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Figure S1: Visualization of anchor boxes in the scenarios used in Figure 1. Green and red boxes
are positive anchors and ground truths respectively. pi refers to confidence score of the anchor ai.
Note that for all of the scenarios, there are additionally six false positives (see Figure 1), which are
excluded in this figure for clarity.

S6.3 Self-balancing the Gradients Instead of the Loss Value . . . . . . . . . . . . . . . 13

S7 Additional Experiments 13

S7.1 More Ablation Experiments: Using Self Balance and GIoU with AP Loss . . . . . 13

S7.2 Anchor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

S7.3 Using a Wrong Target for the Primary Term in the Error-driven Update Rule . . . . 14

S7.4 Implementation Details for FoveaBox and Faster R-CNN . . . . . . . . . . . . . . 15

S1 Details of Figure 1: Comparison of Loss Functions on a Toy Example

This section aims to present the scenario considered in Figure 1 of the main paper. Section S1.1
explains the scenario, Section S1.2 and Section S1.3 clarify how the performance measures (AP,
AP50, etc.) and loss values (cross-entropy, AP Loss, aLRP Loss, etc.) are calculated.

S1.1 The Scenario

We assume that the scenario in Figure 1(a) of the paper includes five ground truths of which four of
them are detected as true positives with different Intersection-over-Union (IoU) overlaps by three
different detectors (i.e. C&R1, C&R2, C&R3). Each detector has a different ranking for these true
positives with respect to their IoUs. In addition, the output of each detector contains the same six
detections with different scores as false positives. Note that the IoUs of these false positives are
marked with "–" in Figure 1(a) since they do not match with any ground truth and therefore their
IoUs are not being considered neither by the performance measure (i.e. Average Precision) nor by
loss computation.

S1.2 Performance Evaluation

There are different ways to calculate Average Precision (AP) and loss values. For example, in
PASCAL [5] and COCO [9] datasets, the recall domain is divided into 11 and 101 evenly spaced
points, respectively, and the precision values at these points are averaged to compute AP for a single
IoU threshold.

Here, we present how Average Precision (AP) is calculated in Figure 1(b). Similar to the widely
adopted performance metric, COCO-style AP, we use APIoU with different IoU thresholds. In order
to keep things simple but provide the essence of the performance metric, we use four samples with
0.15 increments (i.e. {0.50, 0.65, 0.80, 0.95}) instead of ten samples with 0.05 increments as done
by original COCO-style AP.
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Figure S2: PR curve of each detector output-APIoU pair. Rows and columns correspond to different
APIoU and detector outputs respectively. PR curves are interpolated (see the text for more detail).

Table S1: Precision of each detector output-APIoU pair for evenly spaced recall values. This table is
based on the PR curves presented in Fig. S2.

IoU Output Precisions for Different Recalls (R)
APIoUR=0.1 R=0.2 R=0.3 R=0.4 R=0.5 R=0.6 R=0.7 R=0.8 R=0.9 R=1.0

0.50
C&R1 1.00 1.00 0.67 0.67 0.50 0.50 0.40 0.40 0.00 0.00 0.51
C&R2 1.00 1.00 0.67 0.67 0.50 0.50 0.40 0.40 0.00 0.00 0.51
C&R3 1.00 1.00 0.67 0.67 0.50 0.50 0.40 0.40 0.00 0.00 0.51

0.65
C&R1 1.00 1.00 0.67 0.67 0.50 0.50 0.00 0.00 0.00 0.00 0.43
C&R2 1.00 1.00 0.67 0.67 0.30 0.30 0.00 0.00 0.00 0.00 0.39
C&R3 0.33 0.33 0.33 0.33 0.30 0.30 0.00 0.00 0.00 0.00 0.19

0.80
C&R1 1.00 1.00 0.67 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.33
C&R2 1.00 1.00 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.24
C&R3 0.20 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.08

0.95
C&R1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20
C&R2 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
C&R3 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

In order to compute a single average precision with an IoU as the conventional true positive labelling
threshold, denoted by APIoU, the approaches use different methods for sampling/combining indi-
vidual precision values on a PR curve. The PR curves corresponding to each detector-APIoU pair
are presented in Figure S2. While drawing these curves, similar to Pascal-VOC and COCO, we also
adopt interpolation on the PR curve, which requires keeping the larger precision value in the case that
the larger one resides in a lower recall. Then, again similar to what these common methods do for a
single AP threshold, we check the precision values on different recall values after splitting the recall
axis equally. Here, we use 10 recall points between 0.1 and 1.0 in 0.1 increments. Then, based on
the PR curves in Figure S2, we check the precision under these different recall values and present
them in Table S1. Having generated these values in Table S1 for each APIoUs, the computation is
trivial: Just averaging over these precisions (i.e. row-wise average) yields APIoUs. Finally, averaging
over these four APIoUs produces the final detection performance as 0.37, 0.29 and 0.20 for C&R1,
C&R2, C&R3 respectively (see Table S1).
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S1.3 Computing the Loss Values

In this section, computing the loss values in Figure 1(c) of the paper is presented in detail. Each
section is devoted to a loss function presented in Figure 1(c). To keep things simple, without
loss of generality, we make the following assumptions in this section during the calculation of the
classification and localisation losses:

1. The classifier has sigmoid non-linearity at the top.

2. There is only one foreground class.

3. Similar to how localisation losses deal with scale- and translation-variance within an image,
we assume that each ground truth box is normalized as [0, 0, 1, 1].

