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Abstract

We study the risk (i.e. generalization error) of Kernel Ridge Regression (KRR)
for a kernel K with ridge λ > 0 and i.i.d. observations. For this, we introduce
two objects: the Signal Capture Threshold (SCT) and the Kernel Alignment Risk
Estimator (KARE). The SCT ϑK,λ is a function of the data distribution: it can be
used to identify the components of the data that the KRR predictor captures, and to
approximate the (expected) KRR risk. This then leads to a KRR risk approximation
by the KARE ρK,λ, an explicit function of the training data, agnostic of the true
data distribution. We phrase the regression problem in a functional setting. The
key results then follow from a finite-size analysis of the Stieltjes transform of
general Wishart random matrices. Under a natural universality assumption (that
the KRR moments depend asymptotically on the first two moments of the obser-
vations) we capture the mean and variance of the KRR predictor. We numerically
investigate our findings on the Higgs and MNIST datasets for various classical
kernels: the KARE gives an excellent approximation of the risk, thus supporting
our universality assumption. Using the KARE, one can compare choices of Kernels
and hyperparameters directly from the training set. The KARE thus provides a
promising data-dependent procedure to select Kernels that generalize well.

1 Introduction

Kernel Ridge Regression (KRR) is a widely used statistical method to learn a function from its
values on a training set [27, 29]. It is a non-parametric generalization of linear regression to infinite-
dimensional feature spaces. Given a positive-definite kernel function K and (noisy) observations yε

of a true function f∗ at a list of points X = x1, . . . , xN , the λ-KRR estimator f̂ ελ of f∗ is defined by

f̂ ελ(x) =
1

N
K(x,X)

(
1

N
K(X,X) + λIN

)−1

yε,

where K(x,X)=(K(x, xi))i=1,..,N ∈ RN and K(X,X)=(K(xi, xj))i,j=1,..,N ∈ RN×N .

Despite decades of intense mathematical progress, the rigorous analysis of the generalization of
kernel methods remains a very active and challenging area of research. In recent years, many new
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kernels have been introduced for both regression and classification tasks; notably, a large number
of kernels have been discovered in the context of deep learning, in particular through the so-called
Scattering Transform [22], and in close connection with deep neural networks [7, 17], yielding
ever-improving performance for various practical tasks [1, 10, 18, 28]. Currently, theoretical tools
to select the relevant kernel for a given task, i.e. to minimize the generalization error, are however
lacking.

While a number of bounds for the risk of Linear Ridge Regression (LRR) or KRR [6, 15, 31, 23]
exist, most focus on the rate of convergence of the risk: these estimates typically involve constant
factors which are difficult to control in practice. Recently, a number of more precise estimates have
been given [21, 9, 24, 20, 5]; however, these estimates typically require a priori knowledge of the
data distribution. It remains a challenge to have estimates based on the training data alone, enabling
one to make informed decisions on the choices of the ridge and of the kernel.

1.1 Contributions

We consider a generalization of the KRR predictor f̂ ελ: one tries to reconstruct a true
function f∗ in a space of continuous functions C from noisy observations yε of the form
(o1(f∗) + εe1, . . . , oN (f∗) + εeN ), where the observations oi are i.i.d. linear forms C → R sampled
from a distribution π, ε is the level of noise, and the e1, . . . , eN are centered of unit variance. We
work under the universality assumption that, for large N , only the first two moments of π determine
the behavior of the first two moments of f̂ ελ. We obtain the following results:

1. We introduce the Signal Capture Threshold (SCT) ϑ(λ,N,K, π), which is determined by the
ridge λ, the size of the training set N , the kernel K, and the observations distribution π (more
precisely, the dependence on π is only through its first two moments). We give approximations for
the expectation and variance of the KRR predictor in terms of the SCT.

