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Abstract

Continual Learning has inspired a plethora of approaches and evaluation settings;
however, the majority of them overlooks the properties of a practical scenario,
where the data stream cannot be shaped as a sequence of tasks and offline training
is not viable. We work towards General Continual Learning (GCL), where task
boundaries blur and the domain and class distributions shift either gradually or
suddenly. We address it through mixing rehearsal with knowledge distillation
and regularization; our simple baseline, Dark Experience Replay, matches the
network’s logits sampled throughout the optimization trajectory, thus promoting
consistency with its past. By conducting an extensive analysis on both standard
benchmarks and a novel GCL evaluation setting (MNIST-360), we show that such
a seemingly simple baseline outperforms consolidated approaches and leverages
limited resources. We further explore the generalization capabilities of our objec-
tive, showing its regularization being beneficial beyond mere performance.
Code is available at https://github.com/aimagelab/mammoth.

1 Introduction

Practical applications of neural networks may require to go beyond the classical setting where all data
are available at once: when new classes or tasks emerge, such models should acquire new knowledge
on-the-fly, incorporating it with the current one. However, if the learning focuses on the current
set of examples solely, a sudden performance deterioration occurs on the old data, referred to as
catastrophic forgetting [29]. As a trivial workaround, one could store all incoming examples and
re-train from scratch when needed, but this is impracticable in terms of required resources. Continual
Learning (CL) methods aim at training a neural network from a stream of non i.i.d. samples, relieving
catastrophic forgetting while limiting computational costs and memory footprint [32].

It is not always easy to have a clear picture of the merits of these works: due to subtle differences
in the way methods are evaluated, many state-of-the-art approaches only stand out in the setting
where they were originally conceived. Several recent papers [10, 11, 17, 39] address this issue and
conduct a critical review of existing evaluation settings, leading to the formalization of three main
experimental settings [17, 39]. By conducting an extensive comparison on them, we surprisingly
observe that a simple Experience Replay baseline (i.e. interleaving old examples with ones from the
current task) consistently outperforms cutting-edge methods in the considered settings.

Also, the majority of the compared methods are unsuited for real-world applications, where memory
is bounded and tasks intertwine and overlap. Recently, [10] introduced a series of guidelines that CL
methods should realize to be applicable in practice: i) no task boundaries: do not rely on boundaries
between tasks during training; ii) no test time oracle: do not require task identifiers at inference
time; iii) constant memory: have a bounded memory footprint throughout the entire training phase.
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Methods PNN PackNet HAT ER MER GSS GEM A-GEM HAL iCaRL FDR LwF SI oEWC DER DER++
[35] [28] [37] [31, 33] [33] [1] [27] [9] [8] [32] [4] [24] [42] [20] (ours) (ours)

Constant – – – 3 3 3 3 3 3 3 3 3 3 3 3 3memory
No task – – – 3 3 3 – 3 – – – – – – 3 3boundaries
No test – – – 3 3 3 3 3 3 3 3 – 3 3 3 3time oracle

Table 1: Continual learning approaches and their compatibility with the General Continual Learning
major requirements [10]. For an exhaustive discussion, please refer to supplementary materials.

These requirements outline the General Continual Learning (GCL), of which Continual Learning is a
relaxation. As reported in Table 1, ER also stands out being one of the few methods that are fully
compliant with GCL. MER [33] and GSS [1] fulfill the requirements as well, but they suffer from a
very long running time which hinders their applicability to non-trivial datasets.

In this work, we propose a novel CL baseline that improves on ER while maintaining a very simple
formulation. We call it Dark Experience Replay (DER) as it relies on dark knowledge [15] for
distilling past experiences, sampled over the entire training trajectory. Our proposal satisfies the GCL
guidelines and outperforms the current state-of-the-art approaches in the standard CL experiments
we conduct. With respect to ER, we empirically show that our baseline exhibits remarkable qualities:
it converges to flatter minima, achieves better model calibration at the cost of a limited memory and
training time overhead. Eventually, we propose a novel GCL setting (MNIST-360); it displays MNIST
digits sequentially and subject to a smooth increasing rotation, thus generating both sudden and
gradual changes in their distribution. By evaluating the few GCL-compatible methods on MNIST-360,
we show that DER also qualifies as a state-of-the-art baseline for future studies on this setting.

