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Abstract

Gradient clipping is commonly used in training deep neural networks partly due
to its practicability in relieving the exploding gradient problem. Recently, Zhang
ef—all [20204] show that clipped (stochastic) Gradient Descent (GD) converges
faster than vanilla GD/SGD via introducing a new assumption called (Lg, L1)-
smoothness, which characterizes the violent fluctuation of gradients typically en-
countered in deep neural networks. However, their iteration complexities on the
problem-dependent parameters are rather pessimistic, and theoretical justification
of clipping combined with other crucial techniques, e.g. momentum acceleration,
are still lacking. In this paper, we bridge the gap by presenting a general frame-
work to study the clipping algorithms, which also takes momentum methods into
consideration. We provide convergence analysis of the framework in both deter-
ministic and stochastic setting, and demonstrate the tightness of our results by
comparing them with existing lower bounds. Our results imply that the efficiency
of clipping methods will not degenerate even in highly non-smooth regions of
the landscape. Experiments confirm the superiority of clipping-based methods in
deep learning tasks.

1 Introduction

The problem of the central interest in this paper is to minimize a general non-convex function pre-
sented below:

min F(z), (1

where F'(x) can be potentially stochastic, i.e.

F(z) = E¢op [f(2,6)]-

For non-convex optimization problems in form of (), since obtaining the global minimum is
NP-hard in general, this paper takes the concern on a reasonable relaxed criteria: finding an &-
approximate first-order stationary point such that | VF (z)|| < e.
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Figure 1: (a) Some simple examples of (Lg, L1)-smooth functions that are not L-smooth. (b) The
magnitude of gradient norm ||V F'(z)|| w.r.t the local smoothness || V2F ()| on some sample points
for a polynomial F(z,y) = 2% + (y — 3z + 2)*. We use log-scale axis. The local smoothness
strongly correlates to the gradient. (c) Gradient and smoothness in the process of LSTM training,
taken from Zhang et al] [20204].

We consider gradient-based algorithms to solve (II) and separately study two cases: i) the gradient of
F given a point z is accessible; ii) only a stochastic estimator is accessible. We shall refer the former
as the deterministic setting and the latter as the stochastic setting, and we analyze the (stochastic)
gradient complexities to search an approximate first-order stationary point for Problem ().

Gradient clipping [Pascanuefall, ZOT7] is a simple and commonly used trick in algorithms that adap-
tively choose step sizes to make optimization stable. For the task of training deep neural networks
(especially for language processing tasks), it is often a standard practice and is believed to be efficient
in relieving the exploding gradient problem from empirical studies [Pascanu et all, POT3]. More re-
cently, [Zhang et al] [20204] proposed an inspiring theoretical justification on the clipping technique
via introducing the (Lo, L1 )-smoothness assumption. The concept of (Lg, L )-smoothness is de-
fined as follows.

Definition 1.1 We say that a twice differentiable function F(x) is (Lo, L1)-smooth, if for all x € R?
we have |V2F(z)|| < Lo + L1||VF(2)].

This assumption can be further relaxed such that twice differentiability is not required (see Remark
3). Therefore the standard L-smoothness assumption (i.e. the gradient of f is L-Lipschitz contin-
uous) is stronger than the (Lo, L1)-smoothness one in the sense that the latter allows ||V2F(x)|| to
have a linear growth with respect to | VF(z)|].

(Lo, L1)-smoothness is more realistic than L-smoothness. Firstly, it includes a variety of simple and
important functions which, unfortunately, do not satisfy L-smoothness. For example, all univariate
polynomials (which can possibly be non-convex) are (Lg, L1)-smooth for L; = 1, while a simple
function z# is not globally L-smooth for any L. Moreover, (Lg, L1 )-smoothness also encompasses
all functions that belongs to the so-called exponential family. Figure [(a) presents some simple
examples and Figure [(b) shows that the local smoothness of (Lg, L )-smooth functions strongly
correlates to the gradient norm.

Secondly, |Zhang_ et al] [20204] performed experiments to show that (Lo, L1)-smoothness is a pre-
ciser characterization of the landscapes for objective functions in many real-world tasks, especially
for training a deep neural network model. It was observed that the local Lipschitz constant Ly near
the stationary point is thousands of times smaller than the global one L in the LSTM training (see
Figure [(c) taken from [Zhang et all [Z020a]).