4. For each loss, the average of its contributors is reported.

S1.3.1 Cross-entropy Loss

Cross-entropy Loss of the ith example is defined as:

LCE(pi) = −I[i ∈ P] log(pi)− I[i ∈ N ] log(1− pi), (S1)

such that pi is the confidence score of the ith example obtained by applying the sigmoid activation to
the classification logit si, and I[Q] is the Iverson bracket which is 1 if the predicate Q is true; or else
it is 0.

Seeing that all detector outputs, C&R1, C&R2 and C&R3, involve the same classification output,
we apply Eq. (S1) for each anchor on C, and then find their average as follows:

LCE =
1

|P|+ |N |
∑
pi

LCE(pi), (S2)

= − 1

10

(
log(1.00) + log(1− 0.90) + log(0.80) + log(1− 0.70) + log(1− 0.60) + log(0.50)

(S3)

+ log(1− 0.40) + log(1− 0.30) + log(1− 0.20) + log(0.10)
)
, (S4)

= 0.87. (S5)

S1.3.2 Average precision (AP) Loss

The computation of AP Loss is very similar to the AP50 computation described in Section S1.2
except that precision is calculated on (and also averaged over) the positive examples instead of the
recall values. With this intuition the precision values on the four positives are 1.00, 0.67, 0.50, 0.40
respectively. Then, AP Loss for the output C in Figure 1 regardless of the localisation output that it is
combined with is:

LAP = 1−AP50 = 1− 1

|P|
∑
i∈P

precision(i),

= 1− 1

4
× (1.00 + 0.67 + 0.50 + 0.40) = 0.36.

S1.3.3 L1 Loss

For a single ground truth, B̂i = [x̂1, ŷ1, x̂2, ŷ2], and its corresponding detection,Bi = [x1, y1, x2, y2],
L1 Loss is defined simply by averaging over the L1 norm of the differences of the parameters of the
detection boxes from their corresponding ground truths:

LL1(B̂i, Bi) = |x̂1 − x1|+|ŷ1 − y1|+|x̂2 − x2|+|ŷ2 − y2| , (S6)
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Then, the average L1 Loss is:

LL1 =
1

|P|
∑
i∈P
LL1(B̂i, Bi), (S7)

=
1

4

(
(0.00 + 0.00 + 0.00 + 0.05) + (0.00 + 0.00 + 0.00 + 0.25) (S8)

+(0.00 + 0.00 + 0.00 + 0.35) + (0.00 + 0.00 + 0.00 + 0.50)
)
, (S9)

= 0.29. (S10)

S1.3.4 IoU Loss

For a single example, IoU Loss is simply 1− IoU(B̂i, Bi). Then, for all three outputs in the scenario
(also an instance is illustrated in Figure S1), seeing that the IoU distributions are all equal, the average
IoU loss of this detection set is:

LIoU =
1

|P|
∑
i∈P

1− IoU(B̂i, Bi),

=
1

4

(
(1− 0.95) + (1− 0.80) + (1− 0.65) + (1− 0.50)

)
= 0.28.

S1.3.5 aLRP Loss

This section calculates aLRP Loss value in the scenario, and therefore we believe that at the same
time it is also a toy example to present more insight on aLRP Loss.

First, let us recall the definition of aLRP Loss from the paper to simplify tracking this section. aLRP
Loss is defined as:

LaLRP :=
1

|P|
∑
i∈P

`LRP(i), (S11)

such that

`LRP(i) =
1

rank(i)

NFP (i) + Eloc(i) +
∑

k∈P,k 6=i

Eloc(k)H(xik)

 , (S12)

where Eloc(k) = (1 − IoU(k))/(1 − τ). Here, we take H(x) as a step function instead of its
approximation for simplicity.

Table S2 presents the computation of aLRP values including all by-products for each of the four
positive anchors in C&R1, C&R2 and C&R3. Given the table presented in Figure 1(a) in the paper,
we present how each column is derived in the following steps:

1. 1− IoU(i) is simply the IoU Loss of the positive anchors after prediction.
2. Eloc(i) = (1− IoU(i))/(1− τ) such that τ = 0.5.
3. Define a cumulative sum: cumsum(Eloc)(i) = Eloc(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik) (see Eq.

S12). Note that this simply corresponds to a cumulative sum on a positive example using
the examples with larger scores and itself. Accordingly, in Table S2, cumsum(Eloc)(i) is
calculated by summing Eloc)(i) column over anchors until (and including) ith example.

4. NFP (i) is the number of negative examples with larger scores than the ith positive anchor.
(See Section 3 for the formal definition.)

5. rank(i) is the rank of an example within positives and negatives. (See Section 2 for the
formal definition.)

