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Abstract

Modern machine learning workloads use large models, with complex structures,
that are very expensive to execute. The devices that execute complex models are
becoming increasingly heterogeneous as we see a flourishing of domain-specific
accelerators being offered as hardware accelerators in addition to CPUs. These
trends necessitate distributing the workload across multiple devices. Recent work
has shown that significant gains can be obtained with model parallelism, i.e,
partitioning a neural network’s computational graph onto multiple devices. In
particular, this form of parallelism assumes a pipeline of devices, which is fed a
stream of samples and yields high throughput for training and inference of DNNs.
However, for such settings (large models and multiple heterogeneous devices), we
require automated algorithms and toolchains that can partition the ML workload
across devices. In this paper, we identify and isolate the structured optimization
problem at the core of device placement of DNN operators, for both inference and
training, especially in modern pipelined settings. We then provide algorithms that
solve this problem to optimality. We demonstrate the applicability and efficiency
of our approaches using several contemporary DNN computation graphs.

1 Introduction

Deep Neural Networks (DNNs) have been effective across a range of applications, including image
classification [KSH12, SZ14, HZRS15a], translation [WSC+16], language modeling [MKS17], and
video captioning [VRD+15]. The proliferation of heterogeneous hardware accelerators [JYP+17,
SPM+16] coupled with the dramatic growth in the size and the structural complexity of DNNs has
bolstered the importance of model parallelism, where for both inference and training, the model is
distributed across devices.

DNN inference in the “single-stream” setting [mlp], where only one inference request is issued
at a time, is latency-sensitive. To achieve low latency, model parallel executions split the model
across many accelerators [CKES16, FOP+18, CFO+18]. Model-parallel inference is beneficial due
to three primary reasons. First, such splits are mandated by the memory-capacity (size) limitations of
accelerators that cannot fit a single DNN model. Current DNN models have billions of parameters
and require multiple GBs of space to store the weights and intermediate activations. Second, wide
branching in recent DNN structures, as well as in the operator-granularity graphs for established
DNNs, opens up the potential of executing data-independent sections of the computation in parallel
to reduce latency. Third, the model needs to be split across multiple types of devices when a subset
of operators in the graph are better suited or only supported to execute on certain accelerators.
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DNN training, on the other hand, is throughput-bound, as is DNN inference for the “offline” setting
where many inputs can be serviced together [mlp]. Model parallelism has been proposed for training
for the very same motivational reasons listed for inference above [KSH12, Kri14]. Early influential
systems such as DistBelief [DCM+12] and Project Adam [CSAK14] split models to operate on
commodity CPU clusters and out of CPU caches. In such a setting, operators in a DNN model
are partitioned across the available devices, with each device evaluating and performing updates
only on a subset of the model’s parameters for all inputs. While traditional model parallel training
suffers from problems of low hardware utilization, as only a single accelerator is active at any given
time, pipelined model parallelism overcomes this deficiency. The amount of data communicated in
pipelined training is the size of intermediate outputs (and corresponding gradients), which need to be
sent across accelerators, and is much lower than the size of data communicated in data-parallel training.
In particular, for a range of existing models that fit on a single GPU, PipeDream [HNP+18, NHP+19]
uses pipelined model-parallelism to achieve much faster training time to advertised accuracy than
data-parallelism. Similarly, GPipe [HCC+18, HCB+19] uses pipelined model-parallel training for
very large models whose total training memory footprint exceeds the memory capacity of a single
accelerator.

Given the importance of model-parallel inference and training, in this paper we present efficient
algorithms to answer the following general question: For a DNN model and a deployment scenario (a
set of accelerators and their memory and interconnect constraints), how can we effectively partition
the model to optimize the metric of interest, such as latency or throughput, relevant to the inference
or training task at hand?

We provide novel algorithmic approaches to tackle the problem of partitioning the model in both
model-parallel inference and training scenarios, optimizing for their corresponding metrics of interest:

• Inference – (i) Model-Parallel Inference, optimized for “single-stream” latency (Figure 2a), (ii)
Pipelined Inference, optimized for “offline” throughput (Figure 3a).

• Training, optimized for throughput – (i) Model-Parallel Training (Figure 2b), (ii) Pipeline-Parallel
Training with PipeDream and GPipe schedules (Figure 4).

