss of generality, we assume only one state-action pair (s, a) is17

used to update φ under the new policy θ′. By substituting Equation (A.1) into Theorem 1, we have18

∇φJ(zφ) ≈ ∇φ log πθ′(s, a)Q(s, a)

= ∇θ′ log πθ′(s, a)∇φθ′Q(s, a)

≈ α∇θ′ log πθ′(s, a)
(N∑
i=1

gθ(si, ai)
>
|τi|−1∑
t=0

γtf(sti, a
t
i)∇φzφ(sti, a

t
i)
)
Q(s, a),

(A.2)

where Q(s, a) is the state-action value function under the policy πθ′ . Actually, we can change the19

computing order of Equation (A.2) and compute it as20

∇φJ(zφ) ≈ α
N∑
i=1

(
∇θ′ log πθ′(s, a)Q(s, a)gθ(si, ai)

>) |τi|−1∑
t=0

γtf(sti, a
t
i)∇φzφ(sti, a

t
i). (A.3)

For each i in the sum loop of this equation, computing the term ∇θ′ log πθ′(s, a)Q(s, a)gθ(si, ai)
>21

costs O(n) time and space, computing the term
∑|τi|−1
t=0 γtf(sti, a

t
i)∇φzφ(sti, a

t
i) costs O(m) time22

and space (we treat |τi| as a constant), and computing the product of these two terms also costs23

O(m) time and space. Therefore, the space complexity and computational complexity for computing24

Equation (A.3) are O(N(n+m)).25

Incremental Meta-Gradient Learning: The incremental meta-gradient learning (IMGL) is a gen-26

eralized version of the MGL method. We still let θ and θ′ denote the policy parameters before27

and after one round of low-level optimization, and assume that a batch of N (N > 0) samples28

B = {(si, ai)|i = 1, ..., N} is used to update θ. The IMGL method computes∇φθ′ as29

∇φθ′ = ∇φθ + α

N∑
i=1

∇φgθ(si, ai)>Q̃(si, ai) + α

N∑
i=1

gθ(si, ai)
>∇φQ̃(si, ai)

=
(
In + α

N∑
i=1

Q̃(si, ai)∇θgθ(si, ai)>
)
∇φθ + α

N∑
i=1

gθ(si, ai)
>∇φQ̃(si, ai),

(A.4)

1

Environment

Agent

Interact

Trajectory 𝝉𝒊

< 𝑠𝑖
0, 𝑎𝑖

0, 𝑟𝑖
0, 𝑠𝑖

1, … 𝑠𝑖
𝑛>

Sample

Expert
Knowledge

Reward Shaping
< 𝑠𝑖

0, 𝑎𝑖
0, ǁ𝑟𝑖

0, 𝑠𝑖
1, … 𝑠𝑖

𝑛>

Training

Naïve Reward Shaping

Expert Knowledge
𝑓(𝑠, 𝑎)

𝑟 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑓(𝑠, 𝑎)

transitions
< 𝑠, 𝑎, 𝑟 𝑠, 𝑎 , 𝑠′ >

Parameterized
Reward Shaping

Expert Knowledge 𝑓

𝑟 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑧𝜙 𝑠, 𝑎 𝑓(𝑠, 𝑎)

transitions
< 𝑠, 𝑎, 𝑟 𝑠, 𝑎 , 𝑠′ >

Shaping Weight
Function 𝑧𝜙

+

Agent 𝝅𝒕

Agent 𝝅𝒕+𝟏

Training

BiPaRS Framework

𝒛𝝓
Shaping

Updating

Figure 3: An overview of the BiPaRS framework

where In is a n-order identity matrix and Q̃ denotes the state-action value function in the modified30

MDP. Compared with the EM and MGL methods, IMGL is much more computationally expen-31

sive since the term α
∑N
i=1 Q̃(si, ai)∇θgθ(si, ai)> involves the computation of the Hessian matrix32