6. Then using cumsum(Eloc)(i), NFP (i) and rank(i), LRP error on a positive example can
be computed as:

`LRP(i) =
NFP (i) + cumsum(Eloc)(i)

rank(i)
. (S13)

7. In the rightmost column, aLRP Loss of a detector, LaLRP , is determined simply averaging
over these single LRP values (i.e. `LRP(i) ) on positives.
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Table S2: Per-box calculation of LaLRP
Output Anchor 1− IoU(i) Eloc(i) cumsum(Eloc)(i) NFP (i) rank(i) `LRP(i) LaLRP

C&R1

a1 0.05 0.10 0.10 0.00 1.00 0.10

0.53
a3 0.20 0.40 0.50 1.00 3.00 0.50
a6 0.35 0.70 1.20 3.00 6.00 0.70
a10 0.50 1.00 2.20 6.00 10.00 0.82

C&R2

a1 0.20 0.40 0.40 0.00 1.00 0.40

0.69
a3 0.35 0.70 1.10 1.00 3.00 0.70
a6 0.50 1.00 2.10 3.00 6.00 0.85
a10 0.20 0.40 2.50 6.00 10.00 0.82

C&R3

a1 0.50 1.00 1.00 0.00 1.00 1.00

0.89
a3 0.35 0.70 1.70 1.00 3.00 0.90
a6 0.20 0.40 2.10 3.00 6.00 0.85
a10 0.05 0.10 2.20 6.00 10.00 0.82

Table S3: Common loss functions and the hyperparameters in their definitions.
Loss Function Type Number & Usage of the Hyper-parameters

L
c

Cross-entropy [10, 15] Score-based 0 Sampling methods are required
α-bal. Cross-entropy[8] Score-based 1 The weight of the foreground anchors

Focal Loss [8] Score-based 2 The weight of the foreground anchors
Modulating factor for hard examples

AP Loss [2] Ranking-based 1 Smoothness of the step function

DR Loss [14] Ranking-based 3
Regularizer for foreground distribution
Regularizer for background distribution
Smoothness of the loss

L
r

Smooth L1 [6] lp-based 1 Cut-off from L1 loss to L2 loss

Balanced L1 [12] lp-based 2 The weight of the inlier anchors
Upper bound of the loss value

IoU Loss [16] IoU-based 0 -

S2 Details of Table 1: Hyperparameters of the Loss Functions and Models

This section presents the hyperparameters of the common loss functions in object detection and how
they are combined by different models in Table 1.

S2.1 Hyperparameters of the Individual Loss Functions

Table S3 presents common loss functions and their hyperparameters. Note that since any change
in these hyperparameter change the value of the loss function and affects its contribution to the
multi-task learning nature of object detection, and, therefore wr also needs to be retuned.

S2.2 Hyperparameters of the Loss Functions of the Models

This section discusses the loss functions of the methods discussed in Table 1 in the paper. Obviously,
AP Loss [2], Focal Loss [8] and DR Loss [14] follow the formulation in Equation 1. Hence using
Table S3, their total number of hyperparameters is easy to see. For example, DR Loss with three
hyper-parameters is combined with Smooth L1, which has one hyperparameter. Including the weight
of the localisation component, five hyper-parameters are required to be tuned.

Other architectures in Table 1 use more than two loss functions in order to learn different aspects to
improve the performance:

• FCOS [17] includes an additional centerness branch to predict the centerness of the pixels,
which is trained by an additional cross entropy loss.

• FreeAnchor [20] aims simultaneously to learn the assignment of the anchors to the ground
truths by modeling the loss function based on maximum likelihood estimation. In Table 1,

6



one can easily identify six hyper-parameters from the loss formulation of the Free Anchor
and exploiting Table S3. Moreover, the inputs of the focal loss are subject to a saturated
linear function with two hyperparameters, which makes eight in total.

• A different set of approaches, an example of which is Faster R-CNN [15], uses directly cross
entropy loss. However, cross entropy loss requires to be accompanied by a sampling method
by which a set of positive and negative examples are sampled from the set of labelled anchors
to alleviate the significant class imbalance. Even for random sampler, two of the following
needs to be tuned in order to ensure stable training: (i) Number of positive examples (ii)
Number of negative examples (iii) The rate between positives and negatives. Moreover, for a
two-stage detector, these should be tuned for both stages, which brings about additional four
hyper-parameters. That‘s why Faster R-CNN [15] in Table 1 requires nine hyperparameters.

• Finally, CenterNet [4], as a state-of-the-art bottom-up method, has a loss function with
several components while learning to predict the centers and the corners. It combines six
individual losses, one of which is Hinge Loss with one hyperparameter. Considering the
type of each, the loss function of CenterNet [4] has 10 hyper-parameters in total.

S3 Proofs of Theorem 1 and Theorem 2

This section presents the proofs for the theorems presented in our paper.

Theorem 1. L = 1
Z

∑
i∈P

`(i) = 1
Z

∑
i∈P

∑
j∈N

Lij .

Proof. The ranking function is defined as:

L =
1

Z

∑
i∈P

`(i). (S14)

Since ∀i
∑
j∈N

p(j|i) = 1, we can rewrite the definition as follows:

1

Z

∑
i∈P

`(i)

∑
j∈N

p(j|i)

 . (S15)

Reorganizing the terms concludes the proof as follows:

1

Z

∑
i∈P

∑
j∈N

`(i)p(j|i) =
1

Z

∑
i∈P

∑
j∈N

Lij . (S16)

Theorem 2. Training is balanced between positive and negative examples at each iteration; i.e. the
summed gradient magnitudes of positives and negatives are equal:∑

i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ =

∑
i∈N

∣∣∣∣ ∂L∂si
∣∣∣∣ . (S17)

Proof. The gradients of a ranking-based loss function are derived as (see Algorithm 1 and Equation
5 in the paper):

