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Abstract

This paper develops a novel and unified framework to analyze the convergence
of a large family of Q-learning algorithms from the switching system perspective.
We show that the nonlinear ODE models associated with Q-learning and many of
its variants can be naturally formulated as affine switching systems. Building on
their asymptotic stability, we obtain a number of interesting results: (i) we provide
a simple ODE analysis for the convergence of asynchronous Q-learning under
relatively weak assumptions; (ii) we establish the first convergence analysis of the
averaging Q-learning algorithm, and (iii) we derive a new sufficient condition for
the convergence of Q-learning with linear function approximation.

1 Introduction

Reinforcement learning (RL) addresses the optimal control problem for unknown systems through
experiences [30]. Q-learning, originally introduced by Watkins [36]], is one of the most popular and
fundamental reinforcement learning algorithms for unknown systems described by Markov decision
processes. The convergence of Q-learning has been extensively studied in the literature and proven
via several different approaches, including the original proof [36]], the stochastic approximation and
contraction mapping-based approach [14} 133, 1219} 32,19, 1, 138], and the ODE (ordinary differential
equation) approach [4].

The ODE approach analyzes the convergence of general stochastic recursions by examining stability
of the associated ODE model [3| [17, 4] and has been used as a convenient analysis tool to prove
convergence of many RL algorithms, especially the temporal difference (TD) learning algorithm [29]
and its variants [23 131} 19, [10]. However, its application to Q-learning has been limited due to
the presence of the max-operator, which makes the associated ODE model a complex nonlinear
system. In contrast, the associated ODE of TD learning for policy evaluation is a linear system,
whose asymptotic stability is much easier to analyze in general. While [4] gave the convergence
proof of Q-learning based on a nonlinear ODE model, to the authors’ knowledge, substantial analysis
is required to prove the stability of the corresponding nonlinear ODE [35] by using the max-norm
contraction of the Bellman operator. In addition, the result in [4] only applies to synchronous Q-
learning, where every state-action pair is visited at each iteration, instead of the commonly used
asynchronous Q-learning. Last but not least, the stability analysis does not immediately extend to
other Q-learning variants, such as double Q-learning [11]], averaging Q-learning [19]], and Q-learning
with linear function approximation, etc.

In this paper, we provide a simple and unified framework to analyze Q-learning and its variants
through switched linear system (SLS) models [21] of the associated ODE. SLSs are an important
class of nonlinear hybrid systems, where the system dynamics matrix switches within a finite set
of subsystem matrices (or modes) according to a switching signal. The study of SLSs has attracted
tremendous attention in the past years and their stability behaviors have been well established in the
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literature; see [22]] and [21] for comprehensive surveys. Our main contributions are summarized as
follows:

1. For a number of Q-learning algorithms such as the asynchronous Q-learning, we show that
the nonlinear ODE models associated with these algorithms can be characterized as affine
switching systems with a state-feedback switching policy.

2. We construct both upper and lower comparison systems of the corresponding affine switching
systems, and prove their asymptotic stability based on existing control theory and comparison
principles. As a result of the Borkar and Meyn theorem [4], we obtain the asymptotic
convergence of these Q-learning algorithms.

3. We extend the approach to analyze the averaging Q-learning [19]]. To our best knowledge,
this is the first convergence analysis of averaging Q-learning in the literature.

4. We also examine Q-learning with linear function approximation and derive a new sufficient
condition to ensure its convergence based on the switching system theory. We show that,
under specific assumptions, our new diagonal dominating condition is weaker than the
well-known Melo’s condition provided in [24]].

Related Work. There exists few work on the non-asymptotic convergence rate of these classical
Q-learning algorithms such as synchronous Q-learning [34} 9], asynchronous Q-learning [32, 9} 27]],
Q-learning with linear function approximation [6], etc. Most of the analyses build on completely
different techniques and whether these finite-time bounds are sharp or not remains an open question.
On the other hand, there is growing interest on designing variants of Q-learning algorithms with
improved performance guarantees, e.g., [8 [1,120, [15, [18]], to name a few. Different from these lines
of work, the goal of this paper is to establish an initial connection between switching systems and a
family of Q-learning algorithms and provide a unified convergence analysis technique. This could
potentially open up new opportunities to the development of a tight non-asymptomatic analysis for
Q-learning algorithms and the design of new RL algorithms.

It is worth mentioning that several recent work established the analysis of reinforcement learning
algorithms based on their connections to control theory. For example, [28] provided the finite sample
bound of TD learning based on Lyapunov stability theory for linear ODE. [6] extended the analysis
to Q-learning with linear function approximation. [13]] explored the connection between temporal
difference (TD) learning and the Markov jump linear systems (MJLS). Note that MJLS cannot be
used to characterize the nonlinear dynamics of Q-learning. Instead, we resort to linear switching
systems with state-feedback switching policies. Our new ODE approach based on linear switching
systems can be used as a viable alternative to prove the stability of the associated ODE of various
reinforcement learning algorithms as well as their asymptotic (and potentially non-asymptotic)
convergence. Finally, we remark that an earlier work [23]] also exploited the stability of linear
switching system for Greedy-G(@) to establish the boundedness of iterates.

2 Preliminaries: MDPs, switching systems, and stochastic approximation

2.1 Markov decision problem

We consider the infinite-horizon (discounted) Markov decision process (MDP) with state-space
S :={1,2,...,|S|}, action-space A := {1,2,...,|.A|}, transition matrices P, € RISI*ISI ¢ ¢
A, where P,(s,s’) is the probability transiting from state s to the next state s’ under action
a € A, and random reward function 7,(s,s’). A deterministic policy, 7 : S — A, maps
a state s € S to an action m(s) € A. The goal is to find a deterministic optimal policy,
7*, such that the cumulative discounted rewards over infinite time horizons is maximized, i.e.,
T = argmax, cq E [ Y pe o @Fra, (sk, sk+1)| ] ,where € [0, 1) is the discount factor, © is the
set of all admissible deterministic policies, (sg, ag, $1, a1, .. .) is a state-action trajectory generated
by the Markov chain under policy 7. The Q-function under policy 7 is defined as
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and the corresponding optimal Q-function is defined as Q*(s,a) = Q™ (s,a) forall s € S,a € A.
Once Q* is known, then an optimal policy can be retrieved by 7*(s) = arg max,c 4 @*(s, a).



2.2 Basics of nonlinear system theory

Consider the nonlinear system

d
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where z; € R" is the state and f : R™ — R" is a nonlinear mapping. For simplicity, we assume that

the solution to (T)) exists and is unique. This holds true if f is globally Lipschitz continuous.

