
A Supplementary Material
A.1 Subset Average Likelihood
Li and Turner [35], Dieng et al. [15], who study different classes of divergences where the
likelihood also enters as a product, propose to replace the true likelihood at each iteration with
a “subset average likelihood”. The subset average likelihood approach makes the following
approximation

p(x |z) =
nY

i=1

p(xi |z)⇡ p(xM |z)
n

m :=
Y

j2M

p(x j |z)
n

m ,

where M ⇢ {1, . . . , n} is a set of indices corresponding to a mini-batch of size m = |M | data
points sampled uniformly from {x1, . . . , xn} with or without replacement. Considering the same
approach for the inclusive KL case the unbiased stochastic gradient obtained is
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p(zs)p(xM |zs)
n

m

q(zs ; �)
r� log q(zs ; �), zs ⇠ q(z ; �). (10)

This approximation also leads to a systematic error in the SGD algorithm. It is no longer
minimizing the KL divergence from the posterior p to the variational approximation q. In fact, it
is possible to show that it is actually minimizing the KL divergence from a perturbed posterior ep,
where the likelihood is replaced by a mixture of all potential subset average likelihoods, to the
variational approximation q. This result is formalized by proposition 2.

Proposition 2. Using the stochastic gradient defined by eq. (10) and an iterative SGD algorithm

according to eq. (5) the fixed points �? are identical to the solution to

r�KL (ep(z |x)kq(z ; �)) = 0, (11)

where the perturbed posterior ep, if it exists, is given by

ep(z |x)/ p(z)
X

M2M
p(xM |z)

n

m ,

andM is the set of all possible combinations of mini-batches M of size m.

Proof. See the Supplementary Material.

In the supplement we provide illustrations on a simulated example. It is in general difficult to
determine the magnitude of the error introduced by the subset average likelihood in practical
applications. The subset average likelihood approach for Rényi and �2 divergences [35, 15]
likewise leads to a systematic error in the stochastic gradient. Furthermore, the fixed points of
the resulting stochastic systems for these divergences are difficult to quantify, making it even
harder to understand the effect of the approximation.

Conditional Sequential Monte Carlo
Just like CIS is a straightforward modification of IS, so is CSMC a straightforward modification of
SMC. We make use of CSMC with ancestor sampling as proposed by Lindsten et al. [38] combined
with twisted SMC [23, 25, 47]. While SMC can be adapted to perform inference for almost any
probabilistic model [47], we here focus on the state space model

p(z1:T ,x1:T ) = p(z1)p(x1 |z1)
TY

t=1

p(zt |zt�1)p(xt |zt),

where we assume that the prior p(z1) and transition p(zt |zt�1) are conditionally Gaussian.
Because the prior and transition distributions are Gaussian it is convenient to define the full
approximation to the posterior p(z1:T |x1:T ) to be the multivariate normal

q(z1:T ; �) = q(z1 ; �1)
TY

t=2

q(zt |zt�1 ; �t), (12)

q(z1 ; �1)/ p(z1) (z1 ; �1),
q(zt |zt�1 ; �t)/ p(zt |zt�1) (zt ; �t),

13



where  are twisting potentials

 (zt ; �t) = exp
Å
�1

2
z>

t
⇤tzt + ⌫>t zt

ã
,

with �t = (⇤t ,⌫t). We are now equipped to explain the CSMC kernel that updates a conditional
trajectory z1:T [k� 1] = (z1[k� 1], . . .zT [k� 1]). Each iteration of CSMC consists of three steps:
initialization for t = 1, running a modified SMC algorithm for t > 1, and then updating the
conditional sample for the next iteration. We explain in detail below.

First, perform (conditional) IS for the first step where t = 1. Set z1
1 = z1[k� 1] and propose the

remaining S � 1 samples from a proposal distribution q
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1 ⇠ q(z1 ; �1), i = 2, . . . , S

and compute the importance weights for i = 1, . . . , S
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Then, for each step t > 1 in turn perform resampling, ancestor sampling, propagation and weighting.
Resampling picks the most promising earlier sample to propagate, i.e. for i = 2, . . . , S simulate
ancestor variables a

i

t�1 with probability

P
�
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i

t�1 = j

�
= w̄

j

t�1.
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1
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�
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t�1 ; �t),
where zt[k� 1] is the corresponding element of the conditional trajectory z1:T from the previous
iteration. This is known as ancestor sampling [38].