2. Decomposing f∗ along the kernel principal components of the data distribution, we observe that
in expectation, the predictor f̂ ελ captures only the signal along the principal components with
eigenvalues larger than the SCT. If N increases or λ decreases, the SCT ϑ shrinks, allowing the
predictor to capture more signal. At the same time, the variance of f̂ ελ scales with the derivative
∂λϑ, which grows as λ→ 0, supporting the classical bias-variance tradeoff picture [14].

3. We give an explicit approximation for the expected MSE risk Rε(f̂ ελ) and empirical MSE risk
R̂ε(f̂ ελ) for an arbitrary continuous true function f∗. We find that, surprisingly, the expected risk
and expected empirical risk are approximately related by

E[Rε(f̂ ελ)] ≈ ϑ(λ)2

λ2
E[R̂ε(f̂ ελ)].

4. We introduce the Kernel Alignment Risk Estimator (KARE) as the ratio ρ defined by

ρ(λ,N, yε, G) =
1
N (yε)

T ( 1
NG+ λIN

)−2
yε(

1
NTr

[(
1
NG+ λIN

)−1
])2 ,

where G is the Gram matrix of K on the observations. We show that the KARE approximates
the expected risk; unlike the SCT, it is agnostic of the true data distribution. This result follows
from the fact that ϑ(λ) ≈ 1/mG(−λ), where mG(z) = Tr

[
( 1
NG− zIN )−1

]
is the Stieltjes

Transform of the Gram matrix.

5. Empirically, we find that the KARE predicts the risk on the Higgs and MNIST datasets. We see
empirically that our results extend extremely well beyond the Gaussian observation setting, thus
supporting our universality assumption (see Figure 1).

Our proofs (see the Appendix) rely on a generalized and refined version of the finite-size analysis
of [16] of generalized Wishart matrices, obtaining sharper bounds and generalizing the results to
operators. Our analysis relies in particular on the complex Stieltjes transform mG(z), evaluated at
z = −λ, and on fixed-point arguments.
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Figure 1: Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9, labeled by 1 and
−1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and ‘s’, labeled by −1 and 1,
N = 1000) with the RBF Kernel K(x, x′) = exp(−‖x−x

′‖22/`) (see the Appendix for experiments
with the Laplacian and `1-norm kernels). KRR predictor risks, and KARE curves (shown as dashed
lines, 5 samples) concentrate around their respective averages (solid lines).

1.2 Related Works

The theoretical analysis of the risk of KRR has seen tremendous developments in the recent years.
In particular, a number of upper and lower bounds for kernel risk have been obtained [6, 31, 23] in
various settings: notably, convergence rates (i.e. without control of the constant factors) are obtained
in general settings. This allows one to abstract away a number of details about the kernels (e.g. the
lengthscale), which don’t influence the asymptotic rates. However, this does not give access to the
risk at finite data size (crucial to pick e.g. the correct lengthscale or the NTK depth [17]).

A number of recent results have given precise descriptions of the risk for ridge regression [9, 20], for
random features [24, 16], and in relation to neural networks [21, 5]. These results rely on the analysis
of the asymptotic spectrum of general Wishart random matrices, in particular through the Stieltjes
transform [30, 3]. The limiting Stieltjes transform can be recovered from the formula for the product
of freely independent matrices [13]. To extend these asymptotic results to finite-size settings, we
generalize and adapt the results of [16].

While these techniques have given simple formulae for the KRR predictor expectation, approximating
its variance has remained more challenging. For this reason the description of the expected risk
in [21] is stated as a conjecture. In [20] only the bias component of the risk is approximated. In
[9] the expected risk is given only for random true functions (in a Bayesian setting) with a specific
covariance. In [5], the expected risk follows from a heuristic spectral analysis combining a PDE
approximation and replica tricks. In this paper, we approximate the variance of the predictor along
the principal components, giving an approximation of the risk for any continuous true function.

The SCT is related to a number of objects from previous works, such as the effective dimension of
[32, 6], the companion Stieltjes transform of [9, 20], and particularly the effective ridge of [16]. The
SCT can actually be viewed as a direct translation to the KRR risk setting of [16].