Lemma 1 ([16, Theorem 3.2]). Consider the nonlinear system (1) and assume that f is globally
Lipschitz continuous, i.e., || f(x) — f(y)|| < L||x — y||, Y,y € R™, for some L > 0 and norm || -
then it has a unique solution x(t) for all t > 0 and xy € R™.

5

An important concept in dealing with the nonlinear system is the equilibrium point. A point x = x*¢
in the state space is said to be an equilibrium point of (T)) if it has the property that whenever the
state of the system starts at =, it will remain at ¢ [16]. For ([I]), the equilibrium points are the
real roots of the equation f(z) = 0. The equilibrium point 2¢ is said to be globally asymptotically
stable if for any initial state 9 € R", 2y — x° as t — oo. Now, we provide a vector comparison
principle [35 12} 126] for multi-dimensional ODE models, which plays a central role in the analysis
below. We first introduce the quasi-monotone increasing function, which is a necessary prerequisite
for the comparison principle.

Definition 1 (Quasi-monotone function). A vector-valued function f : R™ — R" with f =

i fa o fn]T is said to be quasi-monotone increasing if fi(x) < fi(y) holds for all i €
{1,2,...,n} and x,y € R™ such that x; = y; and x; < y; for all j # i.

An example of a quasi-monotone increasing function f is f(z) = Ax where A is a Metzler matrix,
which implies the off-diagonal elements of A are nonnegative. The vector comparison principle
is presented below. For completeness, we provide a different proof tailored to our interests in the
Appendix.

Lemma 2 (Vector comparison principle [35, page 112], [12, Theorem 3.2]). Suppose that f and f
are globally Lipschitz continuous. Let v, be a solution of the system %xt = f(xy), 20 € R, Vt >0,
assume that f is quasi-monotone increasing, and let v, be a solution of the system

d

P f(ve), wo <o, Vt>0, )
where f(v) < f(v) holds for any v € R™. Then, vy < x; for all t > 0.

2.3 Switching system theory

Consider the particular nonlinear system, the linear switching system,

%xt:Aatxt, zo=2z€R", teR,, 3)
where z; € R™ is the state, 0 € M := {1,2,..., M} is called the mode, oy € M is called the
switching signal, and {A,, o € M} are called the subsystem matrices. The switching signal can be
either arbitrary or controlled by the user under a certain switching policy. Especially, a state-feedback
switching policy is denoted by o(x;). The global asymptotic stability of the switching system is
guaranteed under a fundamental algebraic stability condition reported in [22].

Lemma 3 ([22| Theorem 8]). The origin of the linear switching system @) is the unique globally
asymptotically stable equilibrium point under arbitrary switchings, oy, if and only if there exist a
Sull column rank matrix, L € R™*", m > n, and a family of matrices, A, € R™*", 0 € M, with
the so-called “strictly negative row dominating diagonal condition”, i.e., for each A,,o € M, its
elements satisfy

[Aa]ii“" Z |[1‘_1g]ij| <0, Vi € {1,2,...,m},
je{1,2,...,n}\ {3}
such that the following matrix relation is satisfied: LA, = A,L, Yo € M.



2.4 ODE-based stochastic approximation

Because of its generality, the convergence analyses of many RL algorithms rely on the ODE ap-
proach [3,[17]. It analyzes convergence of general stochastic recursions by examining stability of the
associated ODE model based on the fact that the stochastic recursions with diminishing step-sizes
approximate the corresponding ODEs in the limit. One of the most popular approach is based on the
Borkar and Meyn theorem [4]]. We now briefly introduce the Borkar and Meyn’s ODE approach for
analyzing convergence of the general stochastic recursions

9k+1 =0 —|—O¢k(f(9k) —|—6k+1) “4)
where f : R™ — R” is a nonlinear mapping. Basic technical assumptions are given below.

Assumption 1.

1. The mapping f : R™ — R"™ is globally Lipschitz continuous and there exists a function
foo : R™ — R™ such that lim,_, o, @ = foo(x),Va € R™.
2. The origin in R™ is an asymptotically stable equilibrium for the ODE &y = foo(2¢).

3. There exists a unique globally asymptotically stable equilibrium 8¢ € R™ for the ODE
& = f(x4), e, vy = 0 ast — oo.

4. The sequence {ek,Gr,k > 1} with G, = 0(0;,£;,1 < k) is a martingale difference
sequence. In addition, there exists a constant Cy < oo such that for any initial 6y € R", we
have El|lex+1]2(Gk] < Co(1+ [|6]1%), ¥k > 0.

5. The step-sizes satisfy o, > 0,> pe ) Qg = 00, Y pe g O < 00.

Lemma 4 ([4, Borkar and Meyn theorem]). Under for any initial 8, € R",
supy g |0k || < oo with probability one. In addition, 0y, — 0° as k — oo with probability one.

3 Convergence Analysis of Asynchronous Q-learning

We consider the Q-learning updates

Qrt1(5k, ar) = Qr(sk, ar) + ax {rak<5ka Sk41) + Y max Qk(sk+1,ar) — Qr(sk, ak)} )

where «y, > 0 is the learning rate and (s, ak, Sk+1) comes from the trajectory of some behavior
policy. For simplicity of presentation, we assume {(sg,ar)}72, is a sequence of i.i.d. random
variables from the stationary state-action distribution, d,(s), such that d,(s) > 0 holds for all
s € S,a € A. This assumption is common in the ODE approaches for Q-learning and TD-
learning [29] and can potentially be relaxed. Note that different from the original Watkin’s Q-learning,
we do not require the step-size o, to depend on the state-action pair.

Before proceeding, we introduce the following compact notations:

P:= [Pl ,PL|T € RISXISIAI R.— [RT,... RT,|T € RISI4I,
D, := diag[da(1), - ,do(|S])] € RISXISI D := diag[Dy, -+ , D 4] € RISIAXISIAL
and Q == [QF,---, Q[ ]" € RISIAL where Q, = Q(-,a) € RIS, and R, (s) := E[r,(s, s')|s, al.

By definition, D is a nonsingular diagonal matrix with strictly positive diagonal elements. In addition,
we denote e, € RIS and e, € R as s-th basis vector (zero except for the s-th component) and
a-th basis vector, respectively. For any deterministic policy, 7 : S — A, we define the corresponding
distribution vector 7(s) := er(5) € A|s|, Where A is the set of all probability distributions over S.
Lastly, we denote the matrix

I, := [7(1) ® e1, 7(2) @ ea, ..., T(|S]) @ €))7 € RISXISIAI

and greedy policy m¢(s) := argmax,c 4 €. Q, € A. By definition, for any 7 € O, PII, is the
state-action pair transition probability matrix under the deterministic policy 7.