In particular, for both non-pipelined and pipelined settings, we identify the combinatorial optimization
problem at the core of the device placement question, whose solution will yield the optimal partition.
We then show how to solve this problem to optimality via Integer Programming (IP) and Dynamic
Programming (DP) based algorithms. Our methods are general as they can be applied either to
coarse-granularity layer graphs or to more complex fine-granularity operator graphs. We support
graph partitions where accelerators can hold a non-contiguous fragment of the graph. We evaluate
our partitioning algorithms for different scenarios described above for a variety of modern DNN
workloads (7 DNNs, 16 layer and operator graphs). We find that the placements are efficient and result
in non-trivial optimal splits; non-contiguous splits outperform all the techniques, with an improvement
of up to 2× over expert (average 1.46×), 2.08× over local search (average 1.29×) [MKA07], 1.21×
over PipeDream (average 1.10×) [NHP+19], 7.69× over Scotch (average 1.50×) [Pel09].

2 Related work

In the context of DNN workloads, model partitioning across different devices has mostly been a
manual process driven by human experts. Most prior work on automated device placement falls
into two broad categories. The first category comprises methods that treat the objective function
(i.e., latency or throughput) as a black box. These works use heuristics, mostly based on rein-
forcement learning, to find partitions for a given workload (Mirhoseini et al. [MPL+17, MGP+18],
Spotlight [GCL18]) or learn a placement policy that can then be adjusted for new workloads via
transfer learning (Placeto [ABVG+19], GDP [ZRA+19]) or used to bootstrap a genetic algorithm
(REGAL [PGN+20]). Unfortunately, these methods are computationally expensive, as they need
to evaluate large numbers of placements, each of which entails a reconfiguration of the deployed
devices (for a new DNN split) and measuring the runtime of several inference/training steps. For
instance, [MPL+17] requires 12–27 hours of training time on the target system to partition modern
workloads; [MGP+18] requires 12 GPU hours. For this reason, some systems (Placeto [ABVG+19],
FlexFlow [JZA19]) resort to implementing a simulator to evaluate the objective.

Works in the second category – including ours – build a cost model that closely reflects real
performance, and then algorithmically solve the resulting “offline” optimization problem of find-
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(a) Contiguous split (b) Non-contiguous split

Figure 1: (a) Contiguous and (b) non-contiguous splits. Note that the brick-patterned orange nodes
in (a) form a contiguous subgraph despite not being connected, and checked blue nodes in (b) form a
non-contiguous subgraph despite being connected.

ing good partitions and schedules. This includes classic results in scheduling on multiple ma-
chines/devices [LLKS93, Gra66, KL70, PY90, SW99, ST93], as well as modern DNN scheduling
works (OptCNN [JLQA18], PipeDream’s [NHP+19] optimizer). Such algorithms use profiled com-
pute time of each node (layer or operator) and data-transfer requirements between nodes in a graph,
and the target deployment system infrastructure such as machine and network properties (e.g. mea-
sured bandwidths). Such techniques do not evaluate the performance of splits in an online fashion.
Nevertheless, it has been demonstrated that for well-defined cost models the objective function
closely matches real performance (PipeDream [NHP+19, Figure 15], FlexFlow [JZA19, Figure 11],
OptCNN [JLQA18, Table 4]). Our throughput maximization model in Section 5 generalizes the cost
model used in PipeDream [NHP+19], and our latency minimization objective (Section 4) is similar
to the cost model of FlexFlow’s simulator [JZA19]. In terms of approach, both OptCNN [JLQA18]
and FlexFlow [JZA19] optimize over different dimensions than our methods, opting for more local
parallelization strategies.

Pipelining. GPipe [HCB+19] and PipeDream [NHP+19] introduce pipelined model-parallelism
for training. Given that this prior work has already shown the efficacy of pipeline parallel training on
statistical efficiency (training progress compared to data-parallel training), the focus of this paper is
instead on efficient algorithms to effectively partition DNN models across accelerators. For finding
good DNN splits, GPipe presents no algorithm, and PipeDream proposes a method limited to layer
graphs that are linear (i.e., a path). Efficiently finding optimal splits for pipelined execution in a
general-DAG setting for both training and inference is the central contribution of this paper.