∇θgθ(si, ai)> for each i, which has O(Nn3) computational complexity. However, there are several33

ways for reducing the high computational cost of IMGL. Firstly, the Hessian matrix ∇θgθ(si, ai)>34

can be approximated using outer product of gradients (OPG) estimate. Secondly, for simple problems,35

we can use a small policy model with a few parameters. Lastly, we can even omit the second-order36

term α
∑N
i=1 Q̃(si, ai)∇θgθ(si, ai)> to get another approximation of∇φθ′.37

A.2 The Full Algorithm38

The main workflow of the BiPaRS framework can be illustrated by Figure 3. In this figure, the left39

column shows the training loop of the agent’s policy, where the expert knowledge (i.e., shaping40

reward) is integrated with the samples generated from the agent-environment interaction. The centeral41

column shows the difference between the parameterized reward shaping and the traditional reward42

shaping methods, namely the shaping weight function zφ for adaptive utilization of the shaping43

reward function f . The right column of the figure intuitively shows the alternating optimization44

process of the policy and shaping weight function.45

Now we summarize all the methods proposed in our paper into the general learning algorithm in46

Algorithm 1. This algorithm actually corresponds to three specifi learning algorithms which adopt47

the explicit mapping (EM), meta-gradient learning (MGL), and incremental meta-gradient learning48

(IMGL) methods for gradient approximation, respectively. As shown in the algorithm table, the49

policy parameter θ and the parameter of the shaping weight function φ are optimized iteratively.50

At each iteration t, θ is firstly updated according to the shaping rewards (lines 5 to 14), which are51

weighted by the shaping weight function zφ. If MGL or IMGL is chosen as the method for gradient52

approximation, then the meta-gradient∇φθ, which is denoted by the variable h, will be computed at53

the same time (lines 9 to 14), where∇θ log πθ(s, a) is simplified as gθ(s, a). After updating θ, φ is54

updated based on the true rewards sampled by the new policy πθ and the approximated gradient of55

πθ with respect to φ (lines 15 to 22). For the EM method (line 21), we do not explicitly represent56

πθ as a function of zφ in order to keep the consistency of notations. We also omit some details in57

Algorithm 1, such as the learning of the two value functions Q and Q̃, and the computation of the58

gradient∇φQ̃(s, a).59

B Theorem Proof60

This section gives the proof of Theorem 1. We make the following assumptions.61

Assumption 1. LetM = 〈S,A, P, r, p0, γ〉 denote the original MDP, πθ be the policy, and zφ be62

the shaping weight function in the BiPaRS problem, repsectively. We assume that P (s, a, s′), r(s, a),63

p0(s) are continuous w.r.t. the variables s, a, and s′, and πθ(s, a) are continuous w.r.t. s, a, θ, and φ.64

Assumption 2. For the MDP M = 〈S,A, P, r, p0, γ〉, there exists a real number b such that65

r(s, a) < b, ∀(s, a).66

Theorem 1. Given the shaping weight function zφ and the stochastic policy πθ of the agent in the67

upper level of the BiPaRS problem (Equation (2) in the paper), the gradient of the objective function68

2

Algorithm 1: Bilevel Optimization of Parameterized Reward Shaping (BiPaRS)
Input: Learning rates αθ and αφ

1 Initialize the policy parameter θ and the shaping weight function parameter φ;
2 Initialize the true and shaping value functions Q and Q̃;
3 Initialize the meta-gradient h to a zero matrix;
4 for t = 1, 2, ..., do
5 Run policy πθ in the modified MDP with zφ;
6 T ′ ← the set of sampled experiences;
7 Update Q̃ using samples from T ′;
8 θ′ ← θ + αθ

∑
(s,a)∼T ′ ∇θ log πθ(s, a)Q̃(s, a);

9 if MGL is used then
10 h← αθ

∑
(s,a)∼T ′ gθ(s, a)>∇φQ̃(s, a);

11 else if IMGL is used then
12 h1 ←

(∑
(s,a)∼T ′ ∇θgθ(s, a)>Q̃(s, a)

)
h;

13 h2 ←
∑

(s,a)∼T ′ gθ(s, a)∇φQ̃(s, a);
14 h← h+ αθ(h1 + h2);

15 Run policy πθ′ in the original MDP;
16 T ← the set of sampled experiences;
17 Update Q using samples from T ;
18 if MGL or IMGL is used then
19 ∆φ←

∑
(s,a)∼T ∇θ′ log πθ′(s, a)Q(s, a)h;

20 else
21 ∆φ←

∑
(s,a)∼T ∇z log πθ′(s, a)∇φzφ(s)Q(s, a);

22 φ← φ+ αφ∆φ;
23 θ ← θ′;