3.1 Asynchronous Q-learning as affine switching system

Using the notation introduced, the Q-learning update can be rewritten as

Qrt1 = Qr + ax (DR +vDPIly, Qr — DQr + 5k+1) ; (6)
where
eri1 =(€a ® €s)(ea ® €5) R+ 7(ea @ €4)(esr) Ty, Qi
— (ea ®es)(ea @ es)" Qp — (DR + YD Py, Qr — DQy).

It can be easily shown that {11} is a martingale difference sequence. Using the Bellman equation
(vDPIl,,. — D)Q* + DR = 0, (6) can be further rewritten as

(Qes1 — Q) = (Qx— Q) + a[(YDPILey — D)(Qx— Q")
+ ’}/DP(I_[TK-Q’C — Hﬂ-Q* )Q* + €k+1] .

As discussed in the convergence of (7) can be analyzed by evaluating the stability of the
corresponding continuous-time ODE

%(@—Q*) = (yYDPIr,, —D)(Q:—Q")+yDP(Ilr,, —1r,.)Q", Qo—Q" = z € RISIAI(8)

which is an affine switching system. More precisely, if we define a one-to-one map ¢ : © —
{1,2,...,|0]|}, where O is the set of all deterministic policies, z; := Q; — Q*, and
(Ay(r)s by(my) := (YDPI; — D,y DP(Il; — I, ) Q")

for all m € O, then (8] can be represented by the affine switching system

d

%xt = Aa’(wt)xt + bo’(wt)y To =2 € R‘$||A‘7 &)
where, o : RISIMI — {12/ |©]} is a state-feedback switching policy defined by o(z;) :=
w(ﬂ-Qt )’ Q. (S) = argmaxge 4 € Qt,a-
Since (9) is a switching system with a state-feedback switching policy, it may cause arbitrary
switching behaviors. It is unclear whether its solution exists over all ¢ > 0 and whether the solution
is unique. We establish the existence and uniqueness of its solution, which follows from the global
Lipschitz continuity of the affine mapping.

TQ*

(7

Proposition 1. The mapping f(0) = (yDPIl., — D)#. is globally Lipschitz continuous w.r.t. || - || cc-
Hence, the solution of the switching system Q) exists and is unique for all t > 0 and xy € R".

3.2 Stability analysis

Note that proving the global asymptotic stability of (9)) without the affine term is relatively straight-
forward based on However, none of the existing theory supports switching systems with
affine terms. To address this issue, we construct two comparison systems by exploiting the special
structure of the switching system and the greedy policy and prove their global asymptotic stability.
By further building on the vector comparison principle introduced in[Lemma 2] we then establish the
asymptotic stability of the desired affine switching system.

More specifically, we consider the upper comparison system

4@ Q") = (WDPIL, ~D)QF ~ @), Q5 -@ >Q @ eRSM (o)

and the lower comparison system

%@i ~ Q") =(DPllg- - D)(Q; —Q"), Q) ~Q <Q—Q R a1

Observe that, (T0) is a linear switching system and (T1) is a linear system. We can prove that both
systems are asymptotically stable by verifying the strictly negative row dominating diagonal condition
required in By using the vector comparison theorem and the quasi-monotone property, we
can prove that the original switching affine system’s trajectories are sandwiched by the trajectories of
the two systems.

Theorem 1. Consider the systems (8), (I0) and(I1). We have



L Q —Q* <Qi—Q  <Q'—Q*forallt >0;

2. The origin is the unique globally asymptotically stable equilibrium point of the affine
switching system (8).

We are now in position to apply the Borkar and Meyn theorem to establishing the convergence of
asynchronous Q-learning.
Theorem 2. Assume that the step-sizes satisfy

ap >0, Yrl k=00, Y po,0r < oo (12)
Then, Q — Q™ with probability one.

The proof is fairly straightforward by invoking|Lemma 4] [Proposition 1} and[Theorem 1} We can see
that the convergence of asynchronous Q-learning follows immediately after proving the asymptotic
stability of the associated affine switching system. In contrast, the convergence analysis of Q-learning
in [4] relies on a nonlinear ODE model, whose asymptotic stability is proved in [S]] by using the max-
norm contraction of the Bellman operator; yet the analysis only applies to synchronous Q-learning,
i.e., at each time all entries of the iterate are updated.

Lastly, it is worth mentioning that a number of work has recently established non-asymptotic analysis
for asynchronous Q-learning, including [32,|9, 27]]. The current best known bound is given in [27]]

showing a complexity of O (éll's_lly«;‘! 12 ) . However, we stress that unlike this line of work, the purpose

of our work is not to provide a tight convergence rate for asynchronous Q-learning, but rather to
build an intuitive understanding of the family of Q-learning algorithms through the lens of switching
systems. The switching system framework provides a simpler analysis and can be easily extended to
deal with many Q-learning variants, as we show in the subsequent sections.

4 Convergence Analysis of Averaging Q-learning

We now consider a variant of the asynchronous Q-learning algorithm, called averaging Q-learning,
which is newly introduced in [19] and motivated by the success of deep Q-learning [25]], in order to
improve the stability. The averaging Q-learning maintains two separate estimates, the target estimate
and the online estimate: the online estimate is for approximating the state-action value function )
and updated through an online manner, whereas the target estimate is for computing the target values
and updated through taking Polyak’s averaging. Specifically, the algorithm works as follows:

Qi1 (51, ax) = Qi (s, ar) + ay, {7‘%(81«, Sk+1) + 7%133‘(@?(5%1, ag) — QI?(Shak)} , (13)

Qi1 (s ar) = QF (sk, ar) + ard(Q1 (sk, ar) — QF (sk, ax)). (14)
where § > 0 is a rescaling constant. Following similar arguments as in the asynchronous Q-learning
case, the corresponding ODE model is given by the following switching system:

L[ g [ e
at (QF —Q*| ~ o1 —aI B 0 ’
{g@ - g] — . e RASIAI (15)
b_

which matches with the general form in (9). We obtain the global asymptotic stability of (I3).

Theorem 3. For any § > 0, the origin is the unique globally asymptotically stable equilibrium point
of the affine switching system (13)).

As a result, by invoking Borkar and Meyn’s theorem similarly as before, we arrive at

Theorem 4. For the averaging Q-learning, assuming the step-sizes satisfy (12)), then for any § > 0,
Qf — Q* and QB — Q* with probability one.

