
A Rejectron analysis (realizable)

In this section, we present the analysis of Rejectron in the realizable case f ∈ C . Say a classifier c is
consistent if c(x) = f (x) makes 0 training errors. Theorem 4.3 provides transductive guarantees on
the empirical error and rejection rates, while Theorem 4.2 provides generalization guarantees that
apply to future examples from P ,Q. Both of these theorems exhibit trade-offs between error and
rejection rates. At a high level, their analysis has the following structure:

• Rejectron selects a consistent ℎ = ERM(x, f (x)), since we are in the realizable case.
• Each ct is a consistent classifier that disagrees with ℎ|St on the tests x̃ as much as possible,

with st(ct) = err x̃(ℎ|St , ct) (since errx(ℎ, ct) = 0). This follows the facts that Λ > n,
st(ℎ) = 0, and st(c) < 0 for any inconsistent c. (The algorithm is defined for general Λ < n
for the agnostic analysis later.)

• Therefore, when the algorithm terminates on iteration T , it has empirical test error
err x̃(ℎ|ST , f) ≤ � otherwise it could have chosen ct = f .

• The number of iterations T < 1∕� since on each iteration an additional � fraction of x̃ is
removed from St. Lemma 4.1 states this and shows how to use an ERM oracle on an artificial
dataset to efficiently find ct.

• All training examples xi are in S since each ct and ℎ agree on all xi.
• Transductive error and rejection bounds:

1. For error, we have already argued that the empirical error err x̃ ≤ �.
2. For rejection, Lemma A.1 states that it is unlikely that there would be any choice of
ℎ, c = (c1,… , cT) where the resulting S(ℎ, c) ∶= {x ∈ X ∶ ℎ(x) = c1(x) = … =
cT (x)} would contain all training examples but reject (abstain on) many “true” test
examples zi since x and z are identically distributed. The proof uses Sauer’s lemma.

• Generalization error and rejection bounds:
1. For error, Lemma A.3 states that it is unlikely that there is any ℎ, c such that
err x̃(ℎ|S(ℎ,c)) ≤ � yet errQ(ℎ|S(ℎ,c)) > 2�.

2. For rejection rate, Lemma A.4 uses VC bounds to show that it is unlikely that
▮P (S(ℎ, c)) > � while ▮x(S(ℎ, c)) = 0.

Both proofs use Sauer’s lemma.

We next move to the transductive analysis since it is simpler, and it is also used as a stepping stone to
the generalization analysis.

A.1 Transductive guarantees (realizable)

Note that Rejectron rejects any x ∉ S, where S = S(ℎ, c) is defined by

S(ℎ, c) ∶= {x ∈ X ∶ ℎ(x) = c1(x) = c2(x) = … = cT (x)}. (9)

In what follows, we prove the transductive analogue of a “generalization” guarantee for arbitrary
ℎ ∈ C, c ∈ CT . This will be useful when proving Theorem 4.3.

Lemma A.1. For any T , n ∈ ℕ, any � ≥ 0, and � = 1
n

(

d(T + 1) log(2n) + log 1�
)

:

Pr
x,z∼P n

[

∃c ∈ CT , ℎ ∈ C ∶ (▮x(S(ℎ, c)) = 0) ∧ (▮z(S(ℎ, c)) > �)
]

≤ �.

This lemma is proven in Appendix E. Using it, we can show a trade-off between error and rejection
rate for the transductive case.
Theorem A.2. For any n ∈ ℕ, any �, � ≥ 0, any f ∈ C:

∀x, x̃ ∈ Xn ∶ err x̃(ℎ|S , f) ≤ �, (10)

where ℎ|S = Rejectron(x, f (x), x̃, �), and for any distribution P over X,

Pr
x,z∼P n

[

∀x̃ ∈ Xn ∶ ▮z(S) ≤
1
n

(2d
�
log(2n) + log 1

�

)]

≥ 1 − �. (11)

13

We note that a natural alternative formalization of Equation (11) would be to require that

Pr
x∼P n

[

∀x̃ ∈ Xn ∶ ▮P (S) ≤
1
n

(2d
�
log(2n) + log 1

�

)]

≥ 1 − �.

However, the formalization of Equation (11) is stronger, as it guarantees that the rejection probability
is small, even if the adversary is “white-box" and chooses x̃ after seeing z.

Proof of Theorem A.2. We start by proving eq. (10). To this end, fix any n ∈ ℕ, any � > 0, any
f ∈ C , and any x, x̃ ∈ Xn. Let ℎ = ERM(x, f (x)). Since we are in the realizable case, this implies
that ℎ has zero training error, i.e., errx(ℎ, f) = 0, and hence st(ℎ) = err x̃(ℎ|St , f) for all t. Thus,
the algorithm cannot terminate on any iteration where err x̃(ℎ|St , f) > � since it can always select
ct = f ∈ C . This proves Equation (10).

It remains to prove eq. (11). By Lemma 4.1, T = ⌊1∕�⌋ is an upper bound on the number of
completed iterations of the algorithm. WLOG there are exactly T iterations because if there were
actually T ′ < T iterations, simply “pad” them with cT ′+1 = … = cT = ℎ which doesn’t change S.

We note that the algorithm selects all training examples. This follows from the fact that Λ > n,
together with the fact that ℎ(xi) = f (xi) for every i ∈ [n], where the latter follows from the fact
that f ∈ C and ℎ = ERM(x, f (x)). By Lemma A.1, with probability ≥ 1 − � there are no choices
ℎ ∈ C, c = (c1,… , cT) ∈ CT for which S(ℎ, c) contains all xi’s but is missing ≥ �′ fraction of z for

�′ = 1
n

(

2d
� log(2n) + log

1
�

)

since T + 1 ≤ 2∕�.

Theorem 4.3 is a trivial corollary of Theorem A.2.

Proof of Theorem 4.3. Recall �∗ =
√

2d
n log 2n +

1
n log

1
� and ℎ|S = Rejectron(x, f (x), x̃, �∗). The

proof follows from Theorem A.2 and the fact that:

1
n

(2d
�∗
log 2n + log 1

�

)

≤
2d log 2n

n
√

2d
n log 2n

+ 1
n
log 1

�
= �∗.

A.2 Generalization guarantees (realizable)

Before we state our generalization guarantees, analogous to Lemma A.1 above, we prove that low
test error and low training rejection rates imply, with high probability, low generalization error and
rejection rates.

Lemma A.3. For any � > 0, � ≥ 8 ln 8∕�
n +

√

8d ln 2n
n , T ≤ 1∕�, any f, ℎ ∈ C and any distribution Q

over X,
Pr

z∼Qn
[

∃c ∈ CT ∶
(

errQ(ℎ|S(ℎ,c), f) > 2�
)

∧
(

errz(ℎ|S(ℎ,c), f) ≤ �
)]

≤ �.

Lemma A.4. For any T ≥ 1, any f ∈ C and any distribution P over X,

Pr
x∼P n

[

∃ℎ ∈ C, c ∈ CT ∶
(

▮P (S(ℎ, c)) > �
)

∧
(

▮x(S(ℎ, c)) = 0
)]

≤ �,

where � = 2
n (d(T + 1) log(2n) + log

2
�). Also,

Pr
x∼P n

[

∃ℎ ∈ C, c ∈ CT ∶
(

▮P (S(ℎ, c)) > 2�
)

∧
(

▮x(S(ℎ, c)) ≤ �
)]

≤ �,

for any � ≥ 8
n (d(T + 1) ln(2n) + ln

8
�).

We mention that the first inequality in Lemma A.4 is used to provide generalization guarantees in the
realizable setting, whereas the latter inequality is used to provide guarantees in the semi-agnostic
setting.

14

Theorem A.5. For any n ∈ ℕ and � > 0, any � ≥
√

8d ln 2n
n + 8 ln 8∕�

n , any f ∈ C and any
distributions P ,Q over X:

∀x ∈ Xn ∶ Pr
x̃∼Qn

[

errQ(ℎ|S) ≤ 2�
]

≥ 1 − �, (12)

where ℎ|S ∶= Rejectron(x, f (x), x̃, �). Furthermore, for any � ≥ 0,

Pr
x∼P n

[

∀x̃ ∈ Xn ∶ ▮P ≤ 2
n

(2d
�
log 2n + log 2

�

)]

≥ 1 − �. (13)

Proof of Theorem A.5. Let T = ⌊1∕�⌋ be an upper bound on the number of iterations. We first
prove eq. (12). Since the ERM algorithm is assumed to be deterministic, the function ℎ is uniquely
determined by x and f . By Theorem A.2 (Equation (10)), the setS has the property that err x̃(ℎ|S) ≤ �
(with certainty) for all x, x̃. By Lemma A.3, with probability at most � there exists a choice of ℎ, c
which would lead to errQ(ℎ|S) > 2� and err x̃(ℎ|S) ≤ �, implying eq. (12).

For eq. (13), as we argued in the proof of Theorem A.2, the fact that Λ > n, together with the fact we
are in the realizable case (i.e., y = f (x)), implies that we select all training examples. Because of this
and the fact that T + 1 ≤ 2∕�, Lemma A.4 implies eq. (13).

Theorem 4.2 is a trivial corollary of Theorem A.5.

Proof of Theorem 4.2. Recall that �∗ =
√

8d ln 2n
n + 8 ln 16∕�

n .