J(zφ) with respect to the variable φ is69

∇φJ(zφ) = Es∼ρπ,a∼πθ
[
∇φ log πθ(s, a)Qπ(s, a)

]
, (B.5)

where Qπ is the state-action value function of πθ in the original MDP.70

Proof. Our proof is similar to that of the stochastic policy gradient theorem (Sutton et al. (1999))71

and the deterministic policy gradient theorem (Silver et al. (2014)). Given a stochastic policy πθ,72

let V π and Qπ denote the state value function and state-action value function of π in the original73

MDP M = 〈S,A, P, r, p0, γ〉, respectively. Note that Assumption 1 implies that V π and Qπ74

are continuous functions of φ and Assumption 2 guarantees that V π(s), Qπ(s, a), ∇φV π(s) and75

∇φQπ(s, a) are bounded for any s ∈ S and any a ∈ A. In our proof, the two assumptions are76

necessary to exchange integrals and derivatives, and the integration orders.77

Obviously, for any state s we have78

V π(s) =

∫
A
πθ(s, a)Qπ(s, a)da.

Therefore, the gradient of V π(s) with respect to the shaping weight function parameter φ is79

∇φV π(s) = ∇φ
(∫
A
πθ(s, a)Qπ(s, a)da

)
=

∫
A

(
∇φπθ(s, a)Qπ(s, a) + πθ(s, a)∇φQπ(s, a)

)
da.

The above equation is an application of the Leibniz integral rule to exchange the orders of derivative80

and integral, which requires Assumption 1.81

3

By further expanding the term∇φQπ(s, a), we can obtain82

∇φV π(s) =

∫
A

(
∇φπθ(s, a)Qπ(s, a) + πθ(s, a)∇φQπ(s, a)

)
da

=

∫
A

(
∇φπθ(s, a)Qπ(s, a) + πθ(s, a)∇φ

(
r(s, a) + γ

∫
S
P (s, a, s′)V π(s′)ds′

))
da

=

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
A
πθ(s, a)

∫
S
γP (s, a, s′)∇φV π(s′)ds′da

=

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
S

∫
A
γπθ(s, a)P (s, a, s′)da∇φV π(s′)ds′

=

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
S
γp(s→ s′, 1, πθ)∇φV π(s′)ds′,

where p(s′ → s, t, πθ) is the probability that state s is visited after t steps from state s′ under the83

policy πθ. In the above derivation, the first step is an expansion of the Bellman equation. The second84

step is by exchanging the order of derivative and integral. The third step exchanges the order of85

integration by using Fubini’s Theorem, which requires our assumptions. The last step is according to86

the definition of p. By expanding∇φV π(s′) in the same way, we can get87

∇φV π(s) =

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
S
γp(s→ s′, 1, πθ)∇φ

(∫
A
πθ(s

′, a′)Qπ(s′, a′)da′
)

ds′

=

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
S
γp(s→ s′, 1, πθ)

∫
A
∇φπθ(s′, a′)Qπ(s′, a′)da′ds′

+

∫
S
γp(s→ s′, 1, πθ)

∫
A
πθ(s

′, a′)∇φQπ(s′, a′)da′ds′

=

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
S
γp(s→ s′, 1, πθ)

∫
A
∇φπθ(s′, a′)Qπ(s′, a′)da′ds′

+

∫
S
γp(s→ s′, 1, πθ)

∫
S
γp(s′ → s′′, 1, πθ)∇φV π(s′′)ds′′ds′

=

∫
A
∇φπθ(s, a)Qπ(s, a)da+

∫
S
γp(s→ s′, 1, πθ)

∫
A
∇φπθ(s′, a′)Qπ(s′, a′)da′ds′

+

∫
S
γp(s→ s′, 2, πθ)∇φV π(s′)ds′

= · · ·

=

∞∑
t=0

∫
S
γtp(s→ s′, t, πθ)

∫
A
∇φπθ(s′, a)Qπ(s′, a)dads′

=

∫
S

∞∑
t=0

γtp(s→ s′, t, πθ)

∫
A
∇φπθ(s′, a)Qπ(s′, a)dads′.