3 Computational Model

Input. We consider a heterogeneous system with k DNN hardware accelerators and ` CPUs. For
simplicity of exposition we assume all accelerators to be of the same type (such as GPU, FPGA,
or TPU) for a single input. Every such accelerator has a capacity limit for its associated memory,
denoted by M . We refer to both CPUs and accelerators as devices. The rest of the input to our
algorithms consists of a directed acyclic graph (DAG) G = (V,E) with associated weights:

• The set V of nodes represents operators such as MatMul, Add, ReLu, etc. (for operator graphs), or
layers such as MaxPool2d or LSTM (for layer graphs). Each node v has an associated time pcpuv
required to process v on a CPU, as well as the processing time paccv of v on an accelerator.Each
node also has a size mv: the memory usage of its associated weights and activations.

• The set E of directed edges encodes dependency/precedence constraints: an edge (u, v) implies
that the operation v depends on the result of u. Each node u has a communication cost cu, which
corresponds to the time required to transfer u’s output between CPU DRAM and the accelerator’s
memory, say through a PCIE bus. Crucially, this cost is paid only if u and v are placed on different
devices: if u is on an accelerator, it needs to write this output to RAM, and if v is on an accelerator,
it needs to read this input from RAM. We ignore the cost of reading or writing to RAM from CPUs.

Output. We seek to assign each node in the graph to exactly one device so that for every accelerator
the sum of sizes mv of nodes assigned to it does not exceed its capacity M . Out of all feasible
partitions we want to select one that optimizes a metric of interest (latency or throughput).
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(b) Model-parallel training schedule

Figure 2: (a) Single-stream model-parallel inference and (b) Model-parallel training schedule with
darker shades for forward pass and lighter for backward. The x-axis is time, and numbers 1–4 are
input minibatch identifiers. Different colors represent different devices.

Contiguous and non-contiguous subgraphs of computation. By default, we desire every device
to hold a contiguous fragment of the DNN:

Definition 3.1. We say that a set S ⊆ V is contiguous if there do not exist nodes u ∈ S, v ∈ V \ S,
and w ∈ S such that v is reachable from u and w is reachable from v. (See Figure 1 for an example.)

This property enables subgraphs to be invoked in an uninterrupted way: all required inputs can be
transferred to the accelerator at one time, after which it performs computations and produces all its
outputs. This allows for simpler system implementations and less interactivity with the accelerator.

However, in this work we also explore non-contiguous splits, where the subgraphs placed on an
accelerator can be arbitrary. In particular, we explain how to build a pipelined schedule for executing
such a split for a stream of many samples, and how to find an optimal split of this more general form.

4 Inference and Latency Minimization

In this section we focus on the task of DNN inference when one sample is fed at a time (see Figure 2a).
The objective here is latency, i.e., the time to produce the final output. Here, model parallelism is
required and/or assists in the following two ways. First, the model might not fit in the memory of a
single accelerator, making the split necessary. Second, it enables us to exploit the parallelism inherent
in the model: if two operators are independent, they can be processed simultaneously if placed on
different devices. We propose an Integer Programming based solution for this setting. For brevity,
here we discuss the main ideas behind our formulation, in the simpler setting of contiguous splits.
The formal Integer Programming model with detailed explanations can be found in Appendix A.

• We use binary variables xvi to denote whether node v should be placed on device/subgraph i, and
continuous variables Latencyv to denote the time at which node v has finished executing and its
output is available in RAM. The objective function is the maximum of Latencyv over all nodes v.

• We use variables CommInui to denote the event that node u produces activations that need to be
transferred into subgraph i. We proceed similarly for outgoing data-transfers.

• For each subgraph, we have variables that control the time period during which it is processing.
• We make sure that nodes are assigned to exactly one device, and that memory size constraints are

satisfied. We use a novel family of constraints to encode the contiguity requirement.
• For non-contiguous splits: we allow every accelerator to hold up to some number q of contiguous

subgraphs. We ensure that their processing times in our schedule do not overlap.
• For non-pipelined model-parallel training (one sample at a time, see Figure 2b), our model applies

directly. A natural extra requirement is that corresponding forward and backward nodes be placed
on the same device, as they operate on the same set of weights. It is easy to express this co-location
constraint: for forward and corresponding backward nodes u and v we require xui = xvi for all i.
The contiguity constraint should be enforced separately for the forward and the backward parts.