Seeing this, it is desirable to give a comprehensive and deep analysis on iteration complexities
for (Lg, L1)-smooth objectives. How fast can we achieve to find a first-order stationary point for
(Lo, L1)-smooth functions? What are simple algorithms that provably achieve such a convergence
rate? In this paper, we give affirmative answers to the above questions. In fact, due to the violent
fluctuation of gradients, the efficiency of (stochastic) Gradient Descent with a constant step size
degenerates, whereas we will show in this paper that by simply combining the clipping technique,
a wide range of algorithms can achieve much better convergence rate for (Lo, L1)-smooth func-
tions. In fact, when € is small, the complexities (i.e. the number of gradient queries required) are



O (ALoe?) for the deterministic setting and O (ALgo2c~*) for the stochastic setting (see Section
B for details), which are both independent of L;. Compared with [Zhang et al] [200204] who only stud-
ied clipped (stochastic) gradient descent, we consider proposing a unified framework which contains
a variety of clipping-based algorithms and achieve much sharper complexities. The main technique
for our proof is by introducing a novel Lyapunov function which does not appear in existing studies.
We believe that our work provides better understandings for the clipping technique in training deep
neural networks. We summarize the contributions of the paper in the following.

e We provide a general framework to analyze the clipping technique for optimizing (L, L1)-
smooth functions. It contains a variety of clipping algorithms, including gradient clipping
and momentum clipping as special cases.

e We provide convergence analysis for the general framework we propose. We show that
our bounds are tight by comparing with existing lower bounds. For gradient clipping, a
special case in our framework, our result is much sharper than that proposed by Zhang
ef all [Z0204].

e We conduct experiments on a variety of different tasks, and observe that the clipping algo-
rithms consistently perform better than vanilla ones.

Notations. For a vector z € R?, we denote ||z|| as the lo-norm of x. For a matrix A € R™*", et
||A]| be the spectral norm of A. Given functions f,g : X — [0,00) where X is any set, we say
f = O(g) if there exists a constant ¢ > 0 such that f(x) < cg(x) forall z € X, and f = Q(g) if
there exists a constant ¢ > 0 such that f(z) > cg(z) forallz € X. We say f = O(g) if f = O(g)
and f = Q(g).

1.1 Related Work

Clipping/normalizing Techniques. Clipping/normalizing has long been a popular technique in
optimizing large-scale non-convex optimization problems (e.g. [Mikolov, POT2, Pascanuef all, POT3,
Goodtellow ef all, POTAH, Yo efall, POT7]). There are several views which provide understandings
for the clipping and normalizing techniques. Some show that clipping can reduce the stochastic
noise. For example, [Zhang et all [20T9], Gorbunov_ef all [2020] showed that clipping is crucial for
convergence when the stochastic gradient noise is heavy-tailed. Menon ef all [2020] pointed out
that clipping can mitigate the effect of label noise. [Cutkosky and Mehta [2020] found that adding
momentum in normalized SGD provably reduces the stochastic noise. Another line of works try
to understand the function of clipping and normalizing for the standard smooth optimization. For
example, Levy [Z0T6] showed that normalized GD can provably escape saddle points. Fang et all
[2OTR] designed a new algorithm based on normalized GD which achieves a faster convergence
rate under suitable conditions. Gradient clipping has also been used to design differentially private
optimization algorithms [Abadief-all, ZOT6].

The work of [Zhang et al] [?00204] is mostly related to this paper. A detailed comparison between the
two works is shown in Subsection 2.

Lower Bounds For Non-convex Optimization. A series of recent works establish lower bounds for
finding an e-stationary point of a general non-convex and L-smooth function, either in deterministic
setting [Carmon ef all, ZOTY] or in stochastic setting [Drari and Shamit, D019, [Arjevani et all, POTY].
In this paper we borrow their counter examples to show the tightness of our obtained complexities
for the general (Lg, L1 )-smooth functions.