Recall that the upper-level objective J(zφ) =
∫
S ρ

π(s)
∫
A r(s, a)dads =

∫
S p0(s)V π(s)ds. There-88

fore, we have89

∇φJ(zφ) =

∫
S
p0(s)∇φV π(s)ds

=

∫
S
p0(s)

∫
S

∞∑
t=0

γtp(s→ s′, t, πθ)

∫
A
∇φπθ(s′, a)Qπ(s′, a)dads′ds

=

∫
S
p0(s)

∫
S

∞∑
t=0

γtp(s→ s′, t, πθ)ds
∫
A
∇φπθ(s′, a)Qπ(s′, a)dads′

=

∫
S
ρπ(s′)

∫
A
∇φπθ(s′, a)Qπ(s′, a)dads′.

By using the log-derivative trick, we can finally obtain Equation (B.5).90

4

C BiPaRS for Deterministic Policy Setting91

In this section, we define the BiPaRS problem for deterministic policy gradient algorithms. We92

provide a theorem similar to Theorem 1 and give the proof. Then we show the three methods explicit93

mapping (EM), meta-gradient learning (MGL), and incremental meta-gradient learning (IMGL) for94

approximating the gradient of the expected true reward with respect to the shaping weight function95

parameter φ in the deterministic policy setting.96

Let M = 〈S,A, P, r, p0, γ〉 denote an MDP, µθ denote an agent’s deterministic policy with pa-97

rameter θ, f denote the shaping reward function, and zφ denote the shaping weight function98

with parameter φ. Given f and zφ, the agent should maximize the expected modified reward99

J̃(µθ) = Es∼ρµ
[(
r(s, a) + zφ(s, a)f(s, a)

)∣∣
a=µθ(s)

]
. The objective of the shaping weight function100

zφ is the expected accumulative true reward J(zφ) = Es∼ρµ
[
r(s, a)

∣∣
a=µθ(s)

]
. Formally, the bi-level101

optimization of parameterized reward shaping (BiPaRS) problem for the deterministic policy setting102

can be defined as103

max
φ

Es∼ρµ
[
r(s, a)

∣∣
a=µθ(s)

]
s.t. φ ∈ Φ

θ = arg max
θ′

Es∼ρµ
[(
r(s, a) + zφ(s, a)f(s, a)

)∣∣
a=µθ′ (s)

]
s.t. θ′ ∈ Θ.

(C.6)

The following theorem shows how to compute the gradient of the upper-level objective J(zφ) with104

respect to the variable φ in Equation (C.6).105

Theorem 2. Given the shaping weight function zφ and the deterministic policy µθ of the agent in the106

upper level of the BiPaRS problem Equation (C.6), the gradient of the objective function J(zφ) with107

respect to the shaping weight function parameter φ is108

∇φJ(zφ) = Es∼ρµ
[
∇φµθ(s)∇aQµ(s, a)

∣∣
a=µθ(s)

]
, (C.7)

where Qµ is the state-action value function of µθ in the original MDP.109

To prove the Theorem, we assume that P (s, a, s′), ∇aP (s, a, s′), r(s, a), ∇ar(s, a), p0(s) are110

continuous w.r.t. the variables s, a, and s′, and µθ(s) are continuous w.r.t. s, θ, and φ. We also111

assume that the rewards are bounded. The proof is as follows.112

Proof. Given a deterministic policy µθ, for any state s, the gradient of the state value V µ(s) with113

respect to φ is114

∇φV µ(s) = ∇φQµ(s, µθ(s))

= ∇φ
(
r(s, µθ(s)) + γ

∫
S
P (s, µθ(s), s

′)V µ(s′)ds′
)

= ∇φµθ(s)∇ar(s, a)|a=µθ(s) +∇φ
(
γ

∫
S
P (s, µθ(s), s

′)V µ(s′)ds′
)

= ∇φµθ(s)∇ar(s, a)|a=µθ(s) + γ

∫
S
∇φµθ(s)∇aP (s, a, s′)|a=µθ(s)V

µ(s′)ds′

+ γ

∫
S
P (s, µθ(s), s

′)∇φV µ(s′)ds′

= ∇φµθ(s)∇aQµ(s, a)|a=µθ(s) +

∫
S
γp(s→ s′, 1, µθ)∇φV µ(s′)ds′.