2 Related Work

Rehearsal-based methods tackle catastrophic forgetting by replaying a subset of the training data
stored in a memory buffer. Early works [31, 34] proposed Experience Replay (ER), that is interleav-
ing old samples with current data in training batches. Several recent studies directly expand on this
idea: Meta-Experience Replay (MER) [33] casts replay as a meta-learning problem to maximize
transfer from past tasks while minimizing interference; Gradient based Sample Selection (GSS) [1]
introduces a variation on ER to store optimally chosen examples in the memory buffer; Hindsight
Anchor Learning (HAL) [8] complements replay with an additional objective to limit forgetting
on pivotal learned data-points. On the other hand, Gradient Episodic Memory (GEM) [27] and
its lightweight counterpart Averaged-GEM (A-GEM) [9] leverage old training data to build opti-
mization constraints to be satisfied by the current update step. These works show improvements
over ER when confining the learning to a small portion of the training set (e.g., 1k examples per
task). However, we believe that this setting rewards sample efficiency – i.e., making good use of the
few shown examples – which represents a potential confounding factor for assessing catastrophic
forgetting. Indeed, Section 4 reveals that the above-mentioned approaches are not consistently
superior to ER when lifting these restrictions, which motivates our research in this kind of methods.

Knowledge Distillation. Several approaches exploit Knowledge Distillation [16] to mitigate forgetting
by appointing a past version of the model as a teacher. Learning Without Forgetting (LwF) [24]
computes a smoothed version of the current responses for the new examples at the beginning of each
task, minimizing their drift during training. A combination of replay and distillation can be found
in iCaRL [32], which employs a buffer as a training set for a nearest-mean-of-exemplars classifier
while preventing the representation from deteriorating in later tasks via a self-distillation loss term.

Other Approaches. Regularization-based methods extend the loss function with a term that prevents
network weights from changing, as done by Elastic Weight Consolidation (EWC) [20], online
EWC (oEWC) [36], Synaptic Intelligence (SI) [42] and Riemmanian Walk (RW) [7]. Architec-
tural methods, on the other hand, devote distinguished sets of parameters to distinct tasks. Among
these, Progressive Neural Networks (PNN) [35] instantiates new networks incrementally as novel
tasks occur, resulting in a linearly growing memory requirement. To mitigate this issue, PackNet [28]
and Hard Attention to the Task (HAT) [37] share the same architecture for subsequent tasks,
employing a heuristic strategy to prevent intransigence by allocating additional units when needed.
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3 Dark Experience Replay

Formally, a CL classi�cation problem is split inT tasks; during each taskt 2 f 1; :::; Tg input
samplesx and their corresponding ground truth labelsy are drawn from an i.i.d. distributionD t .
A function f , with parameters� , is optimized on one task at a time in a sequential manner. We
indicate the output logits withh� (x) and the corresponding probability distribution over the classes
with f � (x) , softmax(h� (x)) . The goal is to learn how to correctly classify, at any given point in
training, examples from any of the observed tasks up to the current onet 2 f 1; : : : ; tcg:

argmin
�

t cX

t =1

L t ; where L t , E(x;y ) � D t

�
`(y; f � (x))

�
: (1)

This is especially challenging as data from previous tasks are assumed to be unavailable, meaning that
the best con�guration of� w.r.t. L 1:::t c must be sought withoutD t for t 2 f 1; : : : ; tc � 1g. Ideally,
we look for parameters that �t the current task well while approximating the behavior observed in the
old ones: effectively, we encourage the network to mimic its original responses for past samples. To
preserve the knowledge about previous tasks, we seek to minimize the following objective:

L t c + �
t c � 1X

t =1

Ex � D t

�
DKL(f � �

t
(x) jj f � (x))

�
; (2)

where� �
t is the optimal set of parameters at the end of taskt, and� is a hyper-parameter balancing

the trade-off between the terms. This objective, which resembles the teacher-student approach,
would require the availability ofD t for previous tasks. To overcome such a limitation, we introduce
a replay bufferM t holding pastexperiencesfor task t. Differently from other rehearsal-based
methods [1, 8, 33], we retain the network's logitsz , h� t (x), instead of the ground truth labelsy.