We remark that this is indeed the first convergence analysis of the averaging Q-learning algorithm. In
contrast, previous work [19] only provided the asymptotic convergence of averaging TD-learning.
We expect that this analysis would also shed light on the convergence of other target-based Q-learning
algorithms, e.g., the double Q-learning [[11]], periodic Q-learning [20], etc.



5 Convergence Analysis of Q-learning with Linear Function Approximation

When the state-space is large, linear function approximation are commonly used to approx-
imate the optimal Q-function, Q* = ®0*, where ® is the feature matrix. In particular,
given pre-selected basis (or feature) functions ¢1,...,¢, : & — R, the feature matrix ¢ €
RISI*" s defined as ® := [p(1,1),6(2,1),---, (S|, \A|)]T € RISIAIX? where ¢(s,a)” =
[01(s,a), pa(s,a), -, Pn(s,a)] € R™. Here n < |S||A] is a positive integer.

Q-learning with linear function approximation performs the following update:
Op+1 = Ok + ard(sk, ar) [Ta(sk, Sk1) + W?Eai(@ek)(skﬂ, a) — (®0y) (s, ar)], (16)

where oy, > 0 is the learning rate and { (s, ax)}7°, are sampled from the stationary state-action
distribution d,, (s) under a behavior policy /3 such that d,(s) = limy_, o P[(sk, ax) = (s,a)|0]. Ttis
well-known that Q-learning with linear function approximation may not converge in general [30].
Under certain conditions, its convergence can be proven. For instance, [24] demonstrates the
asymptotic convergence assuming that the following condition holds:

V2T DPII,® < T D®, VYr e Og, (17)

where Qg 1= {7 € © : 7(s) = argmax,. 4(®0)(s,a),Vs € S,0 € R™} and D” is a diagonal
matrix whose diagonal entries correspond to the stationary state distribution of the underlying Markov
decision process under the behavior policy 3. Recently, [6] considered a slightly stronger condition
in order to obtain the convergence rate of Q-learning with linear function approximation.

In this section, we analyze the convergence from the switching system perspective and provide a new
sufficient condition that ensures the asymptotic convergence. We start by introducing some basic
assumptions.

Assumption 2. [®|;; > 0foralli € Sand j € {1,2,...,n}.

Assumption 3. All column vectors of ® are orthogonal.

requires all elements of ® to be nonnegative. This assumption is required in our
convergence analysis to obtain lower and upper comparison systems of the affine switching system.
In the case that no function approximation is used, ® is set to be an identity matrix, ® = I, which
automatically satisfies [Assumption 2} We emphasize that this assumption is not very restrictive. For
instance, if the values of rewards are nonnegative, then it is sufficient to set feature vectors with
nonnegative elements when approximating the Q-function. Otherwise, the rewards can always be
shifted to nonnegative by adding a large enough constant. [Assumption 3|is slightly stricter than the
assumption of having full column rank which is usually adopted in the RL literature.This is required
in order to guarantee the quasi-monotonicity of the corresponding switching system models.

Following a similar analysis, the associated affine switching system is given by

d

—0, = (v®T DPII
i t (’Y

d - T D®)G;, + T DR, 6, € R™,

T®6,

or equivalently,

d
%(Gt —0*) = (v®T DPII
where 6y — 0 = z € R", ma4, (s) = argmax,c 4(P0;)(s,a) and 6* is the optimal parameter satis-
fying the projected Bellman equation ®0* = I'(yPll,,. ?0* + R),and I' := &(®T D®)~1dT D
is the projection onto the range of ®.

o0, ® — T D®) (0, — 6%) + " DP(Il,,, —Ig,,.)00%, (18)

We first establish the asymptotic stability of the system (I8).

Theorem 5. Suppose that|Assumption 2|and|Assumption 3| hold. The origin is the unique globally
asymptotically stable equilibrium point of the affine switching system if the following condition
holds:

— ¢! D¢i + ¢/ YDPIymy Y ¢; <0, 7€ Og, (19)
je{1,2,....n}

where ¢I'is the i-th row of the feature matrix ®.

As aresult, this leads to the following convergence:



Theorem 6. For Q-learning with linear function approximation, under Assumptions [2}3| and the
condition specified in (I9), we have 0y, — 6* with probability one.

We now make some remarks on the sufficient condition (I9), which may look abstract at first sight
since it purely stems from switching system theory. Similar to Melo’s condition, our new condition
also suggests that the behavior policy should be close to the optimal policy. In fact, this condition is
quite similar to the diagonal dominant condition used in network science fields [37, [7]. Our analysis
indicates that this condition is a necessary and sufficient condition for the asymptotic stability of
the underlying switching system model of Q-learning, while Melo’s condition is only a sufficient
condition for the asymptotic stability. Especially, Melo’s condition is strong enough to guarantee
the existence of a quadratic Lyapunov function for the underlying switching system model, while in
general, the switching system does not necessarily admit quadratic Lyapunov functions. This shows
the less conservativeness of our new condition.

Proposition 2. Under the above assumptions, Melo’s condition implies the condition (I9).

In practice, to derive a computationally tractable sufficient condition, ©¢ can be replaced with O.
A special case where the condition holds is when elements of the feature vectors ¢; are binary
numbers, {0, 1}. This clearly holds for the tabular setting.

Proposition 3. Suppose the elements of the feature matrix © are binary numbers, i.e., {0, 1}, then
the condition (I9) always holds.

Lastly, we give a simple MDP example which satisfies the sufficient condition in (I9), but violates
the Melo’s condition (T7).

Example 1. Consider an MDP with S = {1,2}, A ={1,2}, v =109, P, = {1{2 1(/)2} Py =

[2(/)3 1}3], and a behavior policy 3 such that Pla = 1|s = 1] = 0.2,Pla = 2|s = 1] = 0.8, Pla =

l|s =2] =0.7, Pla = 2|s = 2] = 0.3. The corresponding matrices D® and D are given by
0.1 0 0 0
5 _ 105 0 |10 035 0 0
b —[o 0.5}7 D=10 0 04 o
0 0 0 0.15
If the feature matrix is ®T = [1 2 0 1], then O is given by Op = {my, o}, where 71 is a
deterministic policy such that w1(1) = 1, 71(2) = 1 and 7 such that 7o(1) = 2, w2(2) = 2, which
are obtained by considering three cases, 0 > 0,0 = 0,0 < 0, Here, we assume that whenever
{1,2} = argmax, 4(®0)(s, a), we select a = 1 in Q-learning. The quantities in ({I9) are given by
—0.885 and —0.03 for all m € O = {m1, 72}, implying convergence of the algorithm. However, the
quantity Y*®TTIL DPIL,, ® — ®T D® is computed as —1.2450 and 0.3750 for all 7 € Og = {1, 72},
respectively. This implies that the condition in fails to verify the convergence.