Equation (12) implies that Pr[errQ ≤ 2�∗] ≥ 1 − �∕2 and eq. (13) implies,

Pr
x∼P n

[

∀z ∈ Xn ∶ ▮P ≤ 2
n

(2d
�∗
log 2n + log 4

�

)]

≥ 1 − �
2
.

Further, note that log2 r ≤ 2 ln r for r ≥ 1 and hence, using �∗ >
√

8d ln 2n
n ,

2
n

(2d
�∗
log 2n + log 4

�

)

≤ 8d
n�∗

ln 2n + 4
n
ln 4
�
<
√

8d ln 2n
n

+ 4
n
ln 4
�
≤ �∗.

The proof is completed by the union bound.

B Analysis of Urejectron

In this section we present a transductive analysis of URejectron, again in the realizable case. We
begin with its computational efficiency.
Lemma B.1 (URejectron computational efficiency). For any x, x̃ ∈ Xn, � > 0 and Λ ∈ ℕ,
URejectron outputs ST+1 for T ≤ ⌊1∕�⌋. Further, each iteration can be implemented using one call
to ERMDIS, as defined in eq. (8), on at most (Λ + 1)n examples and O(n) evaluations of classifiers in
C .

The proof of this lemma is nearly identical to that of Lemma 4.1.

Proof of Lemma B.1. The argument that T ≤ ⌊1∕�⌋ follows for the same reason as before, replacing
eq. (45) with:

|{i ∶ xi ∈ St}| − |{i ∶ xi ∈ St+1}| = |{i ∶ xi ∈ St ∧ ct(xi) ≠ c′t (xi)}| = n err x̃(ct|St , c
′
t) ≥ n�.

For efficiency, again all that needs to be stored are the subset of indices Zt = {i | x̃i ∈ St} and
the classifiers c1, c′1,… , cT , c′T necessary to compute S. To implement iteration t using the ERMDIS
oracle, construct a dataset consisting of each training example, labeled by 0, repeated Λ times, and
each test example in x̃i ∈ St, labeled 1, included just once. The accuracy of disc,c′ on this dataset is
easily seen to differ by a constant from st(c, c′), hence running ERMDIS maximizes st.

The following Theorem exhibits the trade-off between accuracy and rejections.

15

Theorem B.2. For any n ∈ ℕ, any � ≥ 0,
∀x, x̃ ∈ Xn, f ∈ C ∶ err x̃(ℎ|S) ≤ �, (14)

where S = URejectron(x, x̃, �) and ℎ = ERMC (x, f (x)). Furthermore, for any � > 0 and any
distribution P over X:

Pr
x,z∼P n

[

▮z(S) ≤
1
n

(

2d log 2n
�

+ log 1∕�
)]

≥ 1 − �. (15)

Before we prove Theorem B.2 we provide some generalization bounds that will be used in the proof.
To this end, given a family G of classifiers g ∶ X → {0, 1}, following Blumer et al. [1989], define:

ΠG[2n] ∶= max
w∈X2n

|{g(w) ∶ g ∈ G}|. (16)

Lemma B.3 (Transductive train-test bounds). For any n ∈ ℕ, any distribution P over a domain X,
any set G of classifiers over X, and any � > 0,

Pr
x,z∼P n

[

∃g ∈ G ∶

(

1
n
∑

i
g(zi) ≥ �

)

∧

(

1
n
∑

i
g(xi) = 0

)]

≤ ΠG[2n]2−�n (17)

and

Pr
x,z∼P n

[

∃g ∈ G ∶ 1
n
∑

i
g(zi) ≥

1 + �
n

∑

i
g(xi) + �

]

≤ ΠG[2n]e
− 2�
(2+�)2

�n
. (18)

The proof of this lemma is deferred to Appendix E. (Note eq. (18) is used for the agnostic analysis
later.)

Proof of Theorem B.2. We denote for T ≥ 1 and classifier vectors c, c′ ∈ CT :

�c,c′ (x) ∶= maxi∈[T]
disci,c′i

(x) =
{

1 if ci(x) ≠ c′i (x) for some i ∈ [T]
0 otherwise.

ΔT ∶=
{

�c,c′ ∶ c, c′ ∈ CT
}

.
Thus the output of URejectron is ST+1 = {x ∈ X ∶ �c,c′ (x) = 0} for the vectors c = (c1,… , cT) and
c′ = (c′1,… , c′T) chosen by the algorithm.

Let T be the final iteration of the algorithm so that the output of the algorithm is S = ST+1. Note
that errx(f, ℎ) = 0, by definition of ERMC , so sT+1(f, ℎ) = err x̃(ℎ|S) ≤ � (otherwise the algorithm
would have chosen c = ℎ, c′ = f instead of halting) which implies eq. (14).

By Lemma B.1, WLOG we can take T = ⌊1∕�⌋ by padding with classifiers ct = c′t .

We next claim that xi ∉ St for all i ∈ [n], i.e., �c,c′ (xi) = 0. This is because the algorithm is
run with Λ = n + 1, so any disagreement ct(xi) ≠ c′t (xi) would result in a negative score st(ct, c′t).
(But a zero score is always possible by choosing ct = c′t .) Thus we must have the property that
disc′t ,ct

(xi) = 0 and hence �c,c′ (xi) = 0. Now, it is not difficult to see that ΠΔT [2n] ≤ (2n)
2d∕� because,

by Sauer’s lemma, there are at most N = (2n)d different labelings of 2n examples by classifiers

from C , hence there are at most
(N
2

)T
≤ (2n)2dT disagreement labelings for T ≤ 1∕� pairs. Thus for

� = 1
n

(

2d log 2n
� + log 1∕�

)

, by Lemma B.3,

Pr
x,z∼P n

[

∀g ∈ ΔT s.t.
∑

i
g(xi) = 0 ∶

1
n
∑

i
g(zi) ≤ �

]

≥ 1 − ΠΔT [2n]2
−�n ≥ 1 − �.

If this 1 − � likely event happens, then also ▮z(S) =
1
n
∑

i �c,c′ (zi) ≤ � for the algorithm choices
c, c′.

Proof of Theorem 4.5. The proof follows from Theorem B.2 and the fact that,
1
n

(

2d log 2n
�∗

+ log 1∕�
)

≤
2d log 2n

n
√

2d log 2n
n

+
log 1∕�
n

= �∗.

16

C Massart Noise

This section shows that we can PQ learn in the Massart noise model. The Massart model [Massart et al.,
2006] is defined with respect to a noise rate � < 1∕2 and function (abusing notation) � ∶ X → [0, �]:
Definition C.1 (Massart Noise Model). Let P be a distribution on X, � < 1∕2, and 0 ≤ �(x) ≤ � for
all x ∈ X. The Massart distribution P�,f with respect to f over (x, y) ∈ X × Y is defined as follows:
first x ∼ P is chosen and then y = f (x) with probability 1 − �(x) and y = 1 − f (x) with probability
�(x).

When clear from context, we omit f and write P� = P�,f . The following lemma relates the clean
error rate errP (ℎ, f) = PrP [ℎ(x) ≠ f (x)] and noisy error rate errP� = Pr(x,y)∼P� [ℎ(x) ≠ y]. Later,
we will show how to drive the clean error arbitrarily close to 0 using an ERM.

Lemma C.2. For any classifier g ∶ X → Y , any � < 1∕2, f ∈ C , and any distribution P� corrupted
with Massart noise:

(1 − 2�) errP (g) ≤ errP� (g) − OPT,

where OPT = minℎ∈C errP� (ℎ) = Ex∼P [�(x)].

Proof. By definition of the noisy error rate of g under P� , observe the following:

errP� (g) = Pr
(x,y)∼P�

[g(x) ≠ y]

= E
x∼P

[�(x)1{g(x) = f (x)} + (1 − �(x))1{g(x) ≠ f (x)}]

= E
x∼P

[�(x)(1 − 1{g(x) ≠ f (x)}) + (1 − �(x))1{g(x) ≠ f (x)}]

= E
x∼P

[�(x)] + E
x∼P

[(1 − 2�(x))1{g(x) ≠ f (x)}]

= OPT + E
x∼P

[(1 − 2�(x))1{g(x) ≠ f (x)}]

≥ OPT + (1 − 2�) E
x∼P

[1{g(x) ≠ f (x)}]

= OPT + (1 − 2�) errP (g),

where the last inequality follows from the fact that �(x) ≤ � for every x ∈ X. Rearranging the terms
concludes the proof.

The following lemma shows that using an extra N = Õ
(

dn2

�2(1−2�)2

)

i.i.d. examples (x′, y′) ∼ PN� , we

can “denoise” the n held-out examples (x, y) ∼ P n� with ℎ̂ = ERMC (x′, y′), and then run Rejectron

on (x, ℎ̂(x)). This shows that we can PQ learn C under Massart noise.

Lemma C.3 (Massart denoising). For any f ∈ C and any distribution P over X, any � < 1∕2 and
� ∶ X → [0, �], let P� be the corresponding Massart distribution over (x, y). For any n ∈ ℕ, let
(x, y) = (x1, y1),… , (xn, yn) ∼ P� be i.i.d. examples sampled from P� . Then,

Pr
(x′,y′)∼PN�

[

errx(ℎ̂, f) = 0
]

≥ 1 − �,

where ℎ̂ = ERMC (x′, y′) and N = O
(

dn2+log(2∕�)
�2(1−2�)2

)

.