2 Assumptions & Comparisons of Results

2.1 Assumptions

We first present the assumptions that will be used in our theoretical analysis, which follows from
Zhang et al] [2020a].

Assumption 2.1 We assume A := F(xg) — F* < oo where F* = inf,cga F(x) is the global
infimum value of F(x).

Assumption 2.2 We assume that F(x) is (Lo, L1)-smooth.



Remark 2.3 This assumption can be relaxed to the following: there exists Ky, K1 > 0 such that
forall z,y € RY, if ||z — y|| < I%, then
IVE(z) = VF(y)|| < (Ko + K1 [[VF(y) )]z =yl

It does not need F to be twice differentiable and is strictly weaker than L-smoothness.

In the stochastic setting, for the briefness of our analysis, we assume that the noise is unbiased and
bounded.

Assumption 2.4 For all x € RY, E¢ [V f(2,€)] = VF(z). Furthermore, there exists o > 0 such
that for all x € RY, the noise satisfies |V f(x,&) — VF(x)| < o with probability 1.

Note that another commonly used noise assumption in the optimization literature is bounded vari-
ance assumption, i.e. E¢ [||V f(z, &) — VF(z)[|?] < 02, therefore Assumption P4 is stronger than
it. However, we adopt Assumption 4 as it is also used in the original work of gradient clipping in
Zhang et all [Z0204], and it makes our analysis much simpler.

2.2 Comparisons of Results

In this paper, we mainly take our concern on the stochastic setting, though we also establish the
complexities for the deterministic setting. We summarize the comparison in the stochastic setting
with existing complexity results in Table [, in which we only present the dominating complexities
with respect to .

Table 1: Comparisons of gradient complexity in the stochastic setting.

Algorithms Complexities™
SGD [Ghadimiand Lan, PO13] O (A(Lo i L1M)025_4) o
Clipped SGD [Zhang et all, 20204] O ((A + (Lo + Lio)o? 4+ oL /L)% *)
Clipping Framework (this paper) O (ALgo%e™4)
Lower Bound Q (AL0025*4) o

*For clarity, we only present the dominating term (with respect to €) here.
**For SGD, we further assume the gradient norm is upper bounded by M.
***See section B3 for a detailed discussion of the lower bound.

For standard SGD, if we further assume that the gradient is upper bounded by M, ie. M :=
sup,egre |V f(2)]| < oo, Assumption 2 leads to an upper bound of the global Lipschitz con-
stants L := Lo + L1 M. Therefore, the standard results for L-smooth functions (e.g. [(Ghadimi
and Lan, P0T3]) implies that Gradient Descent with a constant step size can achieve complexity of
O(A(Lg + LiM)o?e~%) for finding a first-order stationary point in the stochastic setting®. How-
ever, the upper bound of the gradient M is typically very large, especially when the parameters have
a poor initialization, which makes SGD converges arbitrarily slow. In contrast, our result indicates
that the clipping framework (shown in Algorithm [ which includes a variety of clipping methods)
achieves complexity of O(ALgo?c~*), therefore the dominating term of our bound is independent
of both M and L;. This provides a strong justification for the efficacy of clipping methods.

Compared with the bound for clipped SGD established in Zhang et al] [Z0204], our results improve
theirs on the dependencies for all problem-dependent parameters, i.e. A, o, Lg, and especially L,
by order. For SGD with arbitrarily chosen step sizes (thus include clipped SGD), the example in
Droriand Shamitt [20TY] can be used to show that clipped SGD is optimal (cf. Section B3).

3 General Analysis of Clipping

We aim to present a general framework in which we can provide a unified analysis for commonly
used clipping-based algorithms. Since momentum is one of the most popular acceleration technique
in optimization community, our framework takes this acceleration procedure into account. We show
our framework in Algorithm [, where we can simply replace V f(x¢, &) by VF(x;) for the deter-
ministic setting.

3We will show in Appendix D that even using Assumption I, such upper bound can not be improved.