1.3 Outline

In Section 2, we first introduce the Kernel Ridge Regression (KRR) predictor in functional space
(Section 2.1) and formulate its train error and risk for random observations (Section 2.2).

The rest of the paper is then devoted to obtaining approximations for the KRR risk. In Section 3,the
Signal Capture Threshold (SCT) is introduced and used to study the mean and variance of the KRR
predictor (Sections 3.1 and 3.2). An approximation of the SCT in terms of the observed data is then
given (Section 3.4). In Section 4, the expected risk and the expected empirical risk are approximated
in terms of the SCT and its derivative w.r.t. the ridge λ. The SCT approximation of Section 3.4,
together with the estimates of Section 4.1, leads to an approximation of the KRR risk by the Kernel
Alignment Risk Estimator (KARE).
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2 Setup

Given a compact Ω ⊂ Rd, let C denote the space of continuous f : Ω → R, endowed with the
supremum norm ‖f‖∞ = supx∈Ω |f(x)|. In the classical regression setting, we want to reconstruct
a true function f∗ ∈ C from its values on a training set x1, . . . , xN , i.e. from the noisy labels
yε = (f∗(x1) + εe1, . . . , f

∗(xN ) + εeN )
T for some i.i.d. centered noise e1, . . . , eN of unit variance

and noise level ε ≥ 0.

In this paper, the observed values (without noise) of the true function f∗ consist in observations
o1, . . . , oN ∈ C∗, where C∗ is the dual space, i.e. the space of bounded linear functionals C → R. We
thus represent the training set of N observations o1, . . . , oN by the sampling operator O : C → RN
which maps a function f ∈ C to the vector of observations O(f) = (o1(f), . . . , oN (f))T .

The classical setting corresponds to the case where the observations are evaluations of f∗ at points
x1, . . . , xN ∈ Ω, i.e. oi (f∗) = f∗(xi) for i = 1, . . . , N . In time series analysis (when Ω ⊂ R), the
observations can be the averages oi(f∗) = 1

bi−ai

∫ bi
ai
f∗(t)dt over time intervals [ai, bi] ⊂ R.

2.1 Kernel Ridge Regression Predictor

The regression problem is now stated as follows: given noisy observations yεi = oi (f∗) + εei with
i.i.d. centered noises e1, . . . , eN of unit variance, how can one reconstruct f∗?
Definition 1. Consider a continuous positive kernel K : Ω× Ω→ R and a ridge parameter λ > 0.
The Kernel Ridge Regression (KRR) predictor with ridge λ is the function f̂ ελ : Ω→ R

f̂ ελ =
1

N
KOT (

1

N
OKOT + λIN )−1yε

where OT : RN → C∗ is the adjoint of O defined by (OT y)(f) = yTO(f) and where we view K as
a map C∗ → C with (Kµ)(x) = µ(K(x, ·)).
Remark. The KRR predictor arises naturally in the following setup: assuming a (centered) Gaussian
Bayesian prior on the true function with covariance operator K and noise amplitude ε, the expected
posterior, for observed labels yε is given by f̂ ελ for λ = ε2.

We call the N × N matrix G = OKOT the Gram matrix: in the classical setting, when the
observations are oi = δxi

(with δx(f) = f(x)), G is the usual Gram matrix, i.e. Gij = K(xi, xj).

2.2 Training Error and Risk

We consider the least-squares error (MSE loss) of the KRR predictor, taking into account randomness
of: (1) the test point, random observation o to which is added a noise εe (2) the training data, made
of N observations oi plus noises εei ∼ ν, where o, o1, . . . , on ∼ π and e, e1, . . . , eN are i.i.d. The
expected risk of the KRR predictor is thus taken w.r.t. the test and training observations and their
noises. Unless otherwise specified, the expectations are taken w.r.t. all these sources of randomness.