∂L
∂si

=
1

Z

∑
j

∆xij −
∑
j

∆xji

 =
1

Z

∑
j

∆xij −
1

Z

∑
j

∆xji, (S18)

such that ∆xij is the update for xijs and defined as ∆xij = L∗ij − Lij . Note that both Lij and L∗ij
can be non-zero only if i ∈ P and j ∈ N following the definition of the primary term. Hence, the
same applies to ∆xij : if i /∈ P or j /∈ N , then ∆xij = 0. Then using these facts, we can state in Eq.
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(S18) that if i ∈ P , then
∑
j

∆xji = 0; and if i ∈ N , then
∑
j

∆xij = 0. Then, we can say that, only

one of the terms is active in Eq. (S18) for positives and negatives:

∂L
∂si

=
1

Z

∑
j

∆xij︸ ︷︷ ︸
Active if i ∈ P

− 1

Z

∑
j

∆xji︸ ︷︷ ︸
Active if i ∈ N

. (S19)

Considering that the value of a primary term cannot be less than its target, we have ∆xij ≤ 0, which
implies ∂L

∂si
≤ 0. So, we can take the absolute value outside of summation:

∑
i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈P

∂L
∂si

∣∣∣∣∣∣ , (S20)

and using the fact identified in Eq. (S19) (i.e. for i ∈ P , ∂L∂si = 1
Z

∑
j∈N

∆xij):∣∣∣∣∣∣
∑
i∈P

1

Z

∑
j∈N

∆xij

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

Z

∑
i∈P

∑
j∈N

∆xij

∣∣∣∣∣∣ . (S21)

Simply interchanging the indices and the order of summations, and then reorganizing the constant 1
Z

respectively yields:∣∣∣∣∣∣ 1

Z

∑
j∈P

∑
i∈N

∆xji

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

Z

∑
i∈N

∑
j∈P

∆xji

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈N

1

Z

∑
j∈P

∆xji

∣∣∣∣∣∣ . (S22)

Note that for i ∈ N , ∂L∂si = − 1
Z

∑
j∈P

∆xji, and hence 1
Z

∑
j∈P

∆xji = − ∂L
∂si

. Replacing 1
Z

∑
j∈P

∆xji;∣∣∣∣∣∣
∑
i∈N
− ∂L
∂si

∣∣∣∣∣∣ . (S23)

Since, for i ∈ N , ∂L∂si = − 1
Z

∑
j∈P

∆xji is greater or equal to zero, the proof follows:

∣∣∣∣∣∣
∑
i∈N
− ∂L
∂si

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈N

∂L
∂si

∣∣∣∣∣∣ =
∑
i∈N

∣∣∣∣ ∂L∂si
∣∣∣∣ . (S24)

S4 Normalized Discounted Cumulative Gain (NDCG) Loss and Its
Gradients: Another Case Example for our Generalized Framework

In the following we define and derive the gradients of the NDCG Loss [11] following our generalized
framework presented in Section 3 of our main paper.

The NDCG loss is defined as:

LNDCG = 1− 1

Gmax

∑
i∈P

G(i) =

Gmax −
∑
i∈P

G(i)

Gmax
=
∑
i∈P

Gmax/|P| −G(i)

Gmax
. (S25)

Note that different from AP Loss and aLRP Loss, here Z turns out to be 1, which makes sense since
NDCG is normalized by definition. Also, based on Eq. S25, one can identify NDCG Error on a
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positive as: `NDCG(i) = Gmax/|P|−G(i)
Gmax

such that G(i) = 1
log2(1+rank(i)) and Gmax =

|P|∑
i=1

log2(1 +

i).

Similar to AP and aLRP Loss, using p(j|i) =
H(xij)
NFP (i) , the primary term of the NDCG Loss is

LNDCG
ij = `NDCG(i)p(j|i) (line 1 of Algorithm 1 in the paper). When the positive example i is

ranked properly, G(i) = 1
log2(1+1) = 1, and resulting desired NDCG Error is (line 2 of Algorithm 1):

`NDCG(i)
∗

=
Gmax/|P| − 1

Gmax
, (S26)

yielding a target primary term LNDCG
ij

∗
= `NDCG

i
∗
p(j|i). Using LNDCG

ij and LNDCG
ij

∗, the update
can be calculated as follows (line 3 of Algorithm 1):

∆xij = LNDCG
ij

∗ − LNDCG
ij =

(
`NDCG(i)

∗ − `NDCG(i)
)
p(j|i), (S27)

=

(
Gmax/|P| −G(i)

Gmax
− Gmax/|P| − 1

Gmax

)
H(xij)

NFP (i)
, (S28)

=
1−G(i)

Gmax

H(xij)

NFP (i)
, (S29)

and one can compute the gradients using Eq. 5 in the paper (line 4 of Algorithm 1).

S5 Computing aLRP Loss and its Gradients

This section presents the algorithm to compute aLRP Loss in detail along with an analysis of space
and time complexity. For better understanding, bold font denotes multi-dimensional data structures
(which can be implemented by vectors, matrices or tensors). Algorithm S1 describes the steps to
compute aLRP Loss along with the gradients for a given mini-batch.