Algorithm 1: The General Clipping Framework

Input : Initial point ¢, learning rate 1), clipping parameter v, momentum S € [0, 1),
interpolation parameter v € [0, 1] and the total number of iterations T
Initialize myq arbitrarily;
fort < 0toT —1do
Compute the stochastic gradient V f (x, ;) for the current point z;;
miy1 = Py + (1= B)V f(2, &);

Tyy1 ¢ Ty — |:V min (77, ”ijH) mir1 + (1 — v) min (77, va(ztft)n) Vf(xt,ﬁt)];

We notice that our framework is similar to the Quasi-Hyperbolic Momentum(QHM) algorithm pro-
posed by Ma and Yarafs [P(ITX], while they did not consider the clipping technique. They pointed
out that QHM contains a wide range of popular algorithms (e.g. SGD+momentum, Nesterov Ac-
celerated SGD, AccSGD, etc). As a result, for different choice of hyper-parameters, our framework
encompasses the clipping version of all these algorithms. We now discuss several representative
examples in our framework.

e Gradient Clipping. By choosing v = 0 in Algorithm [, we obtain the clipped GD/SGD
algorithm which can be written as:

Ter = g —min (1, /[|V f (20, &) V£ (4, &)

It follows that in gradient clipping, the gradient is clipped to have its norm no more than
v/

o Momentum Clipping. By choosing v = 1 in Algorithm [, we perform the update using a
clipped version of momentum which can be written as:

Typ1 4 2 — min (0, y/[[mera]) mesa

The approach has already been used in previous works [Zhang et all, 2019, P020H], albeit
in different settings. To the best of our knowledge, there is no existing analysis of this
algorithm even for optimizing standard L-smooth functions.

e Mixed Clipping. By choosing v € (0, 1), we obtain the mixed clipping algorithm. Al-
though this form of clipping is not widely used in practice, we observe from experiments
that it typically converges faster than both gradient clipping and momentum clipping. Some
explanations of this observation are provided in Appendix E.

e Normalized Momentum. By choosing ¥ = 1 and 7 — 400 in Algorithm [, we recover
the normalized SGD+momentum algorithm. This algorithm performs a normalized (rather
than clipped) update in each iteration. It has been analyzed in Cutkosky and Mehta [2020]
for L-smooth functions and a layer-wise variant was used in the LARS algorithm [[You
efall, DOT7]. We will provide a detailed discussion of this algorithm in the Appendix C.

3.1 Main Results

In this section we first deal with the deterministic case, in which we can get a strong justification that
clipping is a natural choice to optimize ( Lg, L1 )-smooth functions. We have the following Theorem.

Theorem 3.1 [Convergence of Algorithm I, Deterministic Setting] Let the function F satisfy As-
sumptions 20 and Z2. Set mg = VF(xq) in Algorithm O for simplicity. Fix ¢ > 0 be a small

constant. Forany 0 < < land 0 < v < 1, ifv < % andn < % where A = 1.06,
B = 1.06, then

T
1
7 D IVFG)]| < 20

t=1
as long as

T23Amax{,}. 2)



In Theorem B, the (Lo, L1 )-smoothness is precisely reflected in the restriction of hyper-parameters
v = O(1/Ly) and n = O(1/Ly). For large L1, we must use a small clipping hyper-parameter to
guarantee convergence. This also coincides with the intuition that in highly non-smooth regions we
should take a small step.

Theorem Bl states that in the deterministic setting, for any € > 0, our framework can find an
Lo Li
27 Lo

©(1/Ly)andn = © (1/Ly). Whene = O(Lo/L,) , the dominating term is O (AL ~?).

Now we turn to our main result in the stochastic setting. We have the following theorem.

e-approximate stationary point in O (A max{ }) gradient evaluations if we choose v =

Theorem 3.2 [Convergence of Algorithm [l Stochastic setting] Let the function F satisfy Assump-
tions I and 22, and the noise satisfies Assumption with o > 1. Set mg = VF(xg) in Algo-
rithm @ for simplicity. Fix 0 < € < 0.1 be a small constant. Forany 0 < 8 < 1land 0 <v <1, if

v < 55 min { A }42[3, 2;1;?1 } and v /n = 50 where constants A = 1.01, B = 1.01, then

T
1
7 2 _EIVF (@) <3¢ 3)
t=1
as long as
3
T> A 4)
e°n
Here the expectation is taken over all the randomness &g, - -+ ,Ep—_1.