For (fixed) observations o1, . . . , oN , the empirical risk or training error of the KRR predictor f̂ ελ is

R̂ε(f̂ ελ) =
1

N

N∑
i=1

(oi(f̂
ε
λ)− yεi )2 =

1

N

∥∥∥O(f̂ ελ)− yε
∥∥∥2

.

For a random observation o sampled from π and a noise εe (where e ∼ ν is centered of unit variance
as before), the risk Rε(f̂ ελ) of the KRR predictor f̂ ελ is defined by

Rε(f̂ ελ) = Eo∼π,e∼ν
[
(o(f∗) + εe− o(f̂ ελ))2

]
.

Describing the observation variance by the bilinear form 〈f, g〉S = Eo∼π [o(f)o(g)] and the related
semi-norm ‖f‖S = 〈f, f〉1/2S , the risk can be rewritten as Rε(f̂ ελ) = ‖f̂ ελ − f∗‖2S + ε2.

From now on, we will assume that 〈·, ·〉S is a scalar product; note that in the classical setting, when o
is the evaluation of f∗ at a point x ∈ Ω with x ∼ σ, the S-norm is given by ‖f‖2S =

∫
Ω
f(x)2σ(dx).

The following three operators C → C are central to our analysis:
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Definition 2. The KRR reconstruction operatorAλ : C → C, the KRR Integral Operator TK : C → C,
and its empirical version TNK : C → C are defined by

Aλ =
1

N
KOT (

1

N
OKOT + λIN )−1O,

(TKf)(x) = 〈f,K(x, ·)〉S = Eo∼π [o(f)o(K(x, ·))] ,

(TNK f)(x) =
1

N
KOTOf(x) =

1

N

N∑
i=1

oi(f)oi(K(x, ·)).

Note that in the noiseless regime (i.e. when ε = 0), we have f̂ ελ
∣∣
ε=0

= Aλf
∗. Also note that Aλ

and TNK are random operators, as they depend on the random observations. The operator TK is the
natural generalization to our framework of the integration operator f 7→

∫
K(x, ·)f(x)σ(dx), which

is defined with random observations δx with x ∼ σ in the classical setting.

The reconstruction and empirical integral operators are linked by Aλ = TNK (TNK + λIC)
−1, which

follows from the identity
(

1
NOKO

T + λIN
)−1O = O

(
1
NKO

TO + λIC
)−1

. As N → ∞, we
have that TNK → TK , and it follows that

Aλ → Ãλ := TK(TK + λIC)
−1. (1)

2.3 Eigendecomposition of the Kernel

We will assume that the kernel K can be diagonalized by a countable family of eigenfunctions
(f (k))k∈N in C with eigenvalues (dk)k∈N, orthonormal with respect to the scalar product 〈·, ·〉S , such
that we have (with uniform convergence):

K(x, x′) =

∞∑
k=1

dkf
(k)(x)f (k)(x′).

The functions f (k) are also eigenfunctions of TK : we have TKf (k) = dkf
(k). We will also assume

that Tr [TK ] =
∑∞
k=1

〈
f (k), TK(f (k))

〉
S

=
∑∞
k=1 dk is finite. Note that in the classical setting

K can be diagonalized as above (by Mercer’s theorem), and Tr [TK ] = Ex∼σ [K(x, x)] is finite.
Computing the eigendecomposition of TK is difficult for general kernels and data distributions, but
explicit formulas exist for special cases, such as for the RBF kernel and isotropic Gaussian inputs as
described in Section 1.5 of the Appendix.

2.4 Gaussianity Assumption

As seen in Equation (1) above, Ãλ only depends on the second moment of π (through 〈·, ·〉S),
suggesting the following assumption, with which we will work in this paper:
Assumption A. As far as one is concerned with the first two moments of the Aλ operator, for large
but finite N , we will assume that the observations o1, . . . , oN are centered Gaussian, i.e. that for any
tuple of functions (f1, . . . , fN ), the vector (o1(f1), . . . , oN (fN )) is a mean zero Gaussian vector.