5

By expanding∇φV µ(s′), we have115

∇φV µ(s) = ∇φµθ(s)∇aQµ(s, a)|a=µθ(s) +

∫
S
γp(s→ s′, 1, µθ)∇φQµ(s′, µθ(s

′))ds′

= ∇φµθ(s)∇aQµ(s, a)|a=µθ(s) +

∫
S
γp(s→ s′, 1, µθ)∇φµθ(s′)∇aQµ(s′, a)|a=µθ(s′)ds

′

+

∫
S
γp(s→ s′, 1, µθ)

∫
S
γp(s′ → s′′, 1, µθ)∇φV µ(s′′)ds′′ds′

= ∇φµθ(s)∇aQµ(s, a)|a=µθ(s)

+

∫
S
γp(s→ s′, 1, µθ)∇φµθ(s′)∇aQµ(s′, a)|a=µθ(s′)ds

′

+

∫
S
γ2p(s→ s′, 2, µθ)∇φµθ(s′)∇aQµ(s′, a)|a=µθ(s′)ds

′

+ · · ·

=

∫
S

∞∑
t=0

γtp(s→ s′, t, µθ)∇φµθ(s′)∇aQµ(s′, a)|a=µθ(s′)ds
′.

Taking expectation over the initial states, we can obtain116

∇φJ(zφ) =

∫
S
p0(s)∇φV µ(s)ds

=

∫
S
p0(s)

∫
S

∞∑
t=0

γtp(s→ s′, t, µθ)∇φµθ(s′)∇aQµ(s′, a)|a=µθ(s′)ds
′ds

=

∫
S
p0(s)

∫
S

∞∑
t=0

γtp(s→ s′, t, µθ)ds∇φµθ(s′)∇aQµ(s′, a)|a=µθ(s′)ds
′

=

∫
S
ρµ(s)∇φµθ(s)∇aQµ(s, a)|a=µθ(s)ds,

which is exactly Equation (C.7).117

C.1 Explicit Mapping118

The explicit mapping method makes the shaping weight function zφ an input of the policy µθ.119

Specifically, the policy µθ is redefined as a hyper policy µθ : Sz → A, where Sz = {(s, zφ(s))|∀s ∈120

S}. According to the chain rule, we have121

∇φJ(zφ) = Es∼ρµ
[
∇φµθ(s, z)∇aQµ(s, a)

∣∣
a=µθ(s,z),z=zφ(s)

]
= Es∼ρµ

[
∇zµθ(s, z)∇φzφ(s)∇aQµ(s, a)

∣∣
a=µθ(s,z),z=zφ(s)

]
.

(C.8)

C.2 Meta-Gradient Learning122

Let θ and θ′ be the policy parameters before and after one round of low-level optimization, respectively.123

Let Q̃ denote the state-action value function under the policy µθ in the modified MDP M′ =124

〈S,A, P, r̃, p0, γ〉. We still assume that a batch of N (N > 0) samples B = {(si, ai)|i = 1, ..., N}125

is used to update θ. According to the deterministic policy gradient theorem, we have126

θ′ = θ + α

N∑
i=1

∇θµθ(si)∇aQ̃(si, a)|a=µθ(si), (C.9)

6

where α is the learning rate. By taking the gradient of the both sides of Equation (C.9) with respect127

to φ, we get128

∇φθ′ = ∇φ
(
θ + α

N∑
i=1

∇θµθ(si)∇aQ̃(si, a)|a=µθ(si)
)

≈ α
N∑
i=1

∇θµθ(si)>∇φ
(
∇aQ̃(si, a)|a=µθ(si)

)
,

(C.10)

where θ is treated as a constant with respect to φ. However, for each sample i in the batch B, we129

cannot directly compute the value of the term ∇φ
(
∇aQ̃(si, a)|a=µθ(si)

)
even we replace Q̃(si, a)130

by a Monte Carlo return as in the stochastic policy case. We adopt the idea of the explicit mapping131

method to solve this problem. That is, to include zφ(s) as an input of Q̃. As we discuss in Section 4.1,132

this makes Q̃ the state-action value function of µθ in an equivalent MDP M̃z = 〈Sz,A, Pz, r̃z, pz, γ〉133

and is transparent to the agent. For simplicity, we denote δ(si, a, z) = ∇aQ̃(si, a, z). With the134

extended state-action value function, we have135

∇φθ′ ≈ α
N∑
i=1

∇θµθ(si)>∇φ
(
∇aQ̃(si, a, z)|a=µθ(si),z=zφ(si)

)
= α

N∑
i=1

∇θµθ(si)>∇φδ(si, a, z)|a=µθ(si),z=zφ(si)

= α

N∑
i=1

∇θµθ(si)>∇zδ(si, a, z)|a=µθ(si),z=zφ(si)∇φzφ(si).