Theorem B2 shows that in the stochastic setting, for any ¢ > 0, our framework can find an
4
Ly Ly })) gradient evaluations. When ¢ <

e-approximate stationary point in O <A02 (max {?47 *
0

min {1, 25L£1 } (1—0), the term min { AELO, }(Lf, 251);?1 } reduces to AgLD. In this case L no longer

affects the choice of steps sizes 1 and y, and the complexity in (8) reduces to O (AL0025_4).

Theorem B2 suggests that the clipping threshold should take v/n = ©(o), which only depends
on the noise and is several times larger than the its variance. This matches previous understanding
of gradient clipping, in that clipping the stochastic gradient controls the variance while introduc-
ing some additional bias, and the clipping threshold should be tuned to trade-off variance with the
introduced bias [Zhang et all, POTY].

We emphasize that in both settings, the dominating terms in our upper bounds are independent
of the gradient upper bound M and the smoothness parameter L;. In other words, the efficiency
of Algorithm [ is essentially unaffected by these quantities. Recall that M and L; are related to
steep cliffs in the landscape where the gradient may be large or fluctuate violently. Therefore, our
results suggest that such non-smoothness can be tackled with clipping methods without sacrificing
efficiency.

3.2 Proof Sketch

The analysis of Algorithm [ is in fact challenging, as it uses both momentum and adaptive step
sizes. Also, the general (Lg, L1)-smoothness assumption makes things more complicated. In this
subsection we briefly introduce our proof technique. We hope our proof is also useful to a better
understanding of other adaptive algorithms that combine momentum (such as Adam [Kingma and
B4, D0T4]).

Proof sketch of Theorem B1. Due to the momentum term, each step in Algorithm [ is not nec-
essarily a descent one, which makes it difficult to prove convergence using traditional techniques.
Instead, we construct a novel Lyapunov function as follows:

Bv

3t =g min (ol ) ©®)

Gla,m) = F(2) + 57

We aim to analyze the descent property of the sequence {G(z, Tt)}tT:O- Define p = v/n, S =
{t € N:t < T,max(||VF (x|, llmel], |mes1]]) > pland S = {t € N : ¢t < T}\S. Let



Ts = |S|. We separately provide one-step analysis for the two cases, as stated in Lemma B3 and
B4 respectively.

Lemma 3.3 Foranyt € S, we have

Gz, my) = Goepr, megr) = (YA =) (IVE@)[| + p) =IVE(@e) —mull) — (6)

We prove this lemma by using the (L, L1 )-smoothness properties deduced in Appendix A and
conducting a comprehensive discussion on three cases in Lemmas B.1-B.3. Furthermore, we show
inLemmaB.4that ), ¢ [[VF(2:)—my| = O (7TIs(p + 3 ,es IVF(2¢)])). By choosing a small
enough v and carefully dealing with constants, we can conclude that the total amount of decrease of
the Lyapunov function is 2 (pyTs).

Lemma 3.4 Foranyt € S, ifn= O(1/Lo) and v = O(1/Ly), then we have
G(xe,my) — G(mpy1, mMys1) = Q (77 ((1 —vB)|VF(z)|* + VﬁHthQ)) )

We prove () in Lemma B.5-B.7 by the fact that Algorithm [ performs an unclipped update if ¢ € S.
Since the bound (@) is small in term of |V F(z;)| if 8 and v are close to 1, we convert ||m.|| to
IV F(x)|| by proving that 37, 5 lmel| = Q (3,5 IVF (o)l = v(pTs + Xyes [[VE(z)])) in
Lemma B.8. The term related to S can all be offset by the terms in Lemma B3, and the term
related to S combined with 1(1 — v3)||VF(x;)|? can be shown to ensure a descent amount of
Q (en||VF(z)|| — e%n), which is Q (£2n) as long as |V F (z)|| > 2e.