L t c + �
t c � 1X

t =1

E(x;z ) �M t

�
DKL(softmax(z) jj f � (x))

�
: (3)

As we focus on General Continual Learning, we intentionally avoid relying on task boundaries to
populate the buffer as the training progresses. Therefore, in place of the common task-strati�ed
sampling strategy, we adoptreservoirsampling [40]: this way, we selectjMj random samples from
the input stream, guaranteeing that they have the same probabilityjMj =jSj of being stored in the buffer,
without knowing the length of the streamS in advance. We can rewrite Eq. 3 as follows:

L t c + � E(x;z ) �M
�

DKL(softmax(z) jj f � (x))
�
: (4)

Such a strategy implies picking logitsz during the optimization trajectory, so potentially different
from the ones that can be observed at the task's local optimum. Even if counter-intuitive, we
empirically observed that this strategy does not hurt performance, while still being suitable without
task boundaries. Furthermore, we observe that the replay of sub-optimal logits has bene�cial effects
in terms of �atness of the attained minima and calibration (see Section 5).

Under mild assumptions [16], the optimization of the KL divergence in Eq. 4 is equivalent to
minimizing the Euclidean distance between the corresponding pre-softmax responses (i.e. logits).
In this work we opt for matching logits, as it avoids the information loss occurring in probability
space due to the squashing function (e.g., softmax) [26]. With these considerations in hands, Dark
Experience Replay (DER, algorithm 1) optimizes the following objective:

L t c + � E(x;z ) �M
�

kz � h� (x)k2
2

�
: (5)

We approximate the expectation by computing gradients on batches sampled from the replay buffer.

Dark Experience Replay++.It is worth noting that thereservoirstrategy may weaken DER under
some speci�c circumstances. Namely, when a sudden distribution shift occurs in the input stream,
logits that are highly biased by the training on previous tasks might be sampled for later replay:
leveraging the ground truth labels as well – as done by ER – could mitigate such a shortcoming. On
these grounds, we also proposeDark Experience Replay++ (DER++, algorithm 2), which equips
the objective of Eq. 5 with an additional term on buffer datapoints, promoting higher conditional
likelihood w.r.t. their ground truth labels with a minimal memory overhead:

L t c + � E(x 0;y 0;z 0) �M
�

kz0 � h� (x0)k2
2

�
+ � E(x 00;y 00;z 00) �M

�
`(y00; f � (x00))

�
; (6)

where� is an additional coef�cient balancing the last term1 (DER++ collapses to DER when� = 0 ).
1The model is not overly sensitive to� and� : setting them both to0:5 yields stable performance.
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Algorithm 1 - Dark Experience Replay
Input: datasetD , parameters� , scalar� ,

learning rate�

M  fg
for (x; y ) in D do

(x0; z0; y0)  sample(M )
x t  augment(x)
x0

t  augment(x0)
z  h� (x t )
reg  � kz0 � h� (x0

t )k
2
2

�  � + � � r � [`(y; f � (x t )) + reg]
M  reservoir(M ; (x; z))

end for

Algorithm 2 - Dark Experience Replay ++
Input: datasetD , parameters� , scalars� and� ,

learning rate�
M  fg
for (x; y ) in D do

(x0; z0; y0)  sample(M )
(x00; z00; y00)  sample(M )
x t  augment(x)
x0

t ; x00
t  augment(x0); augment(x00)

z  h� (x t )
reg  � kz0 � h� (x0

t )k
2
2 + � ` (y00; f � (x00

t ))
�  � + � � r � [`(y; f � (x t )) + reg]
M  reservoir(M ; (x; z; y ))

end for

3.1 Relation with previous works

While both our proposal and LWF [24] leverage knowledge distillation in Continual Learning,
they adopt remarkably different approaches. The latter does not replay past examples, so it only
encourages the similarity between teacher and student responses w.r.t. to data points of the current
task. Alternatively, iCaRL [32] distills knowledge for past outputs w.r.t. past exemplars, which is
more akin to our proposal. However, the former exploits the network appointed at the end of each
task as the sole teaching signal. On the contrary, our methods store logits sampled throughout the
optimization trajectory, which resembles having several different teacher parametrizations.