Proof. By agnostic learning guarantees for ERMC , we have that for any �′, � > 0:

Pr
(x′,y′)∼PN�

[

errP� (ℎ̂) ≤ OPT + �
′
]

≥ 1 − �
2
,

where ℎ̂ = ERMC (x′, y′) and N = O(d+log(2∕�)�′2). By Lemma C.2, choosing �′ = �
2n (1 − 2�)

guarantees that the clean error rate errP (ℎ̂) ≤
�
2n . Since, (x, y) ∼ P n� are independent held-out

examples, by a union bound, we get that errx(ℎ̂, f) = 0 with probability 1 − �.

17

This yields an easy algorithm and corollary: simply use the N examples x′, y′ to denoise the n labels
for x and then run the Rejectron algorithm.
Corollary C.4 (PQ guarantees under Massart noise). For any n ∈ ℕ, � > 0, f ∈ C and distributions
P ,Q over X, any � < 1∕2 and � ∶ X → [0, �], let P� be the corresponding Massart distribution over
(x, y). Then,

Pr
(x′,y′)∼PN� ,(x,y)∼P n� ,x̃∼Qn

[errQ ≤ 2�∗ ∧ ▮P ≤ �∗] ≥ 1 − �,

where �∗ =
√

8 d ln 2nn + 8 ln 32∕�
n , N = O

(

dn2+log(2∕�)
�2(1−2�)2

)

, ℎ̂ = ERMC (x′, y′), and ℎ|S =

Rejectron(x, ℎ̂(x), x̃, �∗).

D Semi-agnostic analysis

In agnostic learning, the learner is given pairs (x, y) from some unknown distribution �, and it is
assumed that there exists some (unknown) f ∈ C, � ≥ 0 such that

err�(f) ∶= Pr
(x,y)∼�

[y ≠ f (x)] ≤ �.

In this work, we consider the case where the test distribution �̃ may be (arbitrarily) different from the
train distribution �, yet we require the existence of parameters �, �̃ ≥ 0 and an (unknown) f ∈ C
such that

err�(f) ≤ � and err�̃(f) ≤ �̃.5

Moreover, in this work we assume that � and �̃ are known. Unfortunately, even with this additional
assumption, agnostic learning is challenging when � ≠ �̃ and one cannot achieve guarantees near
max{�, �̃} as one would hope, as we demonstrate below.

In what follows, we slightly abuse notation and write (x, y) ∼ Dn to denote (xi, yi) drawn iid from D
for i = 1, 2,… , n. The definitions of error and rejection with respect to such a distribution are:

▮D(S) ∶= Pr
(x,y)∼D

[x ∉ S]

errD(ℎ|S) ∶= Pr
(x,y)∼D

[ℎ(x) ≠ y ∧ x ∈ S]

We prove the following lower bound.
Lemma D.1. There exists a family of binary classifiers C of VC dimension 1, such that for any
�, �̃ ∈ [0, 1∕2] and n ≥ 1, and for any selective classification algorithmL ∶ Xn×Y n×Xn → Y X×2X
there exists �, �̃ over X × Y and f ∈ C such that:

E
(x,y)∼�n
(x̃,ỹ)∼�̃n

[err�̃(ℎ|S) + ▮�(S)] ≥ max
{

√

�∕8, �̃
}

.

where ℎ|S = L(x, y, z) and where err�(f) ≤ � and err�̃(f) ≤ �̃.

The proof is deferred to Section F.

We now show that Rejectron can be used to achieve nearly this guarantee. Recall that in the realizable
setting, we fixed Λ = n + 1 in Rejectron. In this semi-agnostic setting, we will set Λ as a function of
�, hence our learner requires knowledge of � unlike standard agnostic learning when � = �̃.
Theorem D.2 (Agnostic generalization). For any n ∈ ℕ, any �,
 ∈ (0, 1), any �, �̃ ∈ [0, 1), and any
distributions �, �̃ over X × Y such that that err�(f) ≤ � and err�̃(f) ≤ �̃ simultaneously for some
f ∈ C:

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[(

err�̃(ℎ|S) ≤ 2
√

2� + 2�̃ + 4�∗
)

∧
(

▮�(S) ≤ 4
√

2� + 4�∗
)]

≥ 1 − �,

where �∗ = 4
√

d ln 2n+ln 48∕�
n , Λ∗ =

√

1
8�+(�∗)2 , and ℎ|S = Rejectron(x, y, x̃, �∗,Λ∗).

5In Section 4, we assumed that � = �̃ for simplicity, yet here we consider the more general case where � and �̃ may differ.

18

A few points of comparison are worth making:

• When � = �̃ = 0, one recovers guarantees that are slightly worse than those in the realizable
(see Theorem 4.2).

• In standard agnostic learning, where � and �̃ are identical, and thus � = �̃, one can set
S = X (i.e., select everything) and ERM guarantees err

(

ℎ|S (x̃), ỹ
)

≤ � + � w.h.p. for n
sufficiently large.

• The above theorem can be used to bound ▮�̃ using the following lemma:

Lemma D.3. For any S ⊆ X, f, ℎ ∈ Y X and distributions �, �̃ over X × Y :

▮�̃(S) ≤ ▮�(S) + |�X − �̃X|TV ≤ ▮�(S) + |� − �̃|TV,

where �X , �̃X are the marginal distributions of �, �̃ over X.

Proof. The lemma follows from Lemma G.1 applied to P = �X , Q = �̃X , and from the fact that
the total variation between marginal distributions is no greater than the originals: |�X − �̃X|TV ≤
|� − �̃|TV.

As before, it will be useful (and easier) to first analyze the transductive case. In this case, it will be
useful to further abuse notation and define, for any y, y′ ∈ {0, 1,▮}n,

err(y, y′) ∶= 1
n
|

|

|

{i ∶ yi = 1 − y′i}
|

|

|

.

Using this, we will show:

Theorem D.4 (Agnostic transductive). For any n ∈ ℕ, �, �,Λ ≥ 0, f ∈ C:

∀x, x̃ ∈ Xn, y, ỹ ∈ Y n ∶ err(ℎ|S (x̃), ỹ) ≤ � + 2Λ ⋅ err(f (x), y) + err(f (x̃), ỹ), (19)

where ℎ|S = Rejectron(x, y, x̃, �,Λ). Furthermore,

Pr
x,z∼P n

[

∀y ∈ Y n, x̃ ∈ Xn ∶ ▮z
(

S) ≤ 2Λ−1 + 9
n

(

d ln 2n
�

+
ln 1∕�
2

)]

≥ 1 − �. (20)

The above bounds suggest the natural choice of Λ = �−1∕2 if err(f (x), y) ≈ �. The following two
Lemmas will be used in its proof.

Lemma D.5. For any n ∈ ℕ, �,Λ ≥ 0, x, z ∈ Xn, y ∈ Y n: ▮x(S) ≤ 1∕Λ where ℎ|S =
Rejectron(x, y, z, �,Λ).

Proof. Note that for each iteration t of the algorithm Rejectron(x, y, z, �,Λ),
∑

i∈[n]∶zi∈St

|

|

ct(zi) − ℎ(zi)|| − Λ
∑

i∈[n]

|

|

ct(xi) − ℎ(xi)|| ≥ 0,

because ct maximizes the above quantity over C , and that quantity is zero at ct = ℎ ∈ C . Also note
that x ∉ S if and only if |ct(x) − ℎ(x)| = 1 for some t. More specifically, for each i ∈ [n] such that
zi ∉ S there exists a unique t ∈ [T] such that zi ∈ St, and yet zi ∉ St+1, where the latter occurs
when |ct(zi) − ℎ(zi)| = 1. Thus the total number of test and train rejections can be related as follows:

n ≥ n▮z(S) =
∑

t∈[T]

∑

i∈[n]∶zi∈St

|

|

ct(zi) − ℎ(zi)|| ≥
∑

t∈[T]
Λ
∑

i∈[n]

|

|

ct(xi) − ℎ(xi)|| ≥ nΛ▮x(S).

Dividing both sides by n ⋅ Λ gives the lemma.

The following lemma is proven in Appendix E.

Lemma D.6. For any T , n ∈ ℕ, any � ≥ 0, and � = 9
2n

(

d(T + 1) ln(2n) + ln 1�
)

:

Pr
x,z∼P n

[

∃c ∈ CT , ℎ ∈ C ∶ ▮z(S(ℎ, c)) > 2▮x(S(ℎ, c)) + �
]

≤ �.

19

Using these, we can now prove the transductive agnostic theorem.

Proof of Theorem D.4. To prove Equation (19), first fix any x, x̃ ∈ Xn, y, ỹ ∈ Y n, f ∈ C . Since
f ∈ C the output ℎ = ERMC (x, y) satisfies err(ℎ(x), y) ≤ err(f (x), y). By the triangle inequality,
this implies that

errx(ℎ, f) =
1
n
∑

i∈[n]
|ℎ(xi) − f (xi)| ≤

1
n
∑

i∈[n]

(

|ℎ(xi) − yi| + |yi − f (xi)|
)

≤ 2 err(f (x), y). (21)

Now suppose the algorithm Rejectron terminates on iteration T +1 and the output is ℎ|S for S = ST+1.
Then by definition, for every c ∈ C ,

sT+1(c) = err x̃(ℎ|S , c) − Λ ⋅ errx(ℎ, c) ≤ �,

For c = f in particular,

err x̃(ℎ|S , f) ≤ Λ ⋅ errx(ℎ, f) + � ≤ 2Λ ⋅ err(f (x), y) + �.