Though our proofs use this assumption, the ideas in [21, 4] suggest a path to extend them beyond the
Gaussian case, where our numerical experiments (see Figure 1) suggest that our results remain true.
See Section 2.1 of the Appendix for a more detailed discussion.

3 Predictor Moments and Signal Capture Threshold

A central tool in our analysis of the KRR predictor f̂ ελ is the Signal Capture Threshold (SCT):
Definition 3. For λ > 0, the Signal Capture Threshold ϑ(λ) = ϑ(λ,N,K, π) is the unique positive
solution (see Section 2.2 in the Appendix) to the equation:

ϑ(λ) = λ+
ϑ(λ)

N
Tr
[
TK (TK + ϑ(λ)IC)

−1
]
.

In this section, we use ϑ(λ) and the derivative ∂λϑ(λ) for the estimation of the mean and variance of
the KRR predictor f̂ ελ upon which the Kernel Alignment Risk Estimator of Section 4 is based.
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3.1 Mean predictor

The expected KRR predictor can be expressed in terms of the expected reconstruction operator Aλ

E[f̂ ελ] = E[
1

N
KOT (

1

N
OKOT + λIN )−1yε] = E [Aλ] f∗,

where we used the fact that Ee1,...,eN [yε] = Of∗.
Theorem 1 (Theorem 10 in the Appendix). The expected reconstruction operator E[Aλ] is approxi-
mated by the operator Ãϑ = TK (TK + ϑ(λ)IC)

−1 in the sense that for all f, g ∈ C,∣∣∣〈f,(E [Aλ]− Ãϑ
)
g
〉
S

∣∣∣ ≤ ( 1

N
+ P 0(

Tr[TK ]

λN
)

) ∣∣∣〈f, Ãϑ(IC − Ãϑ)g
〉
S

∣∣∣ ,
for a polynomial P 0 with nonnegative coefficients and P 0(0) = 0.

Proof. (Sketch; see the Appendix for details) First we show that E
[〈
f (k), Aλf

(m)
〉
S

]
= 0 whenever

m 6= k, using the invariance of the observations’ distribution oi w.r.t. reflection along a principal
component f (k). This implies that E [Aλ] and Ãϑ both have the same eigenfunctions (f (k))k≥1. It
thus only remains to show that the eigenvalues of both operators are close: E

[〈
f (k), Aλf

(k)
〉
S

]
≈

dk
dk+ϑ .

The difficulty lies in computing the inverse of B = 1
NOKO

T + λIN . We use the Sherman-Morrison
formula to isolate the contribution along the k-th principal component f (k). Defining the kernel
K(k)(x, y) =

∑
` 6=k d`f

(`)(x)f (`)(y) and the vector Ok = Of (k) ∈ RN , we obtain

B−1 = B−1
(k) −

1

N

dk
1 + dkgk

B−1
(k)OkO

T
k B
−1
(k)

for B(k) = 1
NOK(k)OT + λIN and gk = 1

NO
T
k B
−1
(k)Ok. Using the above formula we obtain that〈

f (k), Aλf
(k)
〉
S

=
1

N
dkOTk B−1Ok =

dkgk
1 + dkgk

.

Since the vector Ok is independent of B(k) and has i.i.d. N (0, dk) entries, gk concentrates around
1
NTrB−1

(k) which itself can be approximated by the Stieltjes transform m(z = −λ) = 1
NTrB−1

(since B(k) is a rank-one deformation of B). Expanding the trivial equation 1
NTr

[
BB−1

]
= 1, we

obtain the relation
1

N

∞∑
k=1

dkgk
1 + dkgk

+ λm(−λ) = 1

which implies that both the gk’s and the Stieltjes transform m(−λ) concentrate around the unique
solution m̃ to the equation 1

N

∑∞
k=1

dkm̃
1+dkm̃

+λm̃ = 1. The SCT is then defined as the reciprocal ϑ =

1/m̃ and since gk ≈ m̃ we obtain that E
[〈
f (k), Aλf

(k)
〉
S

]
= E

[
dkgk

1+dkgk

]
≈ dk

ϑ+dk
as needed.