6 Numerical Simulation

Consider an MDP with S = {1,2}, A = {1,2},7 = 0.9,
0.2 0.8 0.5 0.5 3 2
= [0.3 0.7} = [0.7 0.3} = H » = H
and a behavior policy 3 such that
Pla=1ls=1]=0.2, Pla=2|s=1]=0.8,
Pla =1]s=2]=0.7, Pla=2|s=2]=0.3.
Simulated trajectories of the O.D.E. model of Q-learning including the upper and lower comparison
systems are depicted in Simulated trajectories of the O.D.E. model of the averaging Q-
learning including the upper and lower comparison systems are depicted in for Q! part. The

simulation study empirically justifies the bounding principles and asymptotic convergence established
in theory.
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7 Conclusion

In this paper, we offer a unified and convenient convergence analysis of various Q-learning algo-
rithms building on novel connections to switching systems. We establish the first ODE analysis for
asynchronous Q-learning and averaging Q-learning, and derive a new sufficient condition to ensure
the convergence of Q-learning with linear function approximation. While this work focuses only
on the asymptotic convergence of a subset of RL algorithms, we expect that the switching system
approach could be leveraged to advance the understanding of many other RL algorithms and extended
to non-asymptotic analysis. This may also shed light on the design of more efficient and robust RL
algorithms from the control perspective, which we leave for future investigation.
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A Notations

Some notations used in the paper are summarized below:

AN N AW N =

O o0 3

10.

11.

12.
13.
14.

15.
16.

. State space: S :={1,2,...,|S|}

. Action space: A :={1,2,...,|Al}

. Transition probability: P, (s, s’)

. Random reward: r,(s, s’)

. P, eRISIXISI g e 4

. P,(s, s'): the state transition probability from the current state s € S to the next state s’ € S

under action a € A

. Ta(8, s'): the reward random variable conditionedon a € A, s,s' € S
. Ru(s,8") :=Elra(s,s)|s,a, ']

P Ry Q1
Pe| : |erSXSIAL g | . | erSM, 9= | : | erSIA
Plaj B4l Q4
where Q, = Q(-,a) € RIS| a € Aand R,(s) := E[ra(s,s')|s, a).

dq(1) D,
D, = . eRISXISI D .= .. e RISIAIXISIIA|
da(|S]) Dyl
es € RIS and eq € RII: s-th basis vector (zero except for the s-th component) and a-th
basis vector, respectively
A\s): the set of all probability distributions over S

7?(8) =e€r(s) € A|S‘

M @ef
2 T ® T
M, = BF @ | pisiisial
S GNT o T
(IS @ eg
Feature vector: ¢(s,a)’ := [p1(s,a), p2(s,a), -, dn(s,a)] € R™.
Feature matrix:

3N

S||A
D= , € RISIMIxn,

B Proof of Lemma

Proof. We simplify and summarize the ideas of the proofs in the literature, [35, page 112],[12,
Theorem 3.2.], in the following proof. Instead of @]) first consider

%vs(t) = f(ve(t)) —el,, w:(0) <z(0), Vt>0

where € > 0 is a sufficiently small real number and 1,, is a vector where all elements are ones, where
we use a different notation for the time index for convenience. Suppose that the statement is not true,

and let

t* :=inf{t > 0 : Ji such that v, ;(¢) > z;(¢)} < o0,
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and let ¢ be such index. By the definition of ¢*, we have that v. ; (t*) = x;(t*) and v. ;(t*) < x;(t")
for any j # i. Then, since f is quasi-monotone increasing, we have
Filve(t) < Fi(x(t7)). (20)
On the other hand, by the definition of ¢*, there exists a small § > 0 such that
’L)E7Z‘(t* + At) > l‘i(t* + At)
for all 0 < At < 4. Dividing both sides by At and taking the limit At — 0, we have
Ve (1) 2 @:(t7) = fi(=(t7)). 2D
By the hypothesis, it holds that
d _
27 Ve(t) = f(ve(t)) — eln < f(ve(t)) < F(ve(t))
holds for all ¢ > 0. The inequality implies . ;(t) < f;(v<(t)), which in combination with (2T) leads
to f;(ve(t*)) > f,;(x(t*)). However, it contradicts with (20). Therefore, v.(t) < x(t) holds for all

t > 0. Since the solution v, (t) continuously depends on £ > 0 [35] Chap. 13], taking the limit e — 0,
we conclude v (t) < z(t) holds for all ¢ > 0. This completes the proof.

O
C Proof of Proposition I
Proof. The proof is completed by the inequalities
1 () = FW)lleo =[[(¥DPIlx, — D)z — (YD Pz, = D)yllo
<IYDP|loc M,z = I, Ylloo + | Dllso |z — ¢l
= .DP 0o a - a D [e%e} - e’}
IV DPoc mak | max 2 (s) — max ya(s)] + [ Docllo ~ ol

< DP %) a — Ya D oo - oo

<[lyDPlloo maxmax |z4(s) — ya(s)| + | Dllollz — ol

=[vDPlscllz = Ylloo + I Dllscllz = ylloo

<(IWDPlloe + [ Dlloc) 17 = Yll oo,
indicating that f is globally Lipschitz continuous with respect to the || - || norm. O

D Proof of Theorem 1

Lemma 5. Consider the affine switching system (9). The origin of the associated linear switching
system

d
— Tt = Acrtxh

dt

is the unique globally asymptotically stable equilibrium point under arbitrary switchings, oy.

Proof. The proof follows by applyingwith L =1,A, = A,. In this case, the condition,
LA, = A, L holds. It remains to prove the strictly negative row dominating diagonal property. For
notational convenience, we definte I, 0 € M as HWQ 5 such that o = w(ﬂ'QF ). Then,

[Ag)ii + > [Aolij| =[Dlsi[yPly — I];i + > [Dl;i| [y P, — 1]y
je{1,2,...,n}\{i} je{1,2,...,n}\{3}
<WPH, =T+ Y. |[yPT, — 1]
Je{1,2,...,n}\ {3}
=[yPllglii =1+ > [P

Je{1,2,...n\{i}
=y—-1<0, VoeM,
which proves the global asymptotic stability. O
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Proof of[Theorem 1| The basic idea of the proof is to find systems whose trajectories lower and upper
bounds the trajectory of (9) by the vector comparison principle. Then, by proving the asymptotic
stability of the two comparison systems, we can prove the asymptotic stability of (9).