Equation (19) follows from the above and the fact that

err(ℎ|S (x̃), ỹ) ≤ err(ℎ|ST (x̃), f (x̃)) + err(f (x̃), ỹ).

We next prove eq. (20). By Lemma D.5, ▮x(S) ≤ 1∕Λ with certainty. So by Lemma D.6 applied to
the marginal distribution P = �X over X,

Pr
x,z∼P n

[

∃ℎ ∈ C, c ∈ CT ∶ ▮z(S(ℎ, c)) > 2▮x(S(ℎ, c)) + �
]

≤ �,

for � = 9
2n

(

2d
� ln(2n) + ln

1
�

)

using T + 1 ≤ 2∕�. This implies eq. (20).

Returning to the generalization (distributional) agnostic case, the following theorem shows the
trade-off between error and rejections:

Theorem D.7. For any n ∈ ℕ and �,Λ ≥ 0, any � ≥ 4
√

d ln 2n+ln 24∕�
n , any f ∈ C , and any

distributions �, �̃ over X × Y :

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[

err�̃(ℎ|S) ≤ 8Λ err�(f) + 2 err�̃(f) + Λ�2 + 3�
]

≥ 1 − �, (22)

where ℎ|S = Rejectron(x, y, x̃, �,Λ). Furthermore,

Pr
(x,y)∼�n

[

∀x̃ ∈ Xn ∶ ▮�(S) ≤
2
Λ
+ 2�

]

≥ 1 − �. (23)

The proof of this theorem will use the following lemma.

Lemma D.8. For any ℎ ∈ C , distribution � over X × Y , and � = 16
n

(

dT ln 2n + ln 8�
)

,

Pr
(x,y)∼�n

[

∀c ∈ CT ∶ err�(ℎ|S(ℎ,c)) ≤ max
{

2 err(ℎ|S(ℎ,c)(x), y), �
}]

≥ 1 − �.

The proof of this lemma is deferred to Appendix E.

Proof of Theorem D.7. The proof structure follows the proof of Theorem A.5. Fix f . We start by
proving Equation (22). Let � = 16

n

(

2d
� ln 2n + ln

24
�

)

. By Lemma D.8,

∀ℎ ∈ C Pr
(x̃,ỹ)∼�̃n

[

∀c ∈ CT ∶ err�̃(ℎ|S(ℎ,c)) ≤ max
{

2 err(ℎ|S(ℎ,c)(x̃), ỹ), �
}]

≥ 1 − �∕3.

Equation (19) from Theorem D.4 states that,

∀x, x̃ ∈ Xn, y, ỹ ∈ Y n ∶ err(ℎ|S (x̃), ỹ) ≤ 2Λ ⋅ err(f (x), y) + err(f (x̃), ỹ) + �,

20

with certainty. We next bound err(f (x), y) and err(f (x̃), ỹ).

Since �2∕4 ≥ 4
n ln

3
� , multiplicative Chernoff bounds imply that,

Pr
(x,y)∼�n

[

err(f (x), y) ≤ 2 err�(f) +
�2

4

]

≥ 1 − �∕3.

Also, since �∕2 ≥
√

ln(3∕�)∕(2n), additive Chernoff bounds imply that,

Pr
(x̃,ỹ)∼�̃n

[

err(f (x̃), ỹ) ≤ err�̃(f) +
�
2

]

≥ 1 − �∕3

Combining previous four displayed inequalities, which by the union bound all hold with probability
≥ 1 − �, gives,

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[

err�̃(ℎ|S) ≤ max
{

2
(

2Λ(2 err�(f) + �2∕4) + (err�̃(f) + �∕2) + �
)

, �
}]

≥ 1 − �.

Simplifying:

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[

err�̃(ℎ|S) ≤ max
{

8Λ err�(f) + Λ�2 + 2 err�̃(f) + 3�, �
}]

≥ 1 − �. (24)

Next, we note that for our requirement of � ≥ 4
√

d ln 2n+ln 24∕�
n , � ≤ 2� because:

� = 16
n

(2d
�
ln 2n + ln 24

�

)

≤ 32
n�

(

d ln 2n + ln 24
�

)

≤ 2�
2

�
.

Thus we can remove the maximum from eq. (24),

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[

err�̃(ℎ|S) ≤ 8Λ err�(f) + Λ�2 + 2 err�̃(f) + 3�
]

≥ 1 − �,

which is equivalent to what needed to prove in eq. (22).

We next prove eq. (23). By Lemma D.5, ▮x(S) ≤ 1∕Λ with certainty. So by Lemma E.2 (Equa-
tion (32)) with
 = 1∕2,

Pr
x,z∼P n

[

∃ℎ ∈ C, c ∈ CT ∶ ▮�
(

S(ℎ, c)
)

> 2▮x
(

S(ℎ, c)
)

+ �
]

≤ �,

for � = 16
n

(

2d
� ln(2n) + ln

8
�

)

using T + 1 ≤ 2∕�. This implies eq. (23) using the fact that,

� = 16
n

(2d
�
ln(2n) + ln 16

�

)

≤ 2 ⋅ 16
n�

(

d ln(2n) + ln 16
�

)

≤ 2 ⋅ �
2

�
= 2�.

From this theorem, our main agnostic upper-bound follows in a straightforward fashion.

Proof of Theorem D.2. Note that for our choice of Λ∗ =
√

1
8�+(�∗)2 ,

(

8Λ∗ err�(f) + 2 err�̃(f)
)

+ Λ∗(�∗)2 + 3�∗ ≤ Λ∗(8� + (�∗)2) + 2�̃ + 3�∗

=
√

8� + (�∗)2 + 2�̃ + 3�∗

≤ 2
√

2� + �∗ + 2�̃ + 3�∗,

using the fact that
√

a + b ≤
√

a +
√

b. For the chosen �∗ = 4
√

d ln 2n+ln 48∕�
n , Theorem D.7 implies,

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[

err�̃(ℎ|S) ≤
(

8Λ∗ err�(f) + 2 err�̃(f)
)

+ Λ∗(�∗)2 + 3�∗
]

≥ 1 − �∕2

Pr
(x,y)∼�n
(x̃,ỹ)∼�̃n

[

err�̃(ℎ|S) ≤ 2
√

2� + 2�̃ + 4�∗
]

≥ 1 − �∕2 (25)

21

Also note that
2
Λ∗

+ 2�∗ ≤ 2
√

8� + (�∗)2 + 2�∗ ≤ 4
√

2� + 2�∗ + 2�∗ ≤ 4
√

2� + 4�∗.

Theorem D.7 also implies:

Pr
(x,y)∼�n

[

∀x̃ ∈ Xn ∶ ▮�(S) ≤
2
Λ∗

+ 2�∗
]

≥ 1 − �∕2

Pr
(x,y)∼�n

[

∀x̃ ∈ Xn ∶ ▮�(S) ≤ 4
√

2� + 4�∗
]

≥ 1 − �∕2

Pr
(x,y)∼�n

[

∀x̃ ∈ Xn ∶ ▮�̃
(

S
)

≤ 4
√

2� + 4�∗ + |� − �̃|TV
]

≥ 1 − �∕2, (26)

where we have used Lemma D.3 in the last step. The union bound over eq. (25) and eq. (26) proves
the corollary.

E Generalization Lemmas

In this section we state auxiliary lemmas that relate the empirical error and rejection rates to general-
ization error and rejection rates.

To bound generalization, it will be useful to note that the classifiers ℎ|S output by our algorithm are
not too complex. To do this, for any k ∈ ℕ and any classifiers c1, c2,… , ck ∶ X → Y , define the
disagreement function that is 1 if any of two disagree on x:

disc1,…,ck (x) ∶=
{

0 if c1(x) = c2(x) =⋯ = ck(x)
1 otherwise.

(27)

Also denote by f̄ = 1 − f and c = (c1,… , cT) ∈ CT . In these terms we can write,

disℎ,c =
{

0 if ℎ(x) = c1(x) = c2(x) =⋯ = cT (x)
1 otherwise

disf̄ ,ℎ,c =
{

1 if 1 − f (x) = ℎ(x) = c1(x) = c2(x) =⋯ = cT (x)
0 otherwise.

Recall the definition of ΠG[2n] for a family G of classifiers g ∶ X → {0, 1}:

ΠG[2n] ∶= max
w∈X2n

|{g(w) ∶ g ∈ G}|.

Lemma E.1 (Complexity of output class). For any ℎ ∈ C , let

DisT ∶=
{

disℎ,c1,…,cT ∶ ℎ, c1,… , cT ∈ C
}

(28)

Disℎ,T ∶=
{

disℎ,c1,…,cT ∶ c1,… , cT ∈ C
}

, (29)

Disf,ℎ,T ∶=
{

disf,ℎ,c1,…,cT ∶ c1,… , cT ∈ C
}

, (30)

Then ΠDisT
[2n] ≤ (2n)d(T+1), ΠDisℎ,T

[2n] ≤ (2n)dT , and ΠDisf,ℎ,T
[2n] ≤ (2n)dT , where d is the VC

dimension of C .

Proof. The proof follows trivially from Sauer’s lemma, since the number of labelings of 2n examples
by any c ∈ C is at most (2n)d and there are T choices of c1,… , cT and 1 choice of ℎ.