A close proposal to ours is given byFunction Distance Regularization (FDR)for combatting
catastrophic forgetting (Sec. 3.1 of [4]). Like FDR, we use past exemplars and network outputs to
align past and current outputs. However, similarly to the iCaRL discussion above, FDR stores network
responses at task boundaries and thus cannot be employed in a GCL setting. Instead, the experimental
analysis we present in Sec. 5 reveals that the need of task boundaries can be relaxed throughreservoir
without experiencing a drop in performance; on the contrary we empirically observe that DER and
DER++ achieve signi�cantly superior results and remarkable properties. We �nally highlight that the
motivation behind [4] lies chie�y in studying how the training trajectory of NNs can be characterized
in a functionalL 2 Hilbert space, whereas the potential of function-space regularization for Continual
Learning problems is only coarsely addressed with a single experiment on MNIST. In this respect, we
present extensive experiments on multiple CL settings as well as a detailed analysis (Sec. 5) providing
a deeper understanding on the effectiveness of this kind of regularization.

4 Experiments

We adhere to [17, 39] and model the sequence of tasks according to the following three settings:

Task Incremental Learning (Task-IL) andClass Incremental Learning (Class-IL)split the train-
ing samples into partitions of classes (tasks). Although similar, the former provides task identities to
select the relevant classi�er for each example, whereas the latter does not; this difference makes Task-
IL and Class-IL the easiest and hardest scenarios among the three [39]. In practice, we follow [10, 42]
by splitting CIFAR-10 [21] and Tiny ImageNet [38] in 5 and10 tasks, each of which introduces2
and20classes respectively. We show all the classes in the same �xed order across different runs.

Domain Incremental Learning (Domain-IL) feeds all classes to the network during each task, but
applies a task-dependent transformation to the input; task identities remain unknown at test time.
For this setting, we leverage two common protocols built upon the MNIST dataset [23], namely
Permuted MNIST [20] and Rotated MNIST [27]. They both require the learner to classify all
MNIST digits for 20 subsequent tasks, but the former applies a random permutation to the pixels,
whereas the latter rotates the images by a random angle in the interval[0; � ).

As done in previous works [11, 32, 39, 41], we provide task boundaries to the competitors demanding
them at training time (e.g.oEWC or LwF). This choice is meant to ensure a fair comparison between
our proposal – which does not need boundaries – and a broader class of methods in literature.
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4.1 Evaluation Protocol

Architecture. For tests we conducted on variants of the MNIST dataset, we follow [27, 33] by
employing a fully-connected network with two hidden layers, each one comprising of100ReLU
units. For CIFAR-10 and Tiny ImageNet, we follow [32] and rely on ResNet18 [14] (not pre-trained).

Augmentation.For CIFAR-10 and Tiny ImageNet, we apply random crops and horizontal �ips to both
stream and buffer examples. We propagate this choice to competitors for fairness. It is worth noting
that combining data augmentation with our regularization objective enforces an implicit consistency
loss [2, 3], which aligns predictions for the same example subjected to small data transformations.

Hyperparameter selection.We select hyperparameters by performing a grid-search on a validation
set, the latter obtained by sampling10%of the training set. For the Domain-IL scenario, we make
use of the �nal average accuracy as the selection criterion. Differently, we perform a combined
grid-search for Class-IL and Task-IL, choosing the con�guration that achieves the highest �nal
accuracy averaged on the two settings. Please refer to the supplementary materials for a detailed
characterization of the hyperparameter grids we explored along with the chosen con�gurations.