When propagating for i = 1 simply set z1
t
= zt[k � 1], and simulate the remainder from the

proposal distribution
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For the final step t = T the (unnormalized) weights are instead
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. (14)

Finally, an updated conditional sample is generated by picking one of the proposed trajectories
with probability proportional to its (normalized) weight, i.e.

z1:T [k] = zJ

1:T ,

where J is a discrete random variable with probability P(J = j) = w̄
j

T
.

Repeating this procedure iteratively constructs a Markov chain with the posterior p(z1:T |x1:T ) as
its stationary distribution [2, 38, 47]. With this it is possible to attain an estimate of the gradient
with respect to the variational parameters of eq. (2) as follows

bgKL(�) = �r� log q(z1:T [k] ; �), (15)
where z1:T [k] is the conditional sample retained at iteration k of the CSMC algorithm.

We summarize one full iteration of the CSMC algorithm in algorithm 4. This algorithm defines a
Markov kernel M(z1:T [k] |z1:T [k� 1] ; �) useful for MSC.
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Algorithm 4: Conditional Sequential Monte Carlo
Input : Model p(z1:T ,x1:T ), proposal q(z1:T ; �), conditional sample z1:T [k� 1], and total

number of internal samples S.
Output : z1:T [k]⇠ M(· |z1:T [k� 1] ; �), updated conditional sample.

1 Set z1
1 = z1[k]

2 Sample zi

1 ⇠ q(z1 ; �1) for i = 2, . . . , S

3 Compute w
i

1 =
p(zi

1) (z
i

1 ; �1)

q(zi

1 ; �1)
for i = 1, . . . , S

4 for t = 2, . . . , T do
5 for i = 2, . . . , S do
6 Sample a

i

t�1 w.p. P(ai

t�1 = j) = w̄
j

t�1

7 Sample zi

t
⇠ q(zt |z

a
i

t�1
t�1 ; �t)

8 end
9 Sample a

1
t�1 w.p.

10 P(ai

t�1 = j)/ w̄
j

t�1q(zt[k] |z j

t�1 ; �t)
11 Set z1

t
= zt[k]

12 for i = 1, . . . , S do
13 Compute w

i

t
in eq. (13) or eq. (14)

14 Set zi

1:t =
⇣
z

a
i

t�1
1:t�1,zi

t

⌘

15 end
16 end
17 Sample J with probability P(J = j)/ w̄

j

T

18 Set z1:T [k] = zJ

1:T

Proof of Proposition 1
This result is an adaptation of Gu and Kong [21, Theorem 1] based on Benveniste et al. [5,
Theorem 3.17, page 304]. Let �? be a minimizer of the inclusive KL divergence in eq. (2).
Consider the ordinary differential equation (ODE) defined by

d
dt
�(t) = Ep(z |x) [�s(z ; �(t))] , �(0) = �0, (16)

and its solution �(t), t � 0. If the ODE in eq. (16) admits the unique solution �(t) = b�,
t � 0 for �(0) = b�, then b� is called a stability point. The minimzer �? is a stability point
of eq. (16). A set ⇤ is called the domain of attraction of b�, if the solution to eq. (16) for
�(0) 2 ⇤ remains in ⇤ and converges to b�. Suppose that �k 2 Rd and that ⇤ is an open
set in Rd� . Furthermore, suppose z[k] 2 Rdz and that Z is an open set in Rdz . Denote the
Markov kernel in MSC, algorithm 1, by M�(z, dz0) and repeated application of it by M

k

�(z, dz0) =R
· · ·
R

M�(z, dz1)M�(z2, dz3) · · ·M�(zk�1, dz0). |z| denotes the length of the vector z. Let Q be
any compact subset of ⇤, and q > 1 a sufficiently large real number such that the following
assumptions hold. We follow Gu and Kong [21] and assume:

C 1. Assume that the step size sequence satisfies

P1
k=1 "k =1 and

P1
k=1 "

2
k
<1.

C 2 (Integrability). There exists a constant C1 such that for any � 2 ⇤, z 2 Z and k � 1,Z �
1+ |z0|q
�

M
k

�(z, dz0) C1 (1+ |z|q)

C 3 (Convergence of the Markov Chain). Let p(z |x) be the unique invariant measure for M�. For

each � 2 ⇤,

lim
k!1

sup
z2Z

1
1+ |z|q
Z �

1+ |z0|q
�
|M k

�(z, dz0)� p(dz0 |x)|= 0.
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C 4 (Continuity in �). There exists a constant C2, such that for all �,�0 2Q����
Z �

1+ |z0|q
� �

M�(z, dz0)�M�0(z, dz0)
����� C2|���0| (1+ |z|q) .