This theorem gives the following motivation for the name SCT: if the true function f∗ is an eigen-
function of TK , i.e. TKf∗ = δf∗, then Ãϑf∗ = δ

ϑ(λ)+δf
∗ and we get:

• if δ � ϑ(λ), then δ
ϑ(λ)+δ ≈ 1 and E [Aλ] f∗ ≈ f∗, i.e. the function is learned on average,

• if δ � ϑ(λ), then δ
ϑ(λ)+δ ≈ 0 and E [Aλ] f∗ ≈ 0, i.e. the function is not learned on average.

More generally, if we decompose a true function f∗ along the principal components (i.e. eigen-
functions) of TK , the signal along the k-th principal component f (k) is captured whenever the
corresponding eigenvalue dk � ϑ(λ) and lost when dk � ϑ(λ).
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Figure 2: Signal Capture Threshold and Derivative. We consider the RBF Kernel on the standard
d-dimensional Gaussian with ` = d = 20. In blue lines, exact formulas for the SCT ϑ(λ) and
∂λϑ(λ), computed using the explicit formula for the eigenvalues dk of the integral operator TK given
in Section 1.5 of the Appendix; in red dots, their approximation with Proposition 5.

3.2 Variance of the predictor

We now estimate the variance of f̂ ελ along each principal component in terms of the SCT ϑ(λ) and its
derivative ∂λϑ(λ). Along the eigenfunction f (k), the variance is estimated by Vk, where

Vk(f∗, λ,N, ε) =
∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ)f∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ2(λ)

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2
.

Theorem 2 (Theorem 15 in the Appendix). There is a constant C1 > 0 and a polynomial P 1 with
nonnegative coefficients and with P 1(0) = 0 such that∣∣∣Var

(〈
f (k), f̂ ελ

〉
S

)
− Vk

∣∣∣ ≤ (C1

N
+ P 1(

Tr[TK ]

λN
1
2

)

)
Vk.

As shown in Section 4.1, understanding the variance along the principal components (rather than the
covariances between the principal components) is enough to describe the risk.

3.3 Behavior of the SCT

The behavior of the SCT can be controlled by the following (agnostic of the exact spectrum of TK)
Proposition 3 (Proposition 5 in the Appendix). For any λ > 0, we have

λ < ϑ(λ,N) ≤ λ+
1

N
Tr[TK ], 1 ≤ ∂λϑ(λ,N) ≤ 1

λ
ϑ(λ,N),

moreover ϑ(λ,N) is decreasing as a function of N .
Remark. As N →∞, we have ϑ(λ,N) decreases down to λ (see also Figure 2), in agreement with
the fact that Aλ → Ãλ.

As λ→ 0, the above upper bound for ∂λϑ becomes useless. Still, assuming that the spectrum of K
has a sufficiently fast power-law decay, we get:
Proposition 4 (Proposition 9 in the Appendix). If dk = Θ(k−β) for some β > 1, there exist
c0, c1, c2 > 0 such that for any λ > 0

λ+ c0N
−β ≤ ϑ(λ,N) ≤ c2λ+ c1N

−β , 1 ≤ ∂λϑ(λ,N) ≤ c2.

3.4 Approximation of the SCT from the training data

The SCT ϑ and its derivative ∂λϑ are functions of λ,N , and of the spectrum of TK . In practice,
the spectrum of TK is not known: for example, in the classical setting, one does not know the true
data distribution σ. Fortunately, ϑ can be approximated by 1/mG(−λ), where mG is the Stieltjes
Transform of the Gram matrix, defined by mG(z) = Tr

[
( 1
NG− zIN )−1

]
. Namely, we get:

Proposition 5 (Proposition 3 in the Appendix). For any λ > 0, s ∈ N, there is a cs > 0 such that

E
[
|1/ϑ(λ)−mG(−λ)|2s

]
≤ cs(Tr[TK ])2s

λ4sN3s
.