Training. To provide a fair comparison among CL methods, we train all the networks using the
Stochastic Gradient Descent (SGD) optimizer. Despite being interested in an online scenario, with
no additional passages on the data, we reckon it is necessary to set the number of epochs per
task in relation to the dataset complexity. Indeed, if even the pure-SGD baseline fails at �tting a
single task with adequate accuracy, we could not properly disentangle the effects of catastrophic
forgetting from those linked to under�tting — we refer the reader to the supplementary material
for an experimental discussion regarding this issue. For MNIST-based settings, one epoch per task
is suf�cient. Conversely, we increase the number of epochs to50 for Sequential CIFAR-10 and
100 for Sequential Tiny ImageNet respectively, as commonly done by works that test on harder
datasets [32, 41, 42]. We deliberately hold batch size and minibatch size out from the hyperparameter
space, thus avoiding the �aw of a variable number of update steps for different methods.

4.2 Experimental Results

In this section, we compare DER and DER++ against two regularization-based methods (oEWC, SI),
two methods leveraging Knowledge Distillation (iCaRL, LwF2), one architectural method (PNN) and
six rehearsal-based methods (ER, GEM, A-GEM, GSS, FDR[4], HAL)3 We further provide a lower
bound, consisting ofSGDwithout any countermeasure to forgetting and an upper bound given by
training all tasks jointly (JOINT). Table 2 reports performance in terms of average accuracy at the end
of all tasks (we refer the reader to supplementary materials for other metrics as forward and backward
transfer [27]). Results are averaged across ten runs, each one involving a different initialization.

DER and DER++ achieve state-of-the-art performance in almost all settings. When compared to
oEWC and SI, the gap appears unbridgeable, suggesting that regularization towards old sets of
parameters does not suf�ce to prevent forgetting. We argue that this is due to local information
modeling weights importance: as it is computed in earlier tasks, it could become untrustworthy in
later ones. While being computationally more ef�cient, LWF performs worse than SI and oEWC
on average. PNN, which achieves the strongest results among non-rehearsal methods, attains lower
accuracy than replay-based ones despite its memory footprint being much higher at any buffer size.

When compared to rehearsal methods, DER and DER++ show strong performance in the majority
of benchmarks, especially in the Domain-IL scenario. For these problems, a shift occurs within the
input domain, but not within the classes: hence, the relations among them also likely persist. As an
example, if it is true that during the �rst task number 2's visually look like 3's, this still holds when
applying rotations or permutations, as it is done in the following tasks. We argue that leveraging
soft-targets in place of hard ones (ER) carries more valuable information [16], exploited by DER and
DER++ to preserve the similarity structure through the data-stream. Additionally, we observe that
methods resorting to gradients (GEM, A-GEM, GSS) seem to be less effective in this setting.

The gap in performance we observe in Domain-IL is also found in the Class-IL setting, as DER is
remarkably capable of learning how classes from different tasks are related to each other. This is not

2In Class-IL, we adopted a multi-class implementation as done in [32].
3We omit MER as we experienced an intractable training time on these benchmarks (e.g. while DER takes

approximately2:5 hours on Seq. CIFAR-10, MER takes300hours – see Sec. 5 for further comparisons).
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Buffer Method S-CIFAR-10 S-Tiny-ImageNet P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

– JOINT 92:20� 0:15 98:31� 0:12 59:99� 0:19 82:04� 0:10 94:33� 0:17 95:76� 0:04

SGD 19:62� 0:05 61:02� 3:33 7:92� 0:26 18:31� 0:68 40:70� 2:33 67:66� 8:53

oEWC [36] 19:49� 0:12 68:29� 3:92 7:58� 0:10 19:20� 0:31 75:79 � 2 :25 77:35 � 5 :77