Finally, by combining the above two cases we obtain the conclusion in Theorem Bl

Proof sketch of Theorem B.2. In the stochastic setting, it requires a different treatment to deal with
the noise. We define the true momentum m recursively by

Myy1 = By + (1 — B)VF(xy) 8

where mg = mp, and analyze the descent property of the following sequence
{G(x4,me)} . We also consider two cases: max(5||VF(x)||/4, |7, [[mes1]]) > p and
max(5||VF (ze)||/4, |7, [[mesal]) < p. We split my into m; and m; — m; such that the lat-
ter term is merely composed of noises V f (2, &) — VF(x;) (7 < t). While most of the procedure
(Lemmas B.10-B.14) parallels the deterministic setting, there are two additional challenges due to
the presence of noise:

e Firstly, since the gradients are not exact, the stochastic gradient we have access to is not
guaranteed to be small even for the case of t € S. Fortunately, the choice of parameters in
Theorem B (p = 50) settles such difficulty.

e Secondly, we need to deal with the noise in momentum, i.e. m; — m;. In particular, we use
a recursive argument to obtain a good bound of E (VF (zt), ms41 — Miy1).

Finally, by choosing proper 7 and 7y, we can obtain Theorem B7.

3.3 Lower Bounds and Discussions

Theorem Bl and B provide upper bounds for the complexity of Algorithm M. Now we compare
these results with existing lower bounds and discuss the tightness of our results.

Deterministic Setting. Carmon_ef all [Z0TY] have shown that there exists an L-smooth function
F such that any (possibly randomized) algorithm requires at least €2 (AL@”) queries to gradient
to ensure finding a point = such that ||VF(z)|| < e. Since Assumption P72 is weaker than L-
smoothness (Lo < L), we have that the lower bound for (Lo, L1)-smooth functions is  (ALge?).
From Theorem B, Algorithm [ is optimal since it can achieve the lower bound when ignoring
numerical constants.

Stochastic Setting. From the example constructed in Drori and Shamit [20T9], we have that for any
SGD method with arbitrary (possibly adaptive) step sizes and aggregation schemes?, the complexity

*See details in Appendix D.
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Figure 2: Training loss curve and test accuracy/perplexity curve on CIFAR-10, ImageNet and PTB
datasets. All clipping algorithms outperform SGD. Mixed clipping has the best training speed on
these three datasets.

lower bound is exactly 2 (AL0025_4) for (Lo, L1)-smooth functions that have o-bounded gradient
noises. Therefore Theorem B indicates that clipped SGD matches the lower bound.

One may ask : what is the lower bound for general stochastic gradient-based algorithms? In fact,
from the example in [Arjevani et al] [Z019], we have that any algorithm needs §2 (AL00%€_4)
stochastic gradient queries to find an e-approximate stationary point for a hard (Lg, L1 )-smooth func-
tion whose gradient noise has a o?-bounded variance. It is our conjecture that the lower bound for
optimizing (Lo, L1)-smooth functions that have o-bounded gradient noises is also O (AL0025_4).
We leave the study as a future work.

4 Experiments

We conduct extensive experiments and find the clipping algorithms indeed consistently outperform
their unclipped counterpart. We present experimental results on three deep learning benchmarks:
CIFAR-10 classification using ResNet-32, Imagenet classification using ResNet-50 and language
modeling on Penn Treebank (PTB) dataset using AWD-LSTM. We put all the experimental details in
the Appendix. Our code is available at https://github.com/zbh2047/clipping-algorithms.

CIFAR-10 classification with ResNet. We train the standard ResNet-32 [He ef all, POTA] archi-
tecture on CIFAR-10. We use SGD with momentum for the baseline algorithm with a decaying
learning rate schedule, which is the standard choice to train the ResNet architecture. We set learning
rate 7 = 1.0, momentum S = 0.9 and minibatch size 128, following the common practice. For all
the clipping algorithms, we choose the best 7 and ~ based on a course grid search, while keeping
other hyper-parameters and training strategy the same as SGD+momentum. We simply set the hyper-
parameters ¥ = 0.7 and 8 = 0.999 in mixed clipping, as suggested in Ma and Yarafs [2018] (for
its unclipped counterpart QHM). We run 5 times for each algorithm using different random seeds to
make the results more reliable.