Lemma E.2 (Generalization bounds using Blumer et al. [1989]). For any n ∈ ℕ, any distribution P
over a domain X, any set G of binary classifiers over X, and any � > 0,

Pr
z∼P n

[

∃g ∈ G ∶
(

E
x∼P

[g(x)] > �
)

∧

(

1
n
∑

i∈[n]
g(zi) = 0

)]

≤ 2ΠG[2n]2−�n∕2, (31)

22

and, for any
 ∈ (0, 1),

Pr
z∼P n

[

∃g ∈ G ∶ E
x∼P

[g(x)] > max

{

�, 1
1 −

⋅
1
n
∑

i∈[n]
g(zi)

}]

≤ 8ΠG[2n]e
−
2�n

4 . (32)

Finally, for any distribution � over X × Y and any
 ∈ (0, 1),

Pr
(x,y)∼�n

[

∃g ∈ G ∶ err�(g) > max

{

�, 1
1 −

⋅
1
n
∑

i∈[n]
|g(xi) − yi|

}]

≤ 8ΠG[2n]e
−
2�n

4 . (33)

Proof. Simply consider a binary classification problem where the target classifier is the constant
0 function, with training examples z ∼ P n. Then the training error rate is

∑

g(zi)∕n and the
generalization error is PrP [g(x) = 1]. By Theorem A2.1 of Blumer et al. [1989], the probability
that any g ∈ G has 0 training error and test error greater than � is at most ΠG[2n]2−�n∕2. Similarly
eq. (32) and (33) follow from Theorem A3.1 of Blumer et al. [1989], noting that the bound holds
trivially for all g with E[g(x)] ≤ �.

We now prove Lemma D.8, which adapts the last bound above to the agnostic setting.

Proof of Lemma D.8. We would like to apply the last inequality of Lemma E.2 with
 = 1∕2, but
unfortunately that lemma does not apply to error rates of selective classifiers. First, consider the case
where the distribution is “consistent” in that Prx,y∼�[y = �(x)] for some arbitrary � ∶ X → {0, 1}.
We can consider the modified functions,

gℎ,c(x) =
{

�(x) if x ∉ S(ℎ, c)
ℎ(x) otherwise.

It follows that err�(gℎ,c) = err�(ℎ|S). Furthermore, the class G = {gℎ,c ∶ ℎ ∈ C, c ∈ CT } satisfies
ΠG[2n] ≤ (2n)dT (just as we argued ΠDisℎ,T

[2n] ≤ (2n)dT) because there are (2n)d different labelings
of c on 2n elements and thus there are at most (2n)dT choices of T of these for c ∈ CT . Thus,
applying Lemma E.2 gives the lemma for consistent �.

The inconsistent case can be reduced to the consistent case by a standard trick. In particular, we will
extend X to X′ = X × {0, 1} by appending a latent (hidden) copy of y, call it b, to each example
x. In particular For c ∈ C , define c′(x, b) = c(x) so that the classifiers cannot depend on b. This
does not change the VC dimension of the classifiers. However, now, any distribution over � can be
converted to a consistent distribution �′ over X′ whose marginal distribution over X agrees with �,
by making

�′((x, b), y) =
{

�(x, y) if b = y
0 otherwise.

In other words, Pr(x,b),y∼�′ [b = y] = 1. Now, clearly �′ is consistent. The statement of the lemma
applied to �′ implies the corresponding statement for � since the classifiers do not depend on b.

We now prove Lemma B.3.

Proof of Lemma B.3. Fix any n ∈ ℕ, any distribution P over a domain X and any � ∈ [n]. Imagine
selecting x, z ∼ P n by first randomly choosing 2n random elements w ∼ P 2n and then randomly
dividing these elements into two equal sized sequences x, z. Let �(w) denote the distribution over the
(2n)! such divisions x, z ∈ Xn. For any g ∈ G and w ∈ X2n, we claim:

Pr
(x,z)∼�(w)

[

∑

i
g(xi) = 0 ∧

∑

i
g(zi) ≥ ⌈�n⌉

]

≤ 2−⌈�n⌉.

To see this, suppose s =
∑

i g(wi) ≥ �n (otherwise the probability above is zero). The probability
that all of them are in the test set is at most 2−s ≤ 2−�n because the chance that the first rejection is
placed in the test set is 1∕2, the second is (n − 1)∕(2n − 1) < 1∕2, and so forth. The above equation
directly implies eq. (17) by dividing by n.

23

We now move to eq. (18). Consider random variables A =
∑

g(xi) and B =
∑

g(zi). It suffices to
show that that B > (1+�)A+ r with probability ≤ e−2�(2+�)−2r for r = �n. Note that since B = s−A,

B ≥ (1 + �)A + r ⇐⇒ A ≤ s − r
2 + �

.

Hence, it suffices to prove that

Pr
[

A ≤ s − r
2 + �

]

≤ e
− 2�
(2+�)2

r
. (34)

Let  be the Bernoulli distribution on {0, 1} with mean � = s
2n . Note that by linearly of expectation,

E[A] = E[B] = �n. It is well-known that the probabilities of such an unbalanced split are smaller for
sampling without replacement than with replacement [see, e.g., Bardenet et al., 2015]. Thus, it suffices
to prove Equation (34) assuming A was sampled by sampling n iid elements (A1,… , An) ∼ n, and
setting A =

∑n
i=1 Ai. By the multiplicative Chernoff bound, for every � ∈ [0, 1],

Pr [A ≤ (1 − �)�n] ≤ e−�
2�n∕2 = e−�

2s∕4.

In particular, for � = �s+2r
s(2+�) , since 1 − � = 2s−2r

s(2+�) and �n = s∕2, this gives:

Pr
[

A ≤ s − r
2 + �

]

≤ e
− (�s+2r)2

4(2+�)2s

Hence, it remains to show that the RHS above is at most exp
(

− 2�
(2+�)2 r

)

, or equivalently,

(�s + 2r)2

4(2 + �)2s
≥ 2�r
(2 + �)2

.

After multiplying both sides by 4(2 + �)2s, the above can be rewritten as (�s + 2r)2 ≥ 8�sr, and
equivalently as (�s − 2r)2 ≥ 0, which indeed always holds.

We are now ready to prove Lemma A.1.

Proof of Lemma A.1. Note that for disℎ,c defined as in eq. (29), disℎ,c(x) = 0 if and only if x ∈ S(ℎ, c).
Thus, ▮x(S(ℎ, c)) = 0 implies that

n
∑

i=1
disℎ,c(xi) = 0. (35)

Also note that,

▮z(S(ℎ, c)) =
1
n

n
∑

i=1
disℎ,c(zi).

Hence, it suffices to show

Pr
x,z∼P n

[

∃c ∈ CT , ℎ ∈ C ∶
(

1
n

n
∑

i=1
disℎ,c(xi) = 0

)

∧

(

1
n

n
∑

i=1
disℎ,c(zi) > �

)]

≤ � (36)

By Lemma B.3,

Pr
x,z∼P n

[

∃� ∈ DisT ∶

(n
∑

i=1
�(xi) = 0

)

∧

(n
∑

i=1
�(zi) ≥ �n

)]

≤ 2−�nΠDisT
[2n]. (37)

Lemma E.1 states that ΠDisT
[2n] ≤ (2n)d(T+1) which combined with our choice of �, gives:

2−�nΠDisT
[2n] ≤ 2−�n(2n)d(T+1) = �.

Hence, eq. (37) implies eq. (36) because disℎ,c ∈ ΠDisT
.

We now prove Lemma D.6.

24

Proof of Lemma D.6. Note that for disℎ,c defined as in eq. (29), disℎ,c(x) = 1 if and only if Rejectron
rejects x when the algorithm’s choices are ℎ ∈ C and c ∈ CT , i.e., x ∉ S. Thus,

▮x(S) =
1
n

n
∑

i=1
disℎ,c(xi) and ▮z(S) =

1
n

n
∑

i=1
disℎ,c(zi).

Hence, it suffices to show,

Pr
x,z∼P n

[

∃c ∈ CT , ℎ ∈ C ∶ 1
n

n
∑

i=1
disℎ,c(zi) >

2
n

n
∑

i=1
disℎ,c(zi) + �

]

≤ � (38)

Lemma B.3 (with � = 1) implies that:

Pr
x,z∼P n

[

∃� ∈ DisT ∶

(

∑

i
�(xi) = 0

)

∧

(

∑

i
�(zi) ≥ �n

)]

≤ e−
2
9 �nΠDisT

[2n].

Lemma E.1 states that ΠDisT
[2n] ≤ (2n)d(T+1) which combined with our choice of �, gives:

e−
2
9 �nΠDisT

[2n] ≤ e−
2
9 �n(2n)d(T+1) = �.

Hence, the above implies eq. (38) because disℎ,c ∈ ΠDisT
.

We now prove Lemma A.3.

Proof of Lemma A.3. Fix f, ℎ ∈ C . For every c ∈ CT , let S = S(ℎ, c) and define:

gc(x) ∶=
{

1 if f (x) ≠ ℎ(x) ∧ x ∈ S
0 otherwise.

and G ∶= {gc ∶ c ∈ CT }

So G depends on ℎ, f which we have fixed. Note that gc(x) = 1 iff ℎ|S (x) = 1 − f (x). Hence,

1
n
∑

i∈[n]
gc(x̃i) = err x̃(ℎ|S , f).