– SI [42] 19:48� 0:17 68:05� 5:91 6:58� 0:31 36:32� 0:13 65:86� 1:57 71:91� 5:83

LwF [24] 19:61 � 0 :05 63:29� 2:35 8:46 � 0 :22 15:85� 0:58 - -
PNN [35] - 95:13 � 0 :72 - 67:84 � 0 :29 - -

ER [33] 44:79� 1:86 91:19� 0:94 8:49� 0:16 38:17� 2:00 72:37� 0:87 85:01� 1:90

GEM [27] 25:54� 0:76 90:44� 0:94 - - 66:93� 1:25 80:80� 1:15

A-GEM [9] 20:04� 0:34 83:88� 1:49 8:07� 0:08 22:77� 0:03 66:42� 4:00 81:91� 0:76

iCaRL [32] 49:02� 3:20 88:99� 2:13 7:53� 0:79 28:19� 1:47 - -
200 FDR [4] 30:91� 2:74 91:01� 0:68 8:70� 0:19 40:36� 0:68 74:77� 0:83 85:22� 3:35

GSS [1] 39:07� 5:59 88:80� 2:89 - - 63:72� 0:70 79:50� 0:41

HAL [8] 32:36� 2:70 82:51� 3:20 - - 74:15� 1:65 84:02� 0:98

DER (ours) 61:93� 1:79 91:40� 0:92 11:87 � 0 :78 40:22� 0:67 81:74� 1:07 90:04� 2:61

DER++ (ours) 64:88 � 1 :17 91:92 � 0 :60 10:96� 1:17 40:87 � 1 :16 83:58 � 0 :59 90:43 � 1 :87

ER [33] 57:74� 0:27 93:61� 0:27 9:99� 0:29 48:64� 0:46 80:60� 0:86 88:91� 1:44

GEM [27] 26:20� 1:26 92:16� 0:69 - - 76:88� 0:52 81:15� 1:98

A-GEM [9] 22:67� 0:57 89:48� 1:45 8:06� 0:04 25:33� 0:49 67:56� 1:28 80:31� 6:29

iCaRL [32] 47:55� 3:95 88:22� 2:62 9:38� 1:53 31:55� 3:27 - -
500 FDR [4] 28:71� 3:23 93:29� 0:59 10:54� 0:21 49:88� 0:71 83:18� 0:53 89:67� 1:63

GSS [1] 49:73� 4:78 91:02� 1:57 - - 76:00� 0:87 81:58� 0:58

HAL [8] 41:79� 4:46 84:54� 2:36 - - 80:13� 0:49 85:00� 0:96

DER (ours) 70:51� 1:67 93:40� 0:39 17:75� 1:14 51:78� 0:88 87:29� 0:46 92:24� 1:12

DER++ (ours) 72:70 � 1 :36 93:88 � 0 :50 19:38 � 1 :41 51:91 � 0 :68 88:21 � 0 :39 92:77 � 1 :05

ER [33] 82:47� 0:52 96:98 � 0 :17 27:40� 0:31 67:29� 0:23 89:90� 0:13 93:45� 0:56

GEM [27] 25:26� 3:46 95:55� 0:02 - - 87:42� 0:95 88:57� 0:40

A-GEM [9] 21:99� 2:29 90:10� 2:09 7:96� 0:13 26:22� 0:65 73:32� 1:12 80:18� 5:52

iCaRL [32] 55:07� 1:55 92:23� 0:84 14:08� 1:92 40:83� 3:11 - -
5120 FDR [4] 19:70� 0:07 94:32� 0:97 28:97� 0:41 68:01� 0:42 90:87� 0:16 94:19� 0:44

GSS [1] 67:27� 4:27 94:19� 1:15 - - 82:22� 1:14 85:24� 0:59

HAL [8] 59:12� 4:41 88:51� 3:32 - - 89:20� 0:14 91:17� 0:31

DER (ours) 83:81� 0:33 95:43� 0:33 36:73� 0:64 69:50� 0:26 91:66� 0:11 94:14� 0:31

DER++ (ours) 85:24 � 0 :49 96:12� 0:21 39:02 � 0 :97 69:84 � 0 :63 92:26 � 0 :17 94:65 � 0 :33