Description of the inputs: S is the raw output of the classification branch, namely logits. For
localisation, as done by IoU-based localisation losses [18, 16], the raw localisation outputs need
to be converted to the boxes, which are denoted by B. We assume that M stores −1 for ignored
anchors and 0 for negative anchors. For positive anchors, M stores the index of the ground truth
(i.e. {1, ..., |B̂|}, where B̂ is a list of ground boxes for the mini-batch). Hence, we can find the
corresponding ground truth for a positive anchor only by using M. δ is the smoothness of the
piecewise linear function defined in Eq. S30 and set to 1 following AP Loss. We use the self-balance
ratio, L

aLRP

LaLRP
cls

, by averaging over its values from the previous epoch. We initialize it as 50 (i.e. see
Table 4 in the paper).

Part 1: Initializing Variables: Lines 2-10 aim to initialize the necessary data from the inputs. While
this part is obvious, please note that line 8 determines a threshold to select the relevant negative
outputs. This is simply due to Eq. S30 and the gradients of these negative examples with scores under
this threshold are zero. Therefore, for the sake of time and space efficiency, they are ignored.

Part 2: Computing Unnormalized Localisation Errors: Lines 12-14 compute unnormalized
localisation error on each positive example. Line 12 simply finds the localisation error of each
positive example and line 13 sorts these errors with respect to their scores in descending order, and
Line 14 computes the cumulative sum of the sorted errors with cumsum function. In such a way,
the example with the larger scores contributes to the error computed for each positive anchor with
smaller scores. Note that while computing the nominator of the LaLRP

loc , we employ the step function
(not the piecewise linear function), since we can safely use backpropagation.

Part 3: Computing Gradient and Error Contribution from Each Positive: Lines 16-32 compute
the gradient and error contribution from each positive example. To do so, Line 16 initializes necessary
data structures. Among these data structures, while LLRP

loc , LLRP
cls and ∂LaLRP

∂S+
are all with size |P|,

∂LaLRP

∂S−
has size |N̂ |, where N̂ is the number of negative examples after ignoring the ones with scores

less than τ in Line 8, and obviously |N̂ | ≤ |N |. The loop iterates over each positive example by
computing LRP values and gradients since aLRP is defined as the average LRP values over positives
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(see Eq. 9 in the paper). Lines 18-22 computes the relation between the corresponding positive with
positives and relevant negatives, each of which requires the difference transformation followed by
piecewise linear function:

H(x) =


0, x < −δ
x
2δ + 0.5, −δ ≤ x ≤ δ
1, δ < x.

(S30)

Then, using these relations, lines 23-25 compute the rank of the ith examples within positive examples,
number of negative examples with larger scores (i.e. false positives) and rank of the example. Lines
26 and 27 compute aLRP classification and localisation errors on the corresponding positive example.
Note that to have a consistent denominator for total aLRP, we use rank to normalize both of the
components. Lines 28-30 compute the gradients. While the local error is enough to determine the
unnormalized gradient of a positive example, the gradient of a negative example is accumulated
through the loop.

Part 4: Computing aLRP Loss and Gradients: Lines 34-40 simply derive the final aLRP value by
averaging over LRP values (lines 34-36), normalize the gradients (lines 37-38) and compute gradients
wrt the boxes (line 39) and applies self balancing (line 40).

S5.1 Time Complexity

• First 16 lines of Algorithm S1 require time between O(|P|) and O(|N |). Since for the
object detection problem, the number of negative examples is quite larger than number of
positive anchors (i.e. |P| << |N |), we can conclude that the time complexity of first 13
lines is O(|N |).

• The bottleneck of the algorithm is the loop on lines 17-32. The loop iterates over each
positive example, and in each iteration while lines 21, 24 and 30 are executed for relevant
negative examples, the rest of the lines is executed for positive examples. Hence the number
of operations for each iteration is max(|P|, |N̂ |) (i.e. number of relevant negatives, see
lines 8-9), and overall these lines require O(|P| × max(|P|, |N̂ |)). Note that, while in
the early training epochs, |N̂ | ≈ |N |, as the training proceeds, the classifier tends to
distinguish positive examples from negative examples very well, and |N̂ | significantly
decreases implying faster mini-batch iterations.

• The remaining lines between 26-33 again require time between O(|P|) and O(|N |).

Hence, we conclude that the time complexity of Algorithm S1 is O(|N |+ |P| ×max(|P|, |N̂ |)).

Compared to AP Loss;

• aLRP Loss includes an extra computation of aLRP localisation component (i.e. lines 12-14,
27. Each of these lines requires O(|P|)).

• aLRP Loss includes an additional summation while computing the gradients with respect to
the scores of the positive examples in line 29 requiring O(|P|2).

• aLRP Loss discards interpolation (i.e. using interpolated AP curve), which can take up to
O(|P| × |N̂ |).

S5.2 Space Complexity

Algorithm S1 does not require any data structure larger than network outputs (i.e. B, S). Then, we
can safely conclude that the space complexity is similar to all of the common loss functions that is
O(|S|).

S6 Details of aLRP Loss

This section provides details for aLRP Loss.

10



Algorithm S1 The algorithm to compute aLRP Loss for a mini-batch.
Input: S: Logit predictions of the classifier for each anchor,

B: Box predictions of the localization branch from each anchor,
B̂: Ground truth (GT) boxes,
M: Matching of the Anchors with the GTs Boxes.
δ: Smoothness of the piecewise linear function (δ = 1 by default).
wASB : ASB weight, computed using L

aLRP

LaLRP
cls

values from previous epoch.