Equation (32) of Lemma E.2 (with
 = 1∕2 and substituting Q for P and �′ = 2� for �) implies that
for the entire class of functions G:

Pr
x̃∼Qn

[

∃g ∈ G ∶
(

E
x′∼Q

[g(x′)] > 2�
)

∧

(

1
n
∑

i∈[n]
g(x̃i) ≤ �

)]

≤ 8ΠG[2n]e−�n∕8.

By definition of G, the above implies that,

Pr
x̃∼Qn

[

∃c ∈ CT ∶
(

errQ(ℎ|S(ℎ,c), f) > 2�
)

∧
(

err x̃(ℎ|S(ℎ,c), f) ≤ �
)]

≤ 8ΠG[2n]e−�n∕8.

Thus, it remains to prove that
8ΠG[2n]e−�n∕8 ≤ �.

To bound ΠG[2n], note that gc(x) = 1 − disf̄ ,ℎ,c(x) and thus ΠG[2n] = ΠDisf̄ ,ℎ,T
[2n], which is at most

(2n)dT by Lemma E.1. Since T ≤ 1∕�:

8(2n)dT e−�n∕8 ≤ 8(2n)d∕�e−�n∕8.

Hence it suffices to show that the above is at most � for � ≥ 8 ln 8∕�
n +

√

8d ln 2n
n , or equivalently that,

� n
8
− d
�
ln 2n ≥ ln 8

�
.

By multiplying both sides of the equation by � ⋅ 8n we get

�2 − 8
n
d ln 2n ≥ � 8

n
ln 8
�
.

25

Substituting c = 8d ln 2n
n and b = 8 ln 8∕�

n , we have � ≥ b +
√

c, and what we need to show above is
equivalent to:

�2 − c ≥ �b
or equivalently

�(� − b) ≥ c

which holds for any � ≥ b +
√

c because the LHS above is ≥ (b +
√

c)
√

c ≥ c.

We next prove Lemma A.4.

Proof of Lemma A.4. Fix any T ≥ 1 and any ℎ ∈ C . Consider disℎ,c as defined in eq. (27), where
disℎ,c(x) = 1 iff x ∉ S(ℎ, c) is rejected. Thus,

▮x(S(ℎ, c)) =
1
n

n
∑

i=1
disℎ,c(xi) and ▮P (S(ℎ, c)) = E

x′∼P
[disℎ,c(x′)].

By Lemma E.2 (Equation (31)), the probability that any such disℎ,c ∈ DisT is 0 on all of x but has
expectation on P greater than � = 2

n (d(T + 1) ln(2n) + ln
2
�) is at most:

2ΠDisT
[2n]2−�n∕2 ≤ 2(2n)d(T+1)2−�n∕2 = �,

where the first inequality follows from the fact that ΠDisT
[2n] ≤ (2n)d(T+1), which follows from

Lemma E.1. Similarly, eq. (32) of Lemma E.2 (with
 = 1∕2 and � = 2�) implies that:

Pr
x∼P n

[

∃ℎ, c ∶
(

E
x′∼P

[disℎ,c(x′)] > 2�
)

∧

(

1
n
∑

i∈[n]
disℎ,c(xi) ≤ �

)]

≤ 8ΠDisT
[2n]e−�n∕8.

For � as in the lemma, the right hand side above is at most �.

F Proofs of lower bounds

We note that, in the lower bound of Theorem 4.4, the distribution Q is fixed, independent of f .
Since Q is used only for unlabeled test samples, the learning algorithm can gain no information
about Q even if it is given a large number m of test samples. In particular, it implies that even if
one has n training samples and infinitely many samples from Q, one cannot achieve error less than
Ω(

√

d∕n). It would be interesting to try to improve the lower-bound to have a specific dependence
on m (getting Ω(

√

1∕n + 1∕m) is likely possible using a construction similar to the one below). Also,
the lower-bound could be improved if one had fixed distributions �, P ,Q independent of n.

Proof of Theorem 4.4. Let X = ℕ and C be the concept class of functions which are 1 on exactly d
integers, which can easily be seen to have VC dimension d. The distribution P is simply uniform
over [8n] = {1, 2,… , 8n}. Let k =

√

8dn. The distribution Q is uniform over [k]. We consider a
distribution � over functions f ∈ C that is uniform over the

(k
d

)

functions that are 1 on exactly d
points in [k]. We will show,

Ef∼�
[

Ex∼P n
x̃∼Qn

[

▮P +errQ
]

]

≥ K
√

d
n
. (39)

By the probabilistic method, this would imply the lemma.

The set of training samples is T = {xi ∶ i ∈ [n]} ⊆ [8n]. Say an j ∈ [k] is “unseen” if it does
not occur as a training example, j ∉ T . WLOG, we may assume that the learner makes the same
classification ℎ|S for each unseen j ∈ [k] since an asymmetric learner can only be improved by
making the (same) optimal decision for each unseen j ∈ [k], where the optimal decisions are defined
to be those that minimize E[▮P +errQ ∣ x, f (x)]. (The unlabeled test are irrelevant because Q is
fixed.)

26

Now, let U ≤ k be the random variable that is the number of seen j ∈ [k] and V ≤ d be the number
that are labeled 1 (which the learner can easily determine).

U = |T ∩ [k]|
V = |{j ∈ T ∩ [k] ∶ f (j) = 1}|.

Note that E[U] ≤ k∕8 and E[V] ≤ d∕8 since each j ∈ [k] is observed with probability ≤ 1∕8 by
choice of P (the precise observation probability is 1 − (1 − 1

8n)
n ≤ 1

8). These two inequalities implies
that,

E
[U
k
+ V
d

]

≤ 1
8
+ 1
8
= 1
4
.

Thus, by Markov’s inequality,

Pr
[U
k
+ V
d

≤ 1
2

]

≥ 1
2
.

This implies that, with probability ≥ 1∕2, both U ≤ k∕2 and V ≤ d∕2. Suppose this event happens.
Now, consider three cases.

Case 1) if the learner predicts ▮ on all unseen j ∈ [k], then

▮P ≥ k
2
⋅
1
8n

=
√

d
32n

because there are at least k∕2 unseen j ∈ [k] and each has probability 1
8n under P .

Case 2) if the learner predicts 0 on all unseen j ∈ [k], then

errQ ≥ d
2
⋅
1
k
=
√

d
32n

,

because there are at least d∕2 1’s that are unseen and each has probability 1∕k under Q.

Case 3) if the learner predicts 1 on all unseen j ∈ [k] then

errQ ≥
(k
2
− d

) 1
k
= 1
2
−
√

d
8n

≥
√

d
8n

>
√

d
32n

because there are at least k∕2 − d unseen 0’s, each with probability 1∕k under Q (and by assumption
n ≥ 2d so

√

d∕(8n) ≤ 1∕4). Thus in all three cases, ▮P +errQ ≥
√

d∕(32n). Hence,

E
[

▮P +errQ ∣ U ≤ k∕2, V ≤ d∕2
]

≥
√

d
32n

Since U ≤ k∕2, V ≤ d∕2 happens with probability ≥ 1∕2, we have that E[▮P +errQ] ≥
1
2

√

d∕(32n)
as required. This establishes eq. (39).

We now prove our agnostic lower bound.

Proof of Lemma D.1. Let X = ℕ and C consist of the singleton functions that are 1 at one integer
and 0 elsewhere. The VC dimension of C is easily seen to be 1.

Consider first the case in which �̃ ≥
√

�∕8. In this case, we must construct distributions �, �̃ and
f ∈ C such that, E[err�̃(ℎ|S) + ▮�(S)] ≥ �̃. This is trivial: let � be arbitrary and �̃(1, 1) = �̃ and
�̃(1, 0) = 1 − �̃. It is easy to see that no classifier has error less than �̃ since �̃ ≤ 1∕2.

Thus it suffices to give �, �̃ and f ∈ C such that, err�̃(f) = 0, err�(f) = �, and,

E
(x,y)∼�n
(x̃,ỹ)∼�̃n

[err�̃(ℎ|S) + ▮�(S)] ≥
√

�∕8. (40)

In particular, we will give a distribution over f, �, �̃ for which the above holds for the output ℎ|S of
any learning algorithm. By the probabilistic method, this implies that for each learning algorithm,
there is at least f, �, �̃ for which eq. (40) holds. To this end, let k = ⌊

√

2∕�⌋. Let � be the distribution

27

which has �(x, 0) = �∕2 for x ∈ [k] and �(k + 1, 0) = 1 − k�∕2, so � has y = 0 with probability
1. Let f be 1 for a uniformly random x∗ ∈ [k] so err�(f) = �∕2. Let �̃ be the distribution where
�̃(x, f (x)) = 1∕k for x ∈ [k], so x is uniform over [k] with err�̃(f) = 0.

Now, given the above distribution over f, �, �̃, there is an optimal learning algorithm that minimizes
E[err�̃ +▮�]. Moreover, notice that the algorithm learns nothing about � or �̃ from the training data
since � is fixed as is the distribution over unlabeled examples. Thus the optimal learner, by symmetry,
may be taken to make the same classification for all x ∈ [k]. Thus, consider three cases.