Table 2: Classi�cation results for standard CL benchmarks, averaged across10 runs. `-' indicates
experiments we were unable to run, because of compatibility issues (e.g.between PNN, iCaRL and
LwF in Domain-IL) or intractable training time (e.g.GEM, HAL or GSS on Tiny ImageNet).

so relevant in Task-IL, where DER performs on par with ER on average. In it, classes only need to
be compared in exclusive subsets, and maintaining an overall vision is not especially rewarding. In
such a scenario, DER++ manages to effectively combine the strengths of both methods, resulting in
generally better accuracy. Interestingly, iCaRL appears valid when using a small buffer; we believe
that this is due to its helpfulherdingstrategy, ensuring that all classes are equally represented in
memory. As a side note, other ER-based methods (HAL and GSS) show weaker results than ER itself
on such challenging datasets.

4.3 MNIST-360

To address the General Continual Learning desiderata, we propose a novel protocol: MNIST-360. It
models a stream of data presenting batches of two consecutive MNIST digits at a time (e.g.f 0; 1g,
f 1; 2g, f 2; 3g etc.), as depicted in Fig. 1. We rotate each example of the stream by an increasing
angle and, after a �xed number of steps, switch the lesser of the two digits with the following one. As
it is impossible to distinguish 6's and 9's upon rotation, we do not use 9's in MNIST-360. The stream
visits the nine possible couples of classes three times, allowing the model to leverage positive transfer
when revisiting a previous task. In the implementation, we guarantee that: i) each example is shown
once during the overall training; ii) two digits of the same class are never observed under the same
rotation. We provide a detailed description of training and test sets in supplementary materials.
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Figure 1: Example batches of the MNIST-360 stream.

JOINT SGD Buffer ER [33] MER [33] A-GEM-R [9] GSS [1] DER (ours) DER++ (ours)

200 49:27� 2:25 48:58� 1:07 28:34� 2:24 43:92� 2:43 55:22� 1 :67 54:16� 3:02

82:98� 3:24 19:09� 0:69 500 65:04� 1:53 62:21� 1:36 28:13� 2:62 54:45� 3:14 69:11� 1:66 69:62� 1 :59

1000 75:18� 1:50 70:91� 0:76 29:21� 2:62 63:84� 2:09 75:97� 2:08 76:03� 1 :61

Table 3: Accuracy on the test set for MNIST-360.

It is worth noting that such a setting presents both sharp (change in class) and smooth (rotation)
distribution shifts; therefore, for the algorithms that rely on explicit boundaries, it would be hard to
identify them. As outlined in Section 1, just ER, MER, and GSS are suitable for GCL. However,
we also explore a variant of A-GEM equipped with a reservoir memory buffer (A-GEM-R). We
compare these approaches with DER and DER++, reporting the results in Table 3 (we keep the same
fully-connected network we used on MNIST-based datasets). As can be seen, DER and DER++
outperform other approaches in such a challenging scenario, supporting the effectiveness of the
proposed baselines against alternative replay methods. Due to space constraints, we refer the reader
to supplementary materials for an additional evaluation regarding the memory footprint.

5 Model Analysis

In this section, we provide an in depth analysis of DER and DER++ by comparing them against
FDR and ER. By so doing, we gather insights on the employment of logits sampled throughout the
optimization trajectory, as opposed to ones at task boundaries and ground truth labels.

DER converges to �atter minima.Recent studies [6, 18, 19] link Deep Network generalization to
the geometry of the loss function, namely the �atness of the attained minimum. While these works
link �at minima to good train-test generalization, here we are interested in examining their weight in
Continual Learning. Let us suppose that the optimization converges to a sharp minimum w.r.t.L 1:::t c

(Eq. 1): in that case, the tolerance towards local perturbations is quite low. As a side effect, the drift
we will observe in parameter space (due to the optimization ofL 1:::t 0 for t0 > t c) will intuitively lead
to an even more serious drop in performance.