(C.11)

C.3 Incremental Meta-Gradient Learning136

In Equation (C.10), we can also treat θ as a non-constant with respect to φ because φ is optimized137

according to the old policy πθ in the last round of upper-level optimization. For the simplification138

purpose, we let gθ(s) = ∇θµθ(s). Then Equation (C.10) can be rewritten as139

∇φθ′ = ∇φ
(
θ + α

N∑
i=1

∇θµθ(si)∇aQ̃(si, a)|a=µθ(si)
)

= ∇φθ + α

N∑
i=1

(
∇φgθ(si)>∇aQ̃(si, a) + gθ(si)

>∇φ
(
∇aQ̃(si, a)

))∣∣∣
a=µθ(si)

(C.12)

For computing the value of∇φ
(
∇aQ̃(si, a)|a=µθ(si)

)
, once again we can include zφ in the input of140

Q̃. Denoting∇aQ̃(si, a, z) by δ(si, a, z), we have141

∇φθ′ ≈ ∇φθ + α

N∑
i=1

(
∇θgθ(si)>∇φθ δ(si, a, z) + gθ(si)

>∇φδ(si, a, z)
)∣∣∣
a=µθ(si),z=zφ(si)

(C.13)
By substituting Equation (C.13) into Equation (C.7), we can get the third approximation of the142

gradient ∇φJ(zφ). In fact, in Equation (C.12) we can treat the shaping state-action value Q̃ as a143

constant with respect to φ so that we do not have to extend the input space of Q̃ and can get another144

version of∇φθ′, namely145

∇φθ′ ≈ ∇φθ + α

N∑
i=1

∇θgθ(si)>∇φθ ∇aQ̃(si, a)|a=µθ(si). (C.14)

Furthermore, we can also remove the second-order term α
∑N
i=1∇θgθ(si)>∇φθ δ(si, a, z) of Equa-146

tion (C.13) and get a computationally cheaper approximation147

∇φθ′ ≈ ∇φθ + α

N∑
i=1

(
gθ(si)

>∇zδ(si, a, z)∇φzφ(si)
)∣∣∣
a=µθ(si),z=zφ(si)

. (C.15)

7

D Experiments148

In this section, we provide the details of the problem and algorithm hyperparameter settings of the149

cartpole and MuJoCo experiments.150

D.1 Cartpole151

Problem Setting: We choose the cartpole task from the OpenAI Gym-v1 benchmark. The cartpole152

system consists of a pole and a cart. The pole is connected to the cart by an un-actuated joint and the153

cart can be controlled by the agent to move along the horizontal axis. Each episode starts by setting154

the position of the cart randomly within the interval [−0.05, 0.05] and setting the angle between the155

pole and the vertical direction smaller than 3 degrees. In each step of an episode, the agent should156

apply a positive or negative force to the cart to let the pole remain within 12 degrees from the vertical157

direction and keep the position of the cart within [−2.4, 2.4]. An episode will be terminated if either158

of the two conditions is broken or the episode has lasted for 200 steps. In the discrete-action cartpole,159

the action space of the agent has only two actions +1 and−1, while in the continuous-action cartpole,160

the agent has to decide the specific value of the force to be applied.161

Hyperparameter Settings: In the cartpole experiment, the base learner PPO adopts a two-layer162

policy network with 8 units in each layer and a two-layer value function network with 32 units in163

each hidden layer. Both the policy and value function networks adopt relu as the activation function164

in each hidden layer. The policy and value function networks are updated every 20, 000 steps and165

one such update contains 50 optimizing epochs with batch size 1024. The threshold for clipping the166

probability ratio is 0.5. We adopt the generalized advantage estimator (GAE) to replace Q-function167

for computing policy gradient and the hyperparameter λ for bias-variance trade-off is 0.95.168

The DPBA method adopts a neural network to learn potentials from shaping rewards, which has two169

full-connected (FC) tanh hidden layers with 16 units in the first layer and 8 units in the second layer.170