Remark. Likewise, we have ∂λϑ ≈
(
∂zmG(z)/mG(z)2

)
|z=−λ, as shown in the Appendix.
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4 Risk Prediction with KARE

In this section, we show that the Expected Risk E[Rε(f̂ ελ)] can be approximated in terms of the
training data by the Kernel Alignment Risk Estimator (KARE).
Definition 4. The Kernel Alignment Risk Estimator (KARE) ρ is defined by

ρ(λ,N, yε, G) =
1
N (yε)

T ( 1
NG+ λIN

)−2
yε(

1
NTr

[(
1
NG+ λIN

)−1
])2 .

In the following, using Theorems 1 and 2, we give an approximation for the expected risk and
expected empirical risk in terms of the SCT and the true function f∗. This yields the important
relation (2) in Section 4.2, which shows that the KARE can be used to efficiently approximate the
kernel risk.

4.1 Expected Risk and Expected Empirical Risk

The expected risk is approximated, in terms of the SCT and the true function f∗, by

R̃ε(f∗, λ,N,K, π) = ∂λϑ(λ)(‖(IC − Ãϑ)f∗‖2S + ε2),

as shown by the following:
Theorem 6 (Theorem 16 in the Appendix). There exists a constant C2 > 0 and a polynomial P 2

with nonnegative coefficients and with P 2(0) = 0, such that we have∣∣∣E[Rε(f̂ ελ)]− R̃ε(f∗, λ,N,K, π)
∣∣∣ ≤ (C2

N
+ P 2(

Tr[TK ]

λN
1
2

)

)
R̃ε(f∗, λ,N,K, π).

Proof. (Sketch; the full proof is given in the Appendix). From the bias-variance decomposition:

E[Rε(f̂ ελ)] = Rε(E[f̂ ελ]) +

∞∑
k=1

Var(〈f (k), f̂ ελ〉S).

By Theorem 1, and a small calculation, the bias is approximately ‖(IC − Ãϑ)f∗‖2S + ε2. By Theorem
2, and a calculation, the variance is approximately (∂λϑ(λ)− 1)(‖(IC − Ãϑ)f∗‖2S + ε2).

The approximate expected risk R̃ε(f∗, λ,N,K, π) is increasing in both ϑ and ∂λϑ. As λ increases,
the bias increases with ϑ, while the variance decreases with ∂λϑ: this leads to the bias-variance
tradeoff. On the other hand, as a function of N , ϑ is decreasing but ∂λϑ is generally not monotone:
this can lead to so-called multiple descent curves in the risk as a function of N [19].

Note also that if we decompose the true function along the principal components f∗ =
∑∞
k=1 bkf

(k),

the risk is approximated by R̃ε(f∗) = ∂λϑ(λ)(
∑∞
k=1

ϑ(λ)2

(ϑ(λ)+dk)2 b
2
k + ε2).

Remark. For a decaying ridge λ = cN−γ for 0 < γ < 1
2 , as N → ∞, by Proposition 3, we get

ϑ(λ) → 0 and ∂λϑ(λ) → 1: this implies that E[Rε(f̂ ελ)] → ε2. Hence the KRR can learn any
continuous function f∗ as N →∞ (even if f∗ is not in the RKHS associated with K).
Remark. In a Bayesian setting, assuming that f∗ is random with zero mean and covariance kernel Σ,
the optimal choices for the KRR predictor are K = Σ and λ = ε2/N (see Section 2.7 in the Appendix).
When K = Σ and λ = ε2/N , the formula of Theorem 6 simplifies (see Corollary 18 in the Appendix)
to

E
[
Rε
(
f̂ ελ

)]
≈ Nϑ

(
ε2

N
,Σ

)
.