• The algorithm predicts ℎ|S (x) = ▮ for all x ∈ [k]. In this case,

▮� ≥ k
�
2
= ⌊

√

2∕�⌋
�
2
≥ 1
2
√

�∕2

using the fact that ⌊r⌋ ≥ r∕2 for r ≥ 1.

• The algorithm predicts ℎ|S (x) = 0 for all x ∈ [k]. In this case,

err�̃ =
1
k
≥
√

�∕2.

• The algorithm predicts ℎ|S (x) = 1 for all x ∈ [k]. In this case, since � ≤ 1∕2, k ≥ 2 and
err�̃ ≥ 1∕2.

In all three cases, err�̃ +▮� ≥
√

�∕8 proving the lemma.

We now present the theorem and proof of our transductive lower bound.
Theorem F.1 (Transductive lower bound). There exists a constant K > 0 such that: for any d ≥ 1
there exists a concept class of VC dimension d where, for any m, n ≥ 4d there exists a distribution P ,
and an adversary  ∶ Xn+m → Xm, such that for any learner L ∶ Xn × Y n ×Xm → Y X × 2X there
is a function f ∈ C such that:

Ex∼P n
z∼Pm

[▮z +err x̃] ≥ K
√

d
min{m, n}

where x̃ = (x, z) and ℎ|S = L(x, f (x), x̃).

Proof of Theorem F.1. Just as in the proof of Theorem 4.4, let X = ℕ and C again be the concept
class of functions that have exactly d 1’s, which has VC dimension d. Again, let P be the uniform
distribution over [N] for N = 8n.

We will construct a distribution � over C and randomized adversary (x, z, f) that outputs x̃ ∈ Xn

such that, for all L,
E[▮z +err x̃] ≥ �,

where � is a lower bound and expectations are over x ∼ P n, z ∼ Pm and f ∼ �. By the probabilistic
method again, such a guarantee implies that for any learner L, there exists some f ∈ C and
deterministic adversary (x, z) where the above bound holds for that learner.

We will show two lower bounds that together imply the lemma. The first lower bound will follow
from Theorem 4.4 and show that,

E[▮z +err x̃] ≥ K
√

d∕n,

where expectations are over x ∼ P n, z ∼ Pm, f ∼ �. Here K is the constant from Theorem 4.4. To
get this, the adversary (x, z, f) simply ignores the true tests z and selects x̃ ∼ Qm. By linearity of
expectation, for any learner, E[▮z] = E[▮P] and E[err x̃] = E[errQ].
It remains to show a distribution � over C and adversary A such that, for all learners,

E[▮z +err x̃] ≥ K
√

d∕m, (41)

for some constant K and m < n (for m ≥ n, the previous lower bound subsumes this). Let
� be the uniform distribution over those f ∈ C that have all d 1’s in [N], i.e., uniform over
{f ∈ C ∶

∑

i∈[N] f (i) = d}.

28

Let A ∶= {x ∈ [N] ∶ f (x) = 0} and B ∶= {x ∈ ℕ ∶ f (x) = 1} so |A| = N − d and |B| = d.

Let a = ⌊

√

md⌋ and b = ⌈d∕2⌉, and r = ⌊m∕(a+ b)⌋. The adversary will try to construct a dataset x̃
with the following properties:

• x̃ contains exactly a distinct x̃ ∈ A and each has exactly r copies. (Since a ≤ m < N − d,
this is possible.)

• There are exactly b distinct x̃ ∈ B and each has exactly r copies.

• The remaining m − r(a + b) examples are all at x̃ = N + 1 (these are “easy” as the learner
can just label them 0 if it chooses).

We say x is seen if x ∈ x (this notation indicates x ∈ {xi ∶ i ∈ [n]} did not occur in the training
set) and unseen otherwise. Now, we first observe that with probability ≥ 1∕8, the following event E
happens: there are at most d − b seen 1’s (xi ∈ B) in the training set and there are at least a distinct
unseen 0’s in the true test set z, i.e.,

V1 ∶= |{i ∈ [n] ∶ xi ∈ B}| ≤ d − b
V0 ∶= |{z ∈ A ∶ (z ∈ z) ∧ (z ∉ x)}| ≥ a

Note that E[V1] = dn∕N = d∕8. Markov’s inequality guarantees that with probability ≥ 3∕4,
V1 ≤ d∕2 (otherwise E[V1] > d∕8). Since V1 is integer, this means that with probability ≥ 3∕4,
V1 ≤ ⌊d∕2⌋ = d − b. Similarly, for any i ∈ A, the probability that it occurs in z and not in x is,

(

1 − 1
N

)n(

1 −
(

1 − 1
N

)m)

≥
(

1 − n
N

)(

1 − e−
m
N

)

≥ 7
8
⋅
15
16

m
N

≥ 0.8 m
N
,

where in the above we have used the fact that (1 − t) ≤ e−t for t > 0 and 1 − e−t ≥ (15∕16)t for
t ≤ 1∕8. Hence, since |A| = N − d,

E[V0] ≥ (N − d)0.8 m
N

≥
(7
8
N
)

0.8 m
N
= 0.7m ≥ 0.7a.

In particular, Markov’s inequality implies that with probability at least 0.4, V0 ≥ 0.5m (otherwise
E[V0] < 0.6(0.5m) + 0.4m = 0.7m). Thus, with probability ≥ 1 − 1∕4 − 0.6 ≥ 1∕8.

If this event E does not happen, then the adversary will take all x̃ = N + 1, making learning easy.
However, if E does happen, then there must be at least a unseen 0’s in z and b unseen 1’s and the the
adversary will select a random unseen 0’s from z and b random unseen 1’s, uniformly at random. It
will repeat these examples r times each, add m − r(a + b) copies of x̃ = N + 1, and permute the m
examples.

Now that the adversary and � have been specified, we can consider a learner L that minimizes the
objective E[▮z +err x̃]. Clearly this learner may rejectN+1 ∉ S as this cannot increase the objective.
Now, by symmetry the learner may also be assumed to make the same classification on all r(a + b)
examples x̃ ∈ [N] as these examples are all unseen and indistinguishable since B is uniformly
random.

Case 1) If ℎ|S (x̃i) = ▮ for all i then

▮z =
a
m
=

⌊

√

md⌋
m

≥
√

md∕2
m

= 1
2

√

d
m
,

using the fact that a ≥
√

md∕2 because a ≥
√

md∕2 since ⌊t⌋ ≥ t∕2 for t ≥ 1.

Case 2) If ℎ|S (x̃i) = 0 for all i then,

err x̃ =
br
m

≥
b
√

m∕d
4m

= b

4
√

md
≥ d

8
√

md
= 1
8

√

d
m

In the above we have used the fact b ≥ d∕2 and that r ≥ 1
4

√

m∕d, which can be verified by noting
that:

m
a + b

≥ m
2a

≥ m

2
√

md
= 1
2

√

m
d

≥ 1

29

and hence r ≥ ⌊m∕(a + b)⌋ ≥ 1
2m∕(a + b) ≥

1
4

√

m∕d again since ⌊t⌋ ≥ t∕2 for t ≥ 1.

Case 3) If ℎ|S (x̃i) = 0 for all i then, since b ≤ a

err x̃ =
b

a + b
≥ 1
2
.

In all three cases, we have,

▮z +err x̃ ≥
1
8

√

d
m
.

Since E happens with probability ≥ 1∕2, we have,

E[▮z +err x̃] ≥ Pr[E]E[▮z +err x̃ ∣ E] ≥
1
8
⋅
1
8

√

d
m
.

This is what was required for eq. (41).

G Tight bounds relating train and test rejections

Lemma G.1. For any S ⊆ X and distributions P ,Q over X:

▮Q(S) ≤ ▮P (S) + |P −Q|TV. (42)

Further, for any Λ ≥ 0,

Pr
x∼Q

[

x ∉ S and Q(x) ≤ ΛP (x)
]

≤ Λ▮P (S). (43)

Proof of Lemma G.1. For eq. (42), note that one can sample a point from x̃ ∼ Q by first sampling
x ∼ P and then changing it with probability |P − Q|TV. This follows from the definition of total
variation distance. Thus, the probability that x̃ is rejected is at most the probability x is rejected plus
the probability x ≠ x̃, establishing eq. (42). To see eq. (43), note

Pr
x∼Q

[

x ∉ S and Q(x) ≤ ΛP (x)
]

=
∑

x∈S̄∶Q(x)≤ΛP (x)
Q(x) ≤

∑

x∈S̄∶Q(x)≤ΛP (x)
ΛP (x).

Clearly the above is at most
∑

x∈S̄ ΛP (x) = Λ▮P .

We now move on to tightly relating test and training rejections. As motivation, note that if one knew
P and Q, it would be natural to take S∗ ∶= {x ∈ X ∶ Q(x) ≤ P (x)∕�} for some � > 0. For x ∉ S∗,
i.e., x ∈ S̄∗, P (x) < �Q(x). This implies that ▮P (S∗) = P (S̄∗) < �. It is also straightforward to
verify that errQ(ℎ|S∗) ≤ errP (ℎ)∕�. This means that if one can find ℎ of error �2 on P , e.g., using a
PAC-learner, then this gives,

▮P (S
∗) + errQ(ℎ|∗S) ≤ 2�.

This suggests that perhaps we could try to learn P and Q and approximate S∗. Unfortunately, this is
generally impossible—one cannot even distinguish the case where P = Q from the case where P
and Q have disjoint supports with fewer than Ω(

√

|X|) examples.6

While we cannot learn S∗ in general, these sets S∗ do give the tightest bounds on ▮Q in terms of ▮P .