Since each element of I1; . Q™ takes the maximum value across a, it is clear that (H7er —II, . )Q* <
0 holds, where the inequality is element-wise. Moreover, since D P has nonnegative elements,
YDP(Ilz,, —x,. )Q" < 0holds. Therefore, we have (yDg Pllz, —D)(Q:—Q")+yDP(Ilz,, —
HWQ*)Q* < (VDPHﬂQt —-D)(Q: — Q) < (VDPHWQFQ* —D)(Q; — Q) forallt € Ry. To
proceed, define the vector functions

f(y) =(yDPIl,, — D)y,

f(:) =G DPI,_ . = D)z +4DP(Ir. . — T )",

L Tz4Q*
and consider the systems
= Fly), o> Qo—Q,
d
%Zt = i(zt)v 20 = Qo — Q7

for all ¢ > 0. To apply we will prove that f is quasi-monotone increasing. For any

z € R'SH"”, consider a nonnegative vector p € RISIAI guch that its ith element is zero. Then, for
any ¢ € S, we have

el F(z+p) =¢] (YDPIL4, — D)(z +p)
=vel DP,.,(z +p) — el Dz — el Dp
=ve] DPI1, (2 + p) — el Dz

[ max,(zq(1) + pa(1))

- maxy(24(2) + pa(2)) T
=ye; DP ) —e; Dz

[ max, (za(|S]) + pa(|S]))

[ max, zq(1)

max, z,(2)
>vel DP a, ‘ —eI'Dz

lmax, z4(]S])
=e; f(2),

which proves the quasi-monotone increasing property, where the second line is due to el Dp = 0.
Moreover, following similar lines of the proof of Proﬁosition ll, one can prove that f is Lipschitz
continuous. Using f(z) = (yDPIly ., — D)(z + Q") + DR and following similar lines of
the proof of we conclude that f is Lipschitz continuous as well. Now, by
Q:— Q" < J7—0¢7holds for every t € R, where 0y — Q™ is the solution of the switching system,
which we refer to as an upper comparison system

d
2 (QF = Q") = (\DPIr,, — D)(Qf —Q7), Qf —Q">Qo— Q" R,

By the origin of the above switching system is globally asymptotically stable even under
arbitrary switchings. Therefore, Q; — Q* is asymptotically upper bounded by the zero vector as
t — oo.

On the other hand, we have
(VDPHth - D)(Q:— Q") + ’yDP(H,er — 1l )QF = (VDPHﬂQt —D)Q:++ DR
Z(’YDPHﬂQ* - D)Qt + DR = ("YDPHTrQ* - D)(Qt - Q*)a

where the first inequality is due to YD PIlr, @ > vDPIly,. @, and the second equality uses
DQ* = yDPly,.Q" + DR. Again, define the vector functions for lower comparison parts

fly) =(vDPIL,, — D)y + DR,
f(z) =(yDPl,,, — D)z+ DR

L TQ*
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and consider the systems

d
= Fwe)s  yo = Qo,
izt - i(zt)a 20 < Q07

forallt > 0. To apply we can prove that z is quasi-monotone increasing following the

same lines as above. f is Lipschitz continuous by [Proposition 1{and f is Lipschitz continuous as it is

linear. Therefore, we can invoke [Lemma 2|, to prove the inequality Q! — Q* < Q; — Q* forall t > 0,
where QL — Q* is the solution of the following linear system called the lower comparison system:

4 (Qh—@7) = (4DPIg ~ D)L~ Q). Qh—Q < Qy—Q e RS

The origin of the above linear system is globally asymptotically stable equilibrium point by [Cemma 3]
Therefore, Q; — Q* is asymptotically lower bounded by the zero vector as t — oo. Combining the
bounds, we conclude that Q; — Q* — 0 as ¢ — oo. This completes the proof of O

E Proof of [Theorem 2

Proof of[Theorem 2} First of all, note that the affine switching system model in (9) corresponds to

the ODE model, ¢ = f(z,), that appears in The proof is completed by examining
all the statements in |Assumption

1. Q-learning in (7) can be expressed as the stochastic recursion in @) with
f(0) = (yDPUz, = D)8 +yDP(Ilz, — Iz ) Q"

To prove the first statement of we note that
0 DP(IIL,, — 11, ,)Q*
IO _(ypp,, — pyo+ (Mg ~Trg- )0
c c

where the last equality is due to the homogeneity of the policy, me(s) =
arg max, 4 €2 cf, = arg max, 4 el 6,. By taking the limit, we have

0 DP(IL,, — 11, .)Q*
im £ — (ypp1L,, - D)o+ tim 22U ~Trg:)O
c—00 c C—00 Cc
— (YDPIL,, — D)8 = f.o(8).
Moreover, f is globally Lipschitz continuous according to Therefore, the
proof is completed.

2. The second statement of follows from|[Cemma 3.
3. The third statement of follows from[Theorem 1]

4. Next, we prove the remaining parts. Recall that the Q-learning update is expressed as

Qit1 = Qr + o (f(Qr) + er1)

with the stochastic error
chi1 =(ea ®€s)(ea ® €5) R+ (€0 @ €4)(esr) Tlay, Qi

—(ea @es)(eq @es)TQr — (DR + YDPlr, Qr— DQy)
and
f(Q) = (yDPlx, — D)Q + yDP(Ilz, — . )Q".

Define the history Gy, := (ek, k-1, - --,€1, @k, @1, - - ., Qo), and the process (M),
with M}, = Zle ¢;. Then, we can prove that (My)32 , is Martingale. To do so, we first
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prove E[e;11|Gk] = 0 by
E[5k+1|gk] :E[(ea ® 65)(611 ® €S)TR‘gk] + E[V(ea ® 65)(65/)TH7TQk Qk|gk]
—E[(eq ® €5)(ea @ €5)" QulGr] = E[DR + yDPllrg, Qx — DQr|Gi]
=E[DR + YDPlxr, Qr — DQy|Gr] — E[DR + YDPlxr, Qr — DQy|Gr]

=0,
where the second equality is due to the i.i.d. assumption of samples. Using this identity, we
have
k+1
E[Mj4+1|Gk] = ZEZ 1 Elex+1|Gk] + E ZEz ]
=1

Zﬁz‘ gk‘| = 251‘ = M
i=1 i=1

Therefore, (Mk)zozo is a Martingale sequence, and €1 = My — M}, is a Martingale
difference. Moreover, it can be easily proved that the fourth condition of is
satisfied by algebraic calculations. Therefore, the fourth condition is met.