C 5 (Continuity in z). There exists a constant C3, such that for all z1,z2 2 Z

sup
�2⇤

����
Z �

1+ |z0|q+1
� �

M�(z1, dz0)�M�(z2, dz0)
����� C3|z1 � z2| (1+ |z1|q + |z2|q) .

C 6 (Conditions on the Score Function). For any compact subset Q ⇢ ⇤, there exist positive

constants p, K1, K2, K3 and ⌫> 1/2 such that for all �,�0 2 ⇤ and z,z1,z2 2 Z,

|r� log q(z ; �)| K1

�
1+ |z|p+1
�

,

|r� log q(z1 ; �)�r� log q(z2 ; �)| K2|z1 � z2| (1+ |z1|p + |z2|p) ,
|r� log q(z ; �)�r� log q(z ; �0)| K3|���0|⌫

�
1+ |z|p+1
�

.

The constants C1, . . . , C3 and ⌫ may depend on the compact set Q and the real number q. C 1 is
the standard Robbins-Monro condition and C 6 controls the regularity of the model. C 2-C 5 have
to do with the convergence and continuity of the Markov kernel. These conditions can be difficult
to verify in the general case, but can be proven more easily under the simplifying assumption
that Z is compact. See Lindholm and Lindsten [37, Appendix B] for a proof of continuity of the
CSMC kernel, which can also be adapted to the CIS kernel.

With the above assumptions the result follows from Gu and Kong [21, Theorem 1] where (left -
their notation, right - our notation)

✓ = �,
x = z,
⇧✓ = M�,

H(✓ , x) =r� log q(z ; �),
and I(✓ , x) = 0, �k = 0.

Proof of Proposition 2
The fixed points of the iterative algorithm are the solutions to the equation when we set the
expectation of eq. (10) equal to zero. The equation is given by

E
ñ
�1

S

SX

s=1

p(zs)p(xM |zs)
n

m

q(zs ; �)
r� log q(zs ; �)

ô
= E

� p(z)p(xM |z)

n

m

q(z ; �)
r� log q(z ; �)
�

= E
ñ
�

p(z) 1
|M |
P

M2M p(xM |z)
n

m

q(z ; �)
r� log q(z ; �)

ô
= 0

() Eep(z |x) [�r� log q(z ; �)] = 0

()r�KL (ep(z |x)kq(z ; �)) = 0,
where the first equality follows because the samples zs are independent and identically distributed.
The second equality follows by the distribution of the mini-batches. The first equivalence follows
because z ⇠ q(z ; �) and we multiply both sides by a constant independent of �. The final
equivalence follows because ep(z |x) does not depend on �. This concludes the proof.

Additional Results Bayesian Probit Regression
We also compare the posterior uncertainty learnt using MSC and IS. Figure 4 shows difference
in the log-standard deviation between the posterior approximation learnt using MSC and that
using IS, i.e. log�?MSC � log�?IS. The figure contains one boxplot for each dimension of the latent
variable and is based on data from 100 random train-test splits. We can see that for two of
the datasets, Heart and Ionos, MSC on average learns a posterior approximation with higher
uncertainty. However, for the Pima dataset the IS-based method tends to learn higher variance
approximations.
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(a) Pima (b) Ionos (c) Heart

Figure 4: The difference in log-standard deviation of the variational approximation, log�?MSC �
log�?IS, between parameters learnt using MSC (this paper) and IS (cf. [7]). The dimension of
the latent variable is plotted versus the parameters learnt from 100 random splits.

Additional Results Subset Average Likelihoods
We illustrate the difference between the true and perturbed posteriors in fig. 5 for a toy example
where the two distributions can be computed exactly. The model is an unknown mean measured
in Gaussian noise with a conjugate prior, i.e. z ⇠ N (0,1), xi ⇠ N (z, 1). To be able to exactly
compute the perturbed posterior we keep the number of data points small n= 10. The figure
shows the true and perturbed posteriors for two randomly generated datasets with m= 2,5,9.

Bias in �-divergence variational inference (CHIVI)
Figure 6 illustrates the systematic error introduced in the optimal parameters of CHIVI when
using biased gradients.
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Figure 5: Example of perturbed and true posterior when using subset average likelihoods. The
data used is simulated from the model defined by z ⇠ N (0,1), xi ⇠ N (z, 1), n = 10 for two
different random seeds. The subset sizes where chosen to be m= 2 (top row), m= 5 (top row)
and m= 9 (bottom row).

Figure 6: Example of learnt variational parameters for CHIVI, as well as true parameters when
using a Gaussian approximation to a skew normal posterior distribution.
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