Lemma G.2. For any S ⊆ X and distributions P ,Q over X and any � ≥ 0 such that ▮P (S) ≤
▮P (S∗),

▮Q(S) ≤ ▮Q(S∗). (44)

Note that the ▮Q(S) ≤ ▮P (S) + |P −Q|TV bound can be much looser than the bound in the above
lemma. For example, |P −Q|TV = 0.91 yet ▮Q(S∗) = 0.1 for X = {0, 1,… , 100}, P uniform over
{1,… , 100}, Q uniform over {0, 1,… , 9}, ▮P (S) = 0, and � = 0.1 (since S∗ = {1, 2,… , 100} and
only 0 ∉ S∗). One can think of classifying images of a mushroom as “edible” or not based on training
data of 100 species of mushrooms, with test data including one new species.

6To see this, consider the cases where P = Q are both the uniform distribution over X versus the case where
they are each uniform over a random partition of X into two sets of equal size. By the classic birthday paradox,
with O(

√

|X|) samples both cases will likely lead to random disjoint sets of samples.

30

Proof. Since �Q(x) − P (x) > 0 iff x ∉ S∗,

� ▮Q(S
∗) − ▮P (S

∗) =
∑

x∉S∗
�Q(x) − P (x)

≥
∑

x∉S
�Q(x) − P (x) = � ▮Q(S) − ▮P (S)

⇒ �(▮Q(S
∗) − ▮Q(S)) ≥ ▮P (S∗) − ▮P (S) ≥ 0.

H Proofs of Auxiliary Lemmas

Claim H.1. Let f ∈ C, �, � > 0, n, k ≥ 1 and P ,Q1,… , Qk be distributions over X. Given
a
(�
k+1 , �, n

)

-PQ-learner L, x ∼ P n, f (x), and additional unlabeled samples z ∼ P n, x̃1 ∼
Qn1,… , x̃k ∼ Qnk, one can generate x̃ ∈ Xn such that ℎ|S = L(x, f (x), x̃) satisfies,

Pr

[

▮P +errP +
∑

i
errQi ≤ �

]

≥ 1 − �.

Proof of Claim H.1. Let Q = 1
k+1

(

P +Q1 +⋯ +Qk
)

be the blended distribution. Give n samples
from P and each Qi, one can straightforwardly construct n iid samples x̃ ∼ Q. Running L(x, f (x), x̃)
gives the guarantee that with prob. ≥ 1 − �, (k + 1)(▮P +errQ) ≤ � which implies the claim since
(k + 1) errQ = errP +

∑

errQi .

Proof of Lemma 4.1. To maximize st using the ERM oracle for C , construct a dataset consisting of
each training example, labeled by ℎ, repeated Λ times, and each test example in x̃i ∈ St, labeled
1 − ℎ(x̃i), included just once. Running ERM on this artificial dataset returns a classifier of minimal
error on it. But the number of errors of classifier c on this artificial dataset is:

Λ
∑

i∈[n]
|c(xi) − ℎ(xi)| +

∑

i∶x̃i∈St

|c(x̃i) − (1 − ℎ(x̃i))| =

Λ
∑

i∈[n]
|c(xi) − ℎ(xi)| +

∑

i∶x̃i∈St

1 − |c(x̃i) − ℎ(x̃i)|,

which is equal to |

|

|

{i ∈ [n] ∶ x̃i ∈ St}
|

|

|

− nst(c). Hence c minimizes error on this artificial dataset if
and only if it maximizes st of the algorithm.

Next, let T be the number of iterations of the algorithm Rejectron, so its output is ℎ|ST+1 . We must
show that T ≤ ⌊1∕�⌋. To this end, note that by definition, for every t ∈ [T] it holds that St+1 ⊆ St,
and moreover,

1
n
|

|

|

{i ∈ [n] ∶ x̃i ∈ St}
|

|

|

− 1
n
|

|

|

{i ∈ [n] ∶ x̃i ∈ St+1}
|

|

|

= err x̃(ℎ|St , ct) ≥ st(ct) > �. (45)

Hence, the fraction of additional rejected test examples in each iteration t ∈ [T] is greater than �, and
hence T < 1∕�. Since T is an integer, this means that T ≤ ⌊1∕�⌋.

For efficiency, of course each St is not explicitly stored since even S1 = X could be infinite.
Instead, note that to execute the algorithm, we only need to maintain: (a) the subset of indices
Zt = {j ∈ [n] | x̃j ∈ St} of test examples which are in the prediction set, and (b) the classifiers
ℎ, c1,… , cT . Also note that updating Zt from Zt−1 requires evaluating ct at most n times. In this
fashion, membership in St and S = ST+1 can be computed efficiently and output in a succinct
manner.

I Experiments

Rather than classifying sensitive attributes such as explicit images, we perform simple experiments
on handwritten letter classification from the popular EMNIST dataset [Cohen et al., 2017]. For both

31

Figure 4: Trade-offs between rejection rate on P and error rate on Q. The error on Q (in blue) is the
fraction of errors among selected examples (unlike errQ in our analysis).

Figure 5: Adversarial choices of a d e h l n r t, misclassified by the Random Forest classifier.

experiments, the training data consisted of the eight lowercase letters a d e h l n r t, chosen because
they each had more than 10,000 instances. From each letter, 3,000 instances of each letter were
reserved for use later, leaving 7,000 examples, each constituting 56,000 samples from P .

We then considered two test distributions, Qadv, Qnat representing adversarial and natural settings.
Qadv consisted of a mix of 50% samples from P (the 3,000 reserved instances per lower-case letter
mentioned above) and 50% samples from an adversary that used a classifier ℎ as a black box. To
that, we added 3,000 adversarial examples for each letter selected as follows: the reserved 3,000
letters were labeled by ℎ and the adversary selected the first misclassified instance for each letter.
Misclassified examples are shown in Figure 5. It made 3,000 imperceptible modifications of each of
the above instances by changing the intensity value of a single pixel by at most 4 (out of 256). The
result was 6,000 samples per letter constituting 48,000 samples from Qadv.

For Qnat, the test set also consisted of 6,000 samples per letter, with 3,000 reserved samples from P
as above. In this case, the remaining half of the letters were simply upper-case7 versions of the letters
A D E H L N R T, taken from the EMNIST dataset (case information is also available in that dataset).
Again the dataset size is 48,000. We denote this test distribution by Qnat.

In Figure 4, we plot the trade-off between the rejection rate on P and the error rate on Q of the
URejectron algorithm. Since this is a multi-class problem, we implement the most basic form of
the URejectron algorithm, with T = 1 iterations. Instead of fixing parameter Λ, we simply train a
predictor ℎDis to distinguish between examples from P and Q, and train a classifier ℎ on P . We
trained two models, a random forest (with default parameters from scikit-learn [Pedregosa et al.,
2011]) and a neural network. Complete details are provided at the end of this section. We threshold
the prediction scores of distinguisher ℎDis at various values. For each threshold �, we compute the
fraction of examples from P that are rejected (those with prediction score less than �), and similarly
forQ, and the error rate of classifier ℎ on examples fromQ that are not rejected (those with prediction
score at least �). We see in Figure 4 that for a suitable threshold � our URejectron algorithm achieves
both low rejection rate on P and low error rate on Q. Thus on these problems the simple algorithm
suffices.

We compare to the state-of-the-art SC algorithm SelectiveNet [Geifman and El-Yaniv, 2019]. We
ran it to train a selective neural network classifier on P . SelectiveNet performs exceptionally on
Qnat, achieving low error and reject almost exclusively upper-case letters. It of course errs on all
adversarial examples from Qadv, as will all existing SC algorithms (no matter how robust) since they
all choose S without using unlabeled test examples.

Models A Random Forest Classifier ℎRF from Scikit-Learn (default parameters including 100
estimators) [Pedregosa et al., 2011] and a simple neural network ℎNN consisting of two convolutional

7In some datasets, letter classes consist of a mix of upper- and lower-case, while in others they are assigned
different classes (EMNIST has both types of classes). In our experiments, they belong to the same class.

32

layers followed by two fully connected layers8 were fit on a stratified 90%/10% train/test split. The
network parameters are trained with SGD with momentum (0.9), weight decay (2 × 10−4), batch size
(128), for 85 epochs with a learning rate of 0.1, that is decayed it by a factor of 10 on epochs 57 and
72. ℎRF had a 3.6% test error rate on P , and ℎNN had a 1.3% test error rate on P .

SelectiveNet SelectiveNet requires a target coverage hyperparameter which in our experiments is
fixed to 0.7. We use an open-source PyTorch implementation of SelectiveNet that is available on
GitHub 9, with a VGG 16 architecure [Simonyan and Zisserman, 2015]. To accommodate the VGG
16 architecure without changes, we pad all images with zeros (from 28x28 to 32x32), and duplicate
the channels (from 1 to 3). SelectiveNet achieves rejection rates of 21.08% (P), 45.89% (Qnat), and
24.04% (Qadv), and error rates of 0.02% (P), 0.81% (Qnat), and 76.78% (Qadv).

8https://github.com/pytorch/examples/blob/master/mnist/main.py
9https://github.com/pranaymodukuru/pytorch-SelectiveNet

33