The empirical risk (or train error) R̂ε(f̂ ελ) = λ2(yε)T ( 1
NG + λIN )−2yε can be analyzed with the

same theoretical tools. Its approximation in terms of the SCT is given as follows:
Theorem 7 (Theorem 17 in the Appendix). There exists a constant C3 > 0 and a polynomial P 3

with nonnegative coefficients and with P 3(0) = 0 such that we have∣∣∣∣E[R̂ε(f̂ ελ)]− λ2

ϑ(λ)2
R̃ε(f̂ ελ, λ,N,K, π)

∣∣∣∣ ≤ ( 1

N
+ P 3(

Tr[TK ]

λN
)

)
R̃ε(f∗, λ,N,K, π).

8



he
ri

dg
e
λ

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Risk

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) KARE Preds.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) LOO Preds.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

(d) Log-likelihood Preds.

Figure 3: Comparision of risk predictors. We calculate the risk (i.e. test error) of f̂ ελ on MNIST
with the RBF Kernel for various values of ` and λ on N = 200 data points (same setup as Fig. 1).
We mark the minimum MSE achieved with a star. We display the predictions of KARE and leave-
one-out (LOO); both find the hyper-parameters minimizing the risk. We also show the (normalized)
log-likehood estimator and observe that it favors large λ values. Axes are log2 scale.

4.2 KARE: Kernel Alignment Risk Estimator

While the above approximations (Theorems 6 and 7) for the expected risk and empirical risk depend
on f∗, their combination yields the following relation, which is surprisingly independent of f∗:

E
[
Rε
(
f̂ ελ

)]
≈ ϑ2

λ2
E
[
R̂ε
(
f̂ ελ

)]
. (2)

Since ϑ can be approximated from the training set (see Proposition 5), so can the expected risk.
Assuming that the risk and empirical risk concentrate around their expectations, we get the KARE:

Rε
(
f̂ ελ

)
≈ ρ(λ,N, yε, G) =

1
N (yε)

T ( 1
NG+ λIN

)−2
yε(

1
NTr

[(
1
NG+ λIN

)−1
])2 .

Remark. As shown in the Appendix, estimating the risk of the expected predictor E[f̂ ελ] yields:

Rε(E[f̂ ελ]) ≈ %(λ,N, yε, G) =
(yε)T ( 1

NG+ λIN )−2yε

Tr[( 1
NG+ λIN )−2]

.

Note that both ρ and % are invariant (as is the risk) under the simultaneous rescalingK,λ αK,αλ.

The KARE can be used to optimize the risk over the space of kernels, for instance to choose the ridge
and length-scale. The most popular kernel selection techniques are (see Figure 3):

• Leave-one-out: accurate estimator of the risk on a test set, it has a closed-form formula similar yet
different from the KARE [26].

• Kernel likelihood (Chapter 5 of [25]): efficient to optimize and takes into account the ridge, but not
a risk estimator; unlike the risk, not invariant under the simultaneous rescaling K,λ αK,αλ.

• Classical kernel alignment [8]: very efficient to optimize and scale invariant, but not a risk estimator,
not sensitive to small eigenvalues and inadequate to select hyperparameters such as the ridge.

The KARE has the following three desirable properties:

• it can be computed efficiently on the training data, and optimized over the space of kernels;
• like the risk, it is invariant under the simultaneous rescaling K,λ αK,αλ;
• it is sensitive to the small Gram matrix eigenvalues and to the ridge λ.

5 Conclusion

In this paper, we introduce new techniques to study the Kernel Ridge Regression (KRR) predictor
and its risk. We obtain new precise estimates for the test and train error in terms of a new object,
the Signal Capture Threshold (SCT), which identifies the components of a true function that are
being learned by the KRR: our estimates reveal a remarkable relation, which leads one to the Kernel
Alignment Risk Estimator (KARE). The KARE is a new efficient way to estimate the risk of a kernel
predictor based on the training data only. Numerically, we observe that the KARE gives a very
accurate prediction of the risk for Higgs and MNIST datasets for a variety of classical kernels.
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Broader Impact

This work is fundamental and may be used in any research area using Kernel methods, possibly
leading to indirect social impacts. However, we do not predict any direct social impact.
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