The BiPaRS methods also use two-layer neural network to represent the shaping weight function,171

with 16 and 8 units in the first and second layers and tanh as the activation in both layers. The outputs172

of the shaping weight function network for all state-action pairs are initialized to 1 using the following173

way. Firstly, the weights and biases of the hidden layers are initialized from a uniform distribution in174

[−0.125, 0.125]. Secondly, the weights and bias of the output layer are initialized randomly uniformly175

in [−10−3, 10−3]. The two steps make sure that the outputs are near zero. Finally, we add 1 to the176

output layer so that the initial shaping weights of all state-action pairs are near 1.177

All these networks are optimized using the Adam optimizer. The learning rates for optimizing the178

policy and the value function networks are 10−4 and 2× 10−4, respectively. The learning rate for179

updating the potential network of the DPBA method is 5× 10−4. The learning rate for optimizing the180

shaping weight function of the BiPaRS methods is set differently in different tests. In the tests with181

the original shaping reward function, the learning rate is 10−5, while in the tests with the harmful182

shaping reward function (i.e., the first adaptability test) and the random shaping reward function183

(i.e., the third adaptability test), it is 5 × 10−4. Recall that both the harmful and random shaping184

reward functions make it difficult to learn a good policy. We set the learning rate higher in the two185

tests to make the shaping weights change rapidly from the initial value 1.0. The discount rate γ is186

0.999 in all tests. We summarize the above hyperparameter settings in Table 1. Note that the naive187

shaping (NS) method directly adds the shaping reward to the original reward function, so it has no188

other hyperparameters.189

D.2 MuJoCo190

Recall that in the MuJoCo experiment, we adopt the shaping reward function f(s, a) = w(0.25−191

1
L

∑L
i=1 |ai|) to limit the average torque amount of the agent’s action, where w is a task-specific192

weight which makes f(s, a) have the same scale as the true reward in the initial learning phase. Now193

we show the value of w in each task in Table 2.194

Since the MuJoCo tasks are more complicated than the cartpole task, the policy and value function195

networks of the base learner PPO have three hidden layers with 64 units and relu activation in196

each layer. The RCPO algorithm also adopts PPO as the base learner and uses the same network197

architectures. The potential network of DPBA has two tanh hidden layers and each layer also has 64198

8

Algorithm Hyperparameters

Base Learner (PPO)

policy network: two 8-unit FC hidden layers,
relu activation

value network: two 32-unit FC hidden layers,
relu activation

threshold of probability ratio clipping (ε): 0.5
update period: 20, 000 steps
number of epoches per update: 50
batch size: 1024
GAE parameter (λ): 0.95
optimizer: Adam
learning rate of policy network: 10−4

learning rate of value network: 2× 10−4

discount rate (γ): 0.999

DPBA

potential network: 16-unit FC layer + 8-unit FC layer,
tanh activation

optimizer: Adam
learning rate of potential network: 5× 10−4

BiPaRS

shaping weight network: 16-unit FC layer + 8-unit FC layer,
tanh activation

optimizer: Adam
learning rate of shaping weight network: 10−5 in the original test,
and 5× 10−4 in the adaptability tests
initial shaping weight: 1.0
shaping weight range: (−∞,+∞)

Table 1: The hyperparameters of the tested algorithms in the cartpole experiment

units. The shaping weight function network of our BiPaRS methods has two tanh hidden layers, with199

16 and 8 units in the first and second layers, respectively.200

All the tested algorithms perform model update every 20, 000 training steps. One updating process201

contains 50 epochs and each updating epoch uses a batch of 1024 samples. The threshold for clipping202

the probability ratio is 0.2 in all of the five MuJoCo tasks. The discount rate γ is 0.999 and the203

parameter λ of GAE is 0.95. The Lagrange multiplier of RCPO is bounded in [0, 10000]. The neural204

network models of all algorithms are optimized by the Adam optimizer. The learning rates for205

optimizing the policy and value function networks are 10−4 and 2× 10−4, respectively. The learning206

rates for updating the potential network of DPBA and the shaping weight function of BiPaRS-EM are207

5× 10−4. The BiPaRS-MGL and BiPaRS-IMGL algorithms use a learning rate of 10−3 to update208

their shaping weight functions. The RCPO algorithm uses a dynamic learning rate to update its209

Lagrange multiplier, which starts from 5× 10−5 and exponentially decays with a factor 1− 10−9.210