Output: LaLRP: aLRP loss, ∂L
aLRP

∂S : Gradients wrt logits, ∂L
aLRP

∂B : Gradients wrt boxes.
1: // ==== PART 1: Initializing Variables ====
2: idx+ := The indices of M where M > 0.
3: M+ := The values of M where M > 0.
4: B+ := The values of B at indices idx+.
5: S+ := The values of S at indices idx+.
6: idxsorted

+ := The indices of S+ once it is sorted in descending order.
7: Ssorted

+ := The values of S+ when ordered according to idxsorted
+ .

8: τ = min(S+)− δ.
9: idx− := The indices of M where M = 0 and sj ≥ τ (i.e. relevant negatives only).

10: S− := The values of S at indices idx−.
11: // ==== PART 2: Computing Unnormalized Localisation Errors ====
12: ELoc = 1−IoU(B+,B̂+)

1−τ . (or ELoc = (1−GIoU(B+,B̂+))/2
1−τ for GIoU Loss [16].)

13: EsortedLoc := The values of ELoc when ordered according to idxsorted
+ .

14: Ecumsum
Loc = cumsum(EsortedLoc )

15: // ==== PART 3: Computing Gradient and Error Contribution from Each Positive ====
16: Initialize , LLRP

loc , LLRP
cls , ∂L

aLRP

∂S+
and ∂LaLRP

∂S−
.

17: for each si ∈ Ssorted
+ do

18: X+ := Difference transform of si with the logit of each positive example.
19: R+ := The relation of i ∈ P with each j ∈ P using Eq. S30 with input X+.
20: R+[i] = 0
21: X− := Difference transform of si with the logit of each negative example.
22: R− := The relation of i ∈ P with each j ∈ N using Eq. S30 with input X+.
23: rank+ = 1 + sum(R+)
24: FP = sum(R−)
25: rank = rank+ + FP
26: LLRP

cls [i] = FP/rank
27: LLRP

loc [i] = Ecumsum
Loc [i]/rank

28: if FP ≥ ε then //For stability set ε to a small value (e.g. 1e− 5)

29: ∂LaLRP

∂S+
[i] = −

(
FP +

∑
i∈P

R+[i]× EcumsumLoc [i]

)
/rank

30: ∂LaLRP

∂S−
+ =

(
−∂L

aLRP

∂S+
[i]× R−

FP

)
31: end if
32: end for
33: // ==== PART 4: Computing the aLRP Loss and Gradients ====
34: LaLRP

cls = mean(LLRP
cls )

35: LaLRP
loc = mean(LLRP

loc )
36: LaLRP = LaLRP

cls + LaLRP
loc

37: Place ∂LaLRP

∂S+
and ∂LaLRP

∂S−
into ∂LaLRP

∂S also by setting the gradients of remaining examples to 0.

38: ∂LaLRP

∂S / = |P|
39: Compute ∂LaLRP

∂B (possibly using autograd property of a deep learning library or refer to the supp.
mat. of [16] for the gradients of GIoU and IoU Losses.

40: ∂LaLRP
loc

∂B × = wASB

41: return ∂LaLRP

∂S , ∂L
aLRP

∂B and LaLRP.
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S6.1 A Soft Sampling Perspective for aLRP Localisation Component

In sampling methods, the contribution (wi) of the ith bounding box to the loss function is adjusted as
follows:

L =
∑

i∈P∪N
wiL(i), (S31)

where L(i) is the loss of the ith example. Hard and soft sampling approaches differ on the possible
values of wi. For the hard sampling approaches, wi ∈ {0, 1}, thus a BB is either selected or discarded.
For soft sampling approaches, wi ∈ [0, 1], i.e. the contribution of a sample is adjusted with a weight
and each BB is somehow included in training. While this perspective is quite common to train the
classification branch [1, 8]; the localisation branch is conventionally trained by hard sampling with
some exceptions (e.g. CARL [1] sets wi = si where si is the classification score).

Here, we show that, in fact, what aLRP localisation component does is soft sampling. To see this,
first let us recall the definition of the localisation component:

LaLRP
loc =

1

|P|
∑
i∈P

1

rank(i)

Eloc(i) +
∑

k∈P,k 6=i

Eloc(k)H(xik)

 , (S32)

which is differentiable with respect to the box parameters as discussed in the paper. With a ranking-
based formulation, note that (i) the localisation error of a positive example i (i.e. Eloc(i)) contributes
each LRP value computed on a positive example j where si ≥ sj (also see Fig. 2 in the paper),
and (ii) each LRP value computed on a positive example i is normalized by rank(i). Then, setting
L(i) = Eloc(i) in Eq. S31 and accordingly taking Eq. S32 in Eloc(i) paranthesis, the weights of the
positive examples (i.e. wi = 0 for negatives for the localisation component) are:

wi =
1

|P|


 ∑
k∈P,k 6=i

H(xki)

rank(k)

+
1

rank(i)

 . (S33)

Note that L(i) is based on a differentiable IoU-based regression loss and wi is its weight, which is a
scaler. As a result H(xki) in Eq. S33 does not need to be smoothed and we use a unit-step function
(see line 14 in Algorithm S1).