O

F Proof of Theorem 3

Proof. Using *yDP(H,rQB —Iy,. )Q* < 0, we obtain
[—D ’)/DPHﬂ— B} {Qt Q*} [WDP(H%B —HWQ*)Q*} < [—D WDPH,r B} {QA Q*

51 - QF —Q* 0 iy - QP — Q"
~D yDPU,,, ..\ [Qf - Q"
S{M oI Q_[QZB—Q*]

Consider the upper comparison system

dat QP — 51 Ny
and define the vector functions

Flyr,y2) = F (yl’yQ)] = [_6? 'YDP(S_MQ] [91}

2t - Q) o - Q QF

falyi,y2) Yo
s | )

and consider the systems
i {yt,l} _ Fl(yt,l’ Z/t,ﬁ} Yo > [Qé‘ - Q*}
dt |Yt,2 fo(We1,ye2)] QY —Q* |’
d [z, £z, 2e,2) Qr —Q*
= = ) zZ0 = B * |
dt |#t,2 iz(zt,laztﬂ) Ry —Q
for all t > 0. We first prove that f is quasi-monotone increasing. We will check the condition of

the quasi-monotone increasing function for f; and f,, separately. Assume that p; € RISIIAl and
p2 € RISIIAL are nonnegative vectors, and an ithe element of p; is zero. For f;, we have

el F1(y1 +p1,y2 +p2) = — €] D(yr +p1) +ve] DPIr, (2 + p2)
=—¢/ Dy + ’YefDPHw(yﬁm) (y2 + p2)
> —el'Dy; + *yeiTDPl_Lry2 Yo
26?71 (y1,92),
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where the second line is due to —e! Dp; = 0. Similarly, assuming that p; € RISl and p, €
RISIAl are nonnegative vectors, and an ithe element of ps is zero, we get

ei f2(y1 +p1,y2 +p2) =6e (y1 +p1) — v8e] (y2 + p2)
=de; (1 + p1) — o] Yo
>def y1 — o] ya
=¢] fo(y1,92),
where the second line is due to €7 py = 0. Therefore, f is quasi-monotone increasing. The Lipschitz

.. - . QA _ Q* QA U Q*
continuity of f and f can be easily proved. Therefore, by [Lemma 2 QtB o | = & s
S 5

QM —Qr
holds for all £ > 0, where { tBM Q*] is the solution of the upper comparison system.
P _
Moreover, using the inequality *yDPH,r B Qf > ~vDPII

B .
- Q¢ , we obtain

d Qé _ —-D wDPH Qt n > —D  yDPlg,. Qg n DR .
dt | Qi ol — QP of —oI Qy 0
Using this relation, consider the lower comparison system

d * _ Al _ % Al _N)* A _ N)x*
S F ) (g

or equivalently,
d [QM] _ [-D ~DPI,,.| [Q"'] | [DR
atloBt| T |1 —oI Bi 1o |
dt | Q; Q;

To proceed, define the vector functions

o= o] = 25 S]]+ 7]
s = [ ) = [ e [2][5)

i {yt 1} F (yt,layt,Z):| Yo = [Qéq - QT

dt Y2 Folye,ueo)]” 70 |QF —Q*]”

i Ztl . i (Zt,lazt,Q) QO Q*
zea| [ fy(21.262) )0 Qo Q]’

for all £ > 0. Similar to the upper comparison systems, we can easily prove that f is quasi-monotone
increasing, f and f are Lipschitz continuous. Therefore, applying similar steps as before and

Q- @ - —Q
using [Lemma 2| we have that [QtB Q*] > [ B Q*} holds for all ¢ > 0, where {Qt Q*]
t + -

is the solution of the linear system

Now, it remains to prove the asymptotic convergence of the comparison systems. For notational
convenience, we define I, o € M as H,,Q 5 such thato = "(/}(WQtB ). Then, for the upper comparison
t

switching system, we apply [Lemma 3|with A, = [_MD ’YD];}I”} and L = [é 7192 I} , which

] o ..+ _ | =D ~Y2DP1,
satisfies LA, = A,L with A, = [71/25] I

} To check the strictly negative row
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dominating diagonal condition, fori € {1,2,...,|S||A|}, we have

[Aq]ii + > I[A)i5] =[=Dlii +~/?[-Dli; > |[PIL 5]
Je{1,2,...,n\{i} Je{1,2,...,n\{i}
<[-D}ii +v"/*[-Dlis
<-14+4Y72<0.
Fori € {|S||A] + 1,|S||A| +2,...,2|S]||Al}, we also have
Aoli+ D Aoyl = =0+ 52 =6(-1+4"?) <0

Je{1,2,..,n\{i}
for any 6 > 0. Therefore, the strictly negative row dominating diagonal condition is satisfied.
By[Cemma 3] the origin of the switching system (I3) is globally asymptotically stable. The lower
comparison system’s stability can be proved in an equivalent way. Since the switching system’s
solution is upper and lower bounded by the corresponding comparison systems, it asymptotically
converges to the origin. This completes the proof.

G Proof of Theorem 5

Proof. By [Assumption 2] it holds that 797 DP(ILy,, — ILs,,.)®0" < 0, ®7(YDPIL,,, ~

D)®(0y —6*) < ' (yDPII D)®(0; — 6*), and we obtain the upper comparison system

TEOE—6%)
d * Uu *
%(9? —07) :¢T(7DPH7T<I>(9;/‘—9*) - D)(I)(et -0 )7
0§ — 0" >0y — 0" € R™. (22)
To proceed, define the vector functions
f(y) =@" (yDPIly,, — D)Py
z) = — z 4+
f ~v®T DPII ® — dTDD®)z +~dTDP(IT
and consider the systems

*
TH(z+0%) To(240%) Hﬂcps* )(1)0 IR

d _

%ytzf(yt% Yo > 0o — 0,
d

%Zt f(zt)7 2o = 6y — 6%,

forallt > 0. To apply we first check the quasi-monotonicity of f. For any nonnegative
vector p such that its ¢th element is zero, we have

el F(y +p) =e] (vOT DPIlg(, 1, ® — ©TD®)(y +p)
=ve! ®" DPIg (1) ®(y + p) — ] @7 DPp — e] " DIy
=ve! ®T DPIlg (4, ®(y +p) — €] " Doy

[ max,(P(y +p))a(l)

maXa(q>(y +1))a(2)
=vel ®TDP —el'd” Doy

_maxa(@(y + P))a(|S])

)a
[ maxa(®(y))a(1)
2)

| maxa(@())a( -
>ve; ¢ DP ) —e; & Dy

Lmaxa (P (y))a(IS])
=vye! ®" DPIlg(, @ (y) — e] @7 DOy
=e! f(y),

where the third line is due to and the fact thatﬁ@TD@ is a diagonal matrix. Therefore, 7
is quasi-monotone increasing. The Lipschitz continuity of f and f can be provided following similar
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lines of the proof of [Proposition 1| where we can use the fact that f(2) = (YD PIly ., — D)(z +
Q*) + DR. Therefore, the vector comparison principle, leads to 0; < 0} ast — oo.