Figures demonstrates the results. It can be seen that all the algorithms achieve a test ac-
curacy more than 93% on CIFAR-10. Note that all clipping algorithms converge faster than
SGD+momentum. Particularly, the mixed clipping (Algorithm ) outperforms SGD+momentum
by a large margin in term of training speed. As a result, one can possibly adopt a more aggressive
learning rate decaying schedule to reduce training time considerably.


https://github.com/zbh2047/clipping-algorithms

ImagNet classification with ResNet. We train the standard ResNet-50 [He ef all, POTH] architec-
ture on ImageNet. For the baseline algorithm, we choose SGD with learning rate [ = 1.0 and
momentum S = 0.9, following Goyal et al] [20T7]. We use batch size 256 on 4 GPUs.

Figure plot the training loss curve and validation accuracy curve on ImageNet. All the algo-
rithms reach a validation accuracy of about 76%. However, all the clipping algorithms train faster
than the baseline SGD. Mixed clipping performs the best among the four algorithms.

Language modeling with LSTM. We train the state-of-the-art AWD-LSTM [Merity et all, 2017]
on Penn Treebank (PTB) dataset [Mikolov_ef all, POTO]. We first follow the training strategy in
Merity et al] [2Z0177], where they use averaged SGD without momentum with learning rate n = 30
and clipping parameter y = 7.5. Since our purpose is to compare different algorithms rather than to
achieve state-of-the-art results, we only train AWD-LSTM for 250 epochs. We then evaluate other
algorithms including standard SGD without clipping, momentum clipping, and mixed clipping. We
choose the best 1 and  (using validation perplexity criterion) based on a course grid search. Results
are shown in Figure Z(C].

Figure clearly shows all clipping methods converge much faster than SGD without clipping, and
are much better in term of validation perplexity. This is consistent with our theory, in that the vanilla
SGD must use a very small learning rate to guarantee convergence [Zhang et all, 2020a], which will
be slow and be harmful to generalization on validation set according to previous works [Huang et all,
20717, Kleinberg et all, Z0TH] . Therefore clipping technique is crucial in LSTM models. We can
also find that the training and test curve of mixed clipping is much better than both gradient clipping
and momentum clipping. The mixed clipping improves validation perplexity for more than 1 point
compared to clipped SGD after 250 epochs.

5 Conclusion

This paper proposes a detailed study for clipping methods under a general framework. In particular,
we explore the possibility of combining clipping with other popular techniques, e.g. momentum
acceleration, in deep learning. We provide a general and tight analysis for the framework, showing
the efficiency of clipping methods in optimizing a class of non-convex and non-smooth (in traditional
sense) functions. Experiments confirm that these methods have superior performance. We hope that
our work affords more understandings on the clipping technique and (Lg, L) smooth functions.

There are still many open questions that have not yet been answered. Firstly, as discussed in Sec-
tion B3, we are not aware of any lower bounds for general first-order methods that can be applied
our setting. Thus, it is interesting to explore such lower bound, or to relax Assumption 4 to the
more general bounded variance assumption. Secondly, although we have shown the superiority of
clipping-based methods, we do not provide theoretical explanation why some clipping schemes are
better than others as observed in experiments. We believe that this can only be done by exploring
new and better smoothness assumptions. Thirdly, the empirical superiority of other adaptive meth-
ods (e.g. AdaGrad [Duchiefall, PO0T1], Adam [Kingma and B4, 20T4] ) have not been justified from
a theoretical point of view. We hope that our analysis is helpful for the analysis of these methods.
Finally, we are looking forward to seeing better optimization algorithms with better convergence
properties in future work.

Broader Impact

Deep neural networks have achieved great success in recent years. In this paper, we provide a strong
justification for the clipping technique in training deep neural networks and provides a satisfactory
answer on how to efficiently optimize a general possibly non-convex (Lg, L1)-smooth objective
function. It closely aligns with the community’s pursuit of explainability, controllability, and practi-
cability of machine learning.

Besides its efficiency in training deep neural networks, a series of recent work ( Thakkarefall [ZOTY],
Chen_ef all [2020], Cee"and Kifer [P020] ) also studies the relation between clipping and privacy
preservation, which appears to be a major concern in machine learning applications. Therefore, we
hope that a thorough understanding of clipping methods will be beneficial to the modern society.
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