S6.2 The Relation between aLRP Loss Value and Total Gradient Magnitudes

Here, we identify the relation between the loss value and the total magnitudes of the gradients
following the generalized framework due to the fact that it is a basis for our self-balancing strategy
introduced in Section 4.2 as follows:∑

i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ =

∑
i∈N

∣∣∣∣ ∂L∂si
∣∣∣∣ ≈ LaLRP. (S34)

Since we showed in Section S3 that
∑
i∈P

∣∣∣ ∂L∂si ∣∣∣ =
∑
i∈N

∣∣∣ ∂L∂si ∣∣∣, here we show that the loss value is
approximated by the total magnitude of gradients. Recall from Eq. (S21) that total gradients of the
positives can be expressed as:

∑
i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ =

∣∣∣∣∣∣ 1

|P|
∑
i∈P

∑
j∈N

∆xij

∣∣∣∣∣∣ . (S35)

Since ∆xij ≤ 0, we can discard the absolute value by multiplying it by −1:

− 1

|P|
∑
i∈P

∑
j∈N

∆xij . (S36)
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Replacing the definition of the ∆xij by L∗ij − Lij yields:

− 1

|P|
∑
i∈P

∑
j∈N

(L∗ij − Lij) = − 1

|P|

∑
i∈P

∑
j∈N

L∗ij −
∑
i∈P

∑
j∈N

Lij

 (S37)

=
1

|P|
∑
i∈P

∑
j∈N

Lij −
1

|P|
∑
i∈P

∑
j∈N

L∗ij . (S38)

Using Theorem 1, the first part (i.e 1
|P|
∑
i∈P

∑
j∈N

Lij) yields the loss value, L. Hence:

∑
i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ = L − 1

|P|
∑
i∈P

∑
j∈N

L∗ij . (S39)

Reorganizing the terms, the difference between the total gradients of positives (or negatives, since
they are equal – see Theorem 2) and the loss values itself is the sum of the targets normalized by
number of positives:

L −
∑
i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ =

1

|P|
∑
i∈P

∑
j∈N

L∗ij . (S40)

Compared to the primary terms, the targets are very small values (if not 0). For example, for AP Loss
LAP
ij
∗

= 0, and hence, loss is equal to the sum of the gradients: L =
∑
i∈P

∣∣∣ ∂L∂si ∣∣∣.
As for aLRP Loss, the target of a primary term is Eloc(i)rank(i)

H(xij)
NFP (i) , hence if H(xij) = 0, then the target

is also 0. Else if H(xij) = 1, then it implies that there are some negative examples with larger scores,
and rank(i) and NFP (i) are getting larger depending on these number of negative examples, which
causes the denominator to grow, and hence yielding a small target as well. Then ignoring this term,
we conclude that: ∑

i∈P

∣∣∣∣ ∂L∂si
∣∣∣∣ =

∑
i∈N

∣∣∣∣ ∂L∂si
∣∣∣∣ ≈ LaLRP. (S41)

S6.3 Self-balancing the Gradients Instead of the Loss Value

Instead of localisation the loss, LaLRP
loc , we multiply ∂L/∂B by the average LaLRP/LaLRP

loc of the
previous epoch. This is because formulating aLRP Loss as LaLRP

loc + wrLaLRP
loc where wr is a weight

to balance the tasks is different from weighing the gradients with respect to the localisation output,
B, since weighting the loss value (i.e. LaLRP

loc + wrLaLRP
loc ) changes the gradients of aLRP Loss with

respect to the classification output as well since LaLRP
loc , now weighed by wr, is also ranking-based

(has rank(i) term - see Eq. 11 in the paper). Therefore, we directly add the self balance term as a
multiplier of ∂L/∂B and backpropagate accordingly. On the other hand, from a practical perspective,
this can simply be implemented by weighing the loss value, LaLRP

loc without modifying the gradient
formulation for LaLRP

cls .

S7 Additional Experiments

This section presents more ablation experiments, the anchor configuration we use in our models and
the effect of using a wrong target for the primary term in the error-driven update rule.

S7.1 More Ablation Experiments: Using Self Balance and GIoU with AP Loss

We also test the effect of GIoU and our Self-balance approach on AP Loss, and present the results in
Table S4:

• Using IoU-based losses with AP Loss improves the performance up to 1.0 AP as well and
reaches 36.5 AP with GIoU loss.
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Table S4: Using Self Balance and GIoU with AP Loss. For optimal LRP (oLRP), lower is better.
Lc Lr SB AP AP50 AP75 AP90 oLRP ρ

AP Loss [2]

Smooth L1 35.5 58.0 37.0 9.0 71.0 0.45
Smooth L1 X 36.7 58.2 39.0 10.8 70.2 0.44
IoU Loss 36.3 57.9 37.9 11.8 70.4 0.44
IoU Loss X 37.2 58.1 39.2 13.1 69.6 0.44

GIoU Loss 36.5 58.1 38.1 11.9 70.2 0.45
GIoU Loss X 37.2 58.3 39.0 13.4 69.7 0.44

aLRP Loss
with IoU 36.9 57.7 38.4 13.9 69.9 0.49
with IoU X 38.7 58.1 40.6 17.4 68.5 0.48

with GIoU X 38.9 58.5 40.5 17.4 68.4 0.48

• Our SB approach also improves AP Loss between 0.7 - 1.2 AP, resulting in 37.2AP as the
best performing model without using wr. However, it may not be inferred that SB performs
better than constant weighting for AP Loss without a more thorough tuning of AP Loss
since SB is devised to balance the gradients of localisation and classification outputs for
aLRP Loss (see Section S6.2).