One thing should be noted is that the Humanoid-v2 task has a much higher state dimension than the211

other four tasks, which means that the neural networks of the tested algorithms have much more212

parameters. Therefore, for training the BiPaRS-IMGL algorithm in Humanoid, directly approximating213

the meta-gradient∇φθ′ according to Equation (A.4) is extremely difficult because the Hessian matrix214

∇θgθ(si, ai)> with respect to the policy parameter θ has O(n3) computational complexity. To215

address this issue, we make the policy network a two-layer network with only 32 units in each216

layer and ignore the term α
∑N
i=1 Q̃(si, ai)∇θgθ(si, ai)> in Equation (A.4). We summarize all the217

hyperparameter settings in the MuJoCo experiment in Table 3.218

9

Swimmer-v2 Hopper-v2 Humanoid-v2 Walker2d-v2 HalfCheetah-v2
w 20 16 20 10 100

Table 2: The task-specific weight w in each of five MuJoCo tasks

Assume that there are M monks and the total amount of the rice gruel is L. Without loss of generality,219

we assume that the rice gruel is assigned to the monks according to the order 1, 2, ...,M . The decision-220

making at each step is two-fold. Firstly, the system chooses one from the M monks. Secondly, the221

chosen monk is the assigner, who should determine the amount of rice gruel to the current monk to222

be assigned.223

Formally, this can be modeled as follows. At each step t (t = 1, 2, ...,M), the system first chooses224

a monk mt ∈ {1, ...,M}. Then the chosen monk has to choose an action lt ∈ [0, L−
∑t−1
t′=1 lt−1],225

which stands for the amount of rice gruel assigned to the monk at the assign order t. Therefore, the226

problem has only M + 1 states and the state transitions are deterministic:227

S1 → S2 → · · · → SM → ST , (C.16)

where ST is the terminal state.228

There are M + 1 agents in the system, namely the M monks and the system. Importantly, we assume229

that each monk tries to maximize its own utility, while the sysytem tries to make the utility of each230

monk the same. For any step t, let st denote the state and at = (mt, lt) denote the joint action of the231

system and the chosen monk. Then for any monk i ∈ {1, ...,M}, the reward function is232

Ri(st, at) = Ri(st,mt, lt) =

{
lt if i = t,

0 o.w.,
(C.17)

which means that only the monk at the assign order t gets the rice gruel assigned by monk mt. The233

system reward function is234

R0(st, at) = R0(st,mt, lt) = −| L
M
− lt|, (C.18)

which stands for the absolute fairness of the system.235

10

Algorithm Hyperparameters

Base Learner (PPO)

policy network: three 64-unit FC hidden layers,
relu activation

value network: three 64-unit FC hidden layers,
relu activation

threshold of probability ratio clipping (ε): 0.2
update period: 20, 000 steps
number of epoches per update: 50
batch size: 1024
GAE parameter (λ): 0.95
optimizer: Adam
learning rate of policy network: 10−4

learning rate of value network: 2× 10−4

policy gradient clip norm: 1.0
value fuction gradient clip norm: 1.0
discount rate (γ): 0.999

DPBA

potential network: two 64-unit FC layers,
tanh activation

optimizer: Adam
learning rate of potential network: 5× 10−4

potential network gradient clip norm: 10.0

BiPaRS

shaping weight network: 16-unit FC layer + 8-unit FC layer,
tanh activation

optimizer: Adam
learning rate of shaping weight network: 5× 10−4 for BiPaRS-EM,
and 5× 10−4 for BiPaRS-MGL and BiPaRS-IMGL
shaping weight network gradient clip norm: 10.0
initial shaping weight: 1.0
shaping weight range: [−1, 1]

RCPO

Lagrange multiplier lower bound: 0
Lagrange multiplier upper bound: 10000
initial learning rate of Lagrange multiplier: 5× 10−5

decay factor of learning rate: 1− 10−9

Other policy network of BiPaRS-IMGL in Humanoid-v2:
two 32-unit FC hidden layers, relu activation

Table 3: The hyperparameters of the tested algorithms in the MuJoCo experiment

11

	Complexity and Algorithm
	Complexity Analysis
	The Full Algorithm

	Theorem Proof
	BiPaRS for Deterministic Policy Setting
	Explicit Mapping
	Meta-Gradient Learning
	Incremental Meta-Gradient Learning

	Experiments
	Cartpole
	MuJoCo