On the other hand, by it holds that v®7 DPIl,,, ®0; > v®T DPII,,,. 6, and we
obtain the lower comparison system

4
dt

THe*

(6 — 0) =07 (yDPIL,,,. — D)D(0} — 6%,

THo*
0 — 0" <y — 0* € R™,
or equivalently,

%9,{ =9’ (yDPN,,,. — D)®0. — ®* (yDPIL,,,. — D)6,
6} <6y € R™.
To proceed, define the vector functions
f(y) =" (vDPI,,, — D)y + ®" DR
f(z) =" (yDPU,,,. — D)®z — ®"(yDPI,,,. — D)®0*,

and consider the systems

d
= f(e)s  yo = 0o,

= f(zt), 20 < 0o,
14

for all t > 0. To apply we check the quasi-monotonicity of f, which can be easily proved
following the steps for the upper comparison system. The Lipschitz continuity of f and f can be also

proved following similar lines of the proof of Therefore, leads to 0; > 0! as

t — o0.

To prove the asymptotic stability of the original system (I8)), it is sufficient to prove that the upper and
lower comparison systems are globally asymptotically stable. In this respect, we can apply [Lemma 3|
to obtain a sufficient condition for the stability. In particular, both the upper and lower comparison
systems are globally asymptotically stable if the switching system is globally asymptotically stable

d

—0y = A, 0,

e’ o

under arbitrary switchings, oy, where Ay () = (PT(WDPHM,T) —D)®forall v € Og. By
it is true if and only if

[Ay )i + > [Ay(m)]is]
Je{1.2,...,n}\{i}
=[®" (yDPIly(x) — D)®lii + > [®7 (yD P () — D) @]

j€{1,2,...,n}\{}

=¢f (YDPIym)di — 1 Do+ > &7 (YDPILy(x) — D)o,
Je{1,2,...,n\ {7}

=—¢IDpi+ > ¢TADPILymo;

Jj€{1,2,...,n}
=—¢] D¢ + ¢ YD PILy () Z ?;
je{1,2,...,n}
<0
foralli € {1,2,...,n},m € Og, where the second line is due to|Assumption 2|, and the fourth line
is due to|Assumption 3|and the fact that ¢ D¢; = 0 for j # i. This completes the proof. O

20



H  Proof of Proposition 3

Proof. If the elements of the feature matrix ® are binary numbers, then since the columns of ®
consist of sums of distinct basis vectors, e; € RISIIMI and it follows that

> 4 < (23)
je{1,2,...,n}
where 1g/4| is the vector with all elements being ones. The right-hand side of the condition
inﬂﬁeﬁj is bounded as
[Ay(m)ii + Z [Aym)ij| = — & Dé; + ¢] v D Py Z b;
Je{1,2,...,n}\ {3} je{1,2,...,n}

< — @] Do + & YDPIly ()15 )
= — ¢! Do + 797 D1,5)4

= — ¢} Do + 79} Do

=(y = 1)¢] D¢

<0,

where the first line comes from the second line is due to (23)), and the third line is due to
the fact that PHw(,T) is a stochastic matrix, i.e., its low sums are one. This completes the proof. [

I Proof of Proposition 2

Proof. The basic idea of the proof relies on the fact that Melo’s sufficient condition ensures the
existence of a quadratic Lyapunov function for the upper comparison system (22) following the results
in [24]]. Since the new sufficient condition, [Proposition 2} is a necessary and sufficient condition for
the global asymptotic stability of the upper comparison system, the Melo’s condition implies the
proposed new condition. Suppose that Melo’s sufficient condition holds, and consider the quadratic
Lyapunov function candidate: V (6, — 6*) := (6, — 0*)7(6; — 6*).
Its time derivative along the state trajectories of the upper comparison system (22)) is given by
d * * *
ﬁth —60*) = (6, — 6")" ®" (yDPIl,,, — D)®(6; — %)
=y(0; — 6*)"®" DPIL,,, ®(6; — 0%) — (6; — 0*)"®" DD(6; — 6*)
=—(0; — 0") " DP(0; — 0%) + VE[(6; — 0°) " (eq ® €5)(es) Tnyy, D(6; — 0%)},
where (s, a) is sampled from the stationary state-action distribution and s’ ~ P, (s, -). Similar to the
ideas in [24], using Holder’s inequality leads to
d
—V(0; — 0~
V=0

=0, — )L T (yDPI,,, — D)®(0; —0%)

To0,

<— (6, —0)TdT DD, — 6*) + 7\/E[(0t —0)TDT (e, @ e)(eq @ es)T®(;, — 6%)]

X \JEI(6: — 69)TOTIIL, , (es)(es) Thny,, (0: — 6%)]

PO,

(0, — 0%),

PO,

=—(0; — ") T T DD, — 6%) + 7\/(9t — 0)TOTDD(h, — 6*) x \/(9t —0*)TOTIIE,  DPII

where the last equality uses the fact that the distribution of s’ is identical to the distribution of s. Now,
we apply the Melo’s condition to have

d .
V(6 —6")

<—(0; — )T T DD, — 6%) + 7\/(@ —0)TOTDD(h; — 9*)\/712(& —0)TOTDD(H; — 6*)

=— (0, — ") 1T DD(0; — %) + (0, — 0*)T T DD, — 6)
=0, V6, —6" #0.
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This implies that V' is a Lyapunov function. By the standard Lyapunov theorem, the origin of the
upper comparison system (22)) is globally asymptotically stable. The proof holds even if the upper
comparison system is arbitrarily switching. Since the new sufficient condition in [Proposition 2]is
a necessary and sufficient condition for the global asymptotic stability of the upper comparison
system (22) under arbitrary switching, this implies that the proposed new condition holds. O
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