• Comparing with the best performing model of AP Loss with 37.2AP, (i) aLRP Loss has a
1.7AP and 1.3oLRP points better performance, (ii) the gap is 4.0AP for AP90, and (iii) the
correlation coeffient of aLRP Loss, preserves the same gap (0.48 vs 0.44 comparing the best
models for AP and aLRP Losses), since applying these improvements (IoU-based losses
and SB) to AP Loss does not have an effect on unifying branches.

S7.2 Anchor Configuration

The number of anchors has a notable affect on the efficiency of training due to the time and space
complexity of optimizing ranking-based loss functions by combining error-driven update and back-
propagation. For this reason, different from original RetinaNet using three aspect ratios (i.e. [0.5, 1, 2])
and three scales (i.e. [20/2, 21/2, 22/2]) on each location, Chen et al. [2] preferred the same three
aspect ratios, but reduced the scales to two as [20/2, 21/2] to increase the efficiency of AP Loss. In
our ablation experiments, except the one that we used ATSS [19], we also followed the same anchor
configuration of Chen et al. [2].

One main contribution of ATSS is to simplify the anchor design by reducing the number of required
anchors to a single scale and aspect ratio (i.e. ATSS uses 1/9 and 1/6 of the anchors of RetinaNet [8]
and AP Loss [2] respectively), which is a perfect fit for our optimization strategy. For this reason, we
used ATSS, however, we observed that the configuration in the original ATSS with a single aspect
ratio and scale does not yield the best result for aLRP Loss, which may be related to the ranking
nature of aLRP Loss which favors more examples to impose a more accurate ranking, loss and
gradient computation. Therefore, different from ATSS configuration, we find it useful to set anchor
scales [20/2, 21/2] and [20/2, 21/2, 22/2] for aLRPLoss500 and aLRPLoss800 respectively and use a
single aspect ratio with 1 following the original design of ATSS.

S7.3 Using a Wrong Target for the Primary Term in the Error-driven Update Rule

As discussed in our paper (Section 4.1, Equation 13), Lij∗, the target value of the primary term Lij is
non-zero due to the localisation error. It is easy to overlook this fact and assume that the target is zero.
Fig. S3 presents this case where Lij∗ is set to 0 (i.e. minimum value of aLRP). In such a case, the
training continues properly, similar to that of the correct case, up to a point and then diverges. Note
that this occurs when the positives start to be ranked properly but are still assigned gradients since
Lij
∗ − Lij 6= 0 due to the nonzero localisation error. This causes

∑
i∈P

∣∣∣ ∂L∂si ∣∣∣ > ∑
i∈N

∣∣∣ ∂L∂si ∣∣∣, violating

Theorem 2 (compare min-rate and max-rate in Fig. S3). Therefore, assigning proper targets as
indicated in Section 3 in the paper is crucial for balanced training.
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Figure S3: (left) The rate of the total gradient magnitudes of negatives to positives. (right) Loss
values.

S7.4 Implementation Details for FoveaBox and Faster R-CNN

In this section, we provide more implementation details on the FoveaBox and Faster R-CNN models
that we trained with different loss functions. All the models in this section are tested on COCO
minival.

Implementation Details of FoveaBox: We train the models for 100 epochs with a learning rate
decay at epochs 75 and 95. For aLRP Loss and AP Loss, we preserve the same learning rates used for
RetinaNet (i.e. 0.008 and 0.002 for aLRP Loss and AP Loss respectively). As for the Focal Loss, we
set the initial learning rate to 0.02 following the linear scheduling hypothesis [13] (i.e. Kong et al. [7]
set learning rate to 0.01 and use a batch size of 16). Following AP Loss official implementation, the
gradients of the regression loss (i.e. Smooth L1) are averaged over the output parameters of positive
boxes for AP Loss. As for Focal Loss, we follow the mmdetection implementation which averages
the total regression loss by the number of positive examples. The models are tested on COCO minival
by preserving the standard design by mmdetection framework.

Implementation Details of Faster R-CNN: To train Faster R-CNN, we first replace the softmax
classifier of Fast R-CNN by the class-wise sigmoid classifiers. Instead of heuristic sampling rules,
we use all anchors to train RPN and top-1000 scoring proposals per image obtained from RPN to
train Fast R-CNN (i.e. same with the default training except for discarding sampling). Note that,
with aLRP Loss, the loss function consists of two independent losses instead of four in the original
pipeline, hence instead of three scalar weights, aLRP Loss requires a single weight for RPN head,
which we tuned as 0.20. Following the positive-negative assignment rule of RPN, different from all
the experiments, which use τ = 0.50, τ = 0.70 for aLRP Loss of RPN. We set the initial learning
rate to 0.04 following the linear scheduling hypothesis [13] for the baselines, and decreased by a
factor of 0.10 at epochs 75 and 95. Localisation loss weight is kept as 1 for L1 Loss and to 10 for
GIoU Loss [3, 16]. The models are tested on COCO minival by preserving the standard design by
mmdetection framework. We do not train Faster R-CNN with AP Loss due to the difficulty to tune
Faster R-CNN for a different loss function.
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