On the contrary, reaching a �at minimum forL 1:::t c could give more room for exploring neighbouring
regions of the parameter space, where one may �nd a new optimum for taskt0 without experiencing
a severe failure on tasks1; : : : ; tc. We conjecture that the effectiveness of the proposed baseline
is linked to its ability to attain �atter and robust minima, which generalizes better to unseen data
and, additionally, favors adaptability to incoming tasks. To validate this hypothesis, we compare the
�atness of the training minima of FDR, ER, DER and DER++ utilizing two distinct metrics.

Firstly, as done in [43, 44], we consider the model at the end of training and add independent Gaussian
noise with growing� to each parameter. This allows us to evaluate its effect on the average loss
across all training examples. As shown in Fig. 2(a) (S-CIFAR-10, buffer size 500), ER and especially
FDR reveal higher sensitivity to perturbations than DER and DER++. Furthermore, [6, 18, 19]
propose measuring �atness by evaluating the eigenvalues ofr 2

� L : sharper minima correspond to
larger Hessian eigenvalues. At the end of training on S-CIFAR-10, we compute the empirical Fisher
Information MatrixF =

P
r � L r � L T =N w.r.t. the whole training set (as an approximation of the

intractable Hessian [6, 20]). Fig. 2(b) reports the sum of its eigenvaluesTr( F ): as one can see, DER
and especially DER++ produce the lowest eigenvalues, which translates into �atter minima following
our intuitions. It is worth noting that FDR's largeTr( F ) for buffer size5120could be linked to its
failure case in S-CIFAR-10, Class-IL.
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Figure 2: Results for the model analysis. ["] higher is better, [#] lower is better (best seen in color).

DER converges to more calibrated networks. Calibration is a desirable property for a learner, mea-
suring how much the confidence of its predictions corresponds to its accuracy. Ideally, we expect
output distributions whose shapes mirror the probability of being correct, thus quantifying how much
one can trust a specific prediction. Recent works find out that modern Deep Networks – despite
largely outperforming the ones from a decade ago – are less calibrated [13], as they tend to yield
overconfident predictions [22]. In real-world applications, AI tools should support decisions in a
continuous and online fashion (e.g. weather forecasting [5] or econometric analysis [12]); therefore,
calibration represents an appealing property for any CL system aiming for employment outside of a
laboratory environment.

Fig. 2(c; d) shows, for TinyImageNet, the value of the Expected Calibration Error (ECE) [30] during
the training and the reliability diagram at the end of it respectively. It can be seen that DER and
DER++ achieve a lower ECE than ER and FDR without further application of a posteriori calibration
methods (e.g., Temperature Scaling, Dirichlet Calibration, ...). This means that models trained using
Dark Experience are less overconfident and, therefore, easier to interpret. As a final remark, Liu et al.
link this property to the capability to generalize to novel classes in a zero-shot scenario [25], which
could translate into an advantageous starting point for the subsequent tasks for DER and DER++.

On the informativeness of DER’s buffer. Network responses provide a rich description of the
corresponding data point. Following this intuition, we posit that the merits of DER also result from
the knowledge inherent in its memory buffer: when compared to the one built by ER, the former
represents a more informative summary of the overall (full) CL problem. If that were the case, a new
learner trained only on the buffer would yield an accuracy that is closer to the one given by jointly
training on all data. To validate this idea, we train a network from scratch using the memory buffer as
the training set: we can hence compare how memories produced by DER, ER, and FDR summarize
well the underlying distribution. Fig. 2(e) shows the accuracy on the test set: as can be seen, DER
delivers the highest performance, surpassing ER, and FDR. This is particularly evident for smaller
buffer sizes, indicating that DER’s buffer should be especially preferred in scenarios with severe
memory constraints.

Further than its pure performance, we assess whether a model trained on the buffer can be specialized
to an already seen task: this would be the case of new examples from an old distribution becoming
available on the stream. We simulate it by sampling 10 samples per class from the test set and then
fine-tuning on them with no regularization; Fig. 2 reports the average accuracy on the remainder of
the test set of each task: here too, DER’s buffer yields better performance than ER and FDR, thus
providing additional insight regarding its representation capabilities.
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