5 Throughput Maximization

The next goal of this work is to provide an algorithm for the setting where the DNN handles a steady
stream of samples and the metric of interest is throughput. For simplicity we think that there are
n→∞ samples to be processed offline. A schedule of choice in this scenario is model parallelism
with pipelining. Without pipelining, only one device is active at any given time (see Figures 2a, 2b),
which leads to under-utilization of resources. We remark that pipelining schedules that we discuss
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Figure 3: Pipelined inference. In these figures x-axis is time, rectangle widths are device loads
(processing times for a sample), and numbers 1–9 are input sample/minibatch identifiers. The
average time spent per sample is decided by the most loaded and always-busy device. In (b) the
non-contiguous subgraph of device 1 can be split into two contiguous subgraphs and thought to be
assigned to virtual sub-devices 1a and 1b (that can never be executing at same time). The top and
bottom figures in (b) present two equivalent ways to view this schedule.

are essentially due to prior works [HCB+19, NHP+19], which discuss their implementation aspects,
statistical efficiency, and demonstrate large real-world gains in time-to-accuracy. Here we focus on
algorithms to find optimal splits for this mode of execution.

We begin by introducing our techniques in the setting of pipelined inference, as it is simpler yet
allows us to present the main ideas. Next, we will extend them to handle training workloads.

5.1 Inference and Throughput Maximization

Imagine a DNN that has already been contiguously split into subgraphs per device. The question we
ask is: How do we schedule the execution of many samples so as to maximize the throughput, or
equivalently, minimize the average Time-Per-Sample? To do so, we use pipelined inference, i.e, we
build a pipeline out of devices (in the order in which the subgraphs are arranged in the DNN), and we
insert consecutive samples into it (see Figure 3a). Time can be viewed as divided into rounds: each
sample spends one round on every device. After a short ramp-up period, the pipeline reaches a steady
state, in which the duration of every round is determined by the slowest (most loaded) device. With a
batch of n samples, the average Time-Per-Sample becomes just the maximum load of a device (plus
a vanishing O(1/n) term for the ramp-up and ramp-down periods). We remark that this schedule is
optimal, in the sense that that this average time cannot be lower: the bottleneck device would need to
spend at least (n × its load) time to process n samples in any schedule.

The above discussion shows that the best split is one that minimizes the maximum load of a device.
Here, when searching for the best split, we do not need to simultaneously optimize for the best
schedule (which was done for latency minimization using the Latencyv variables in Section 4) –
pipelining gives this for free. Without this scheduling aspect, we are left with a partitioning problem,
which is easier to solve.

5.1.1 Dynamic Programming Solution

The two main ideas behind our Dynamic Programming (DP) solution are described below. First,
if we want contiguous splits, then we can carve out successive device-subgraphs starting from the
beginning of the network. At all times, the already-partitioned region will be a downward-closed set
that we henceforth call an ideal.

Definition 5.1. We call a set I ⊆ V of nodes an ideal if for any (u, v) ∈ E with v ∈ I we have
u ∈ I .

It turns out that, going from ideal to ideal, we can obtain every possible contiguous subgraph:

Fact 5.2. A set S ⊆ V of nodes is contiguous (see Definition 3.1) if and only if it is the difference of
two ideals: S = I \ I ′ where I ′ ⊆ I . (The proof is given in Appendix B.1.)

General DAGs can contain exponentially many ideals (the worst case being a graph with no edges).
Our second insight is that the operator graphs of most modern DNNs, while less and less linear in
structure, still contain a manageable amount of branching. This topology ensures a limited number of
ideals. Thus, we can consider all possible contiguous sets via Dynamic Programming.
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The Dynamic Program. We fill a DP table of dimensions (k + 1) × (` + 1) ×
(number of ideals in G), where the cell dp[I][k′][`′] is intended to hold the optimal (i.e. smallest)
maximum load of a device if we use k′ accelerators and `′ CPUs to partition the set I ⊆ V of nodes.
The initialization, which is (k′, `′) = (0, 0), is easy: the only ideal that we can partition using 0
devices is the empty set, so we have dp[I][0][0] = 0 if I = ∅ and∞ otherwise. For (k′, `′) 6= (0, 0)
and any I , we iterate over all choices of the subgraph being placed on the last device (which is either
a CPU or an accelerator), which are contiguous sets of the form I \ I ′ for an ideal I ′ ⊆ I:

dp[I][k′][`′] = min
idealI′⊆I

min[max (dp[I ′][k′ − 1][`′], acc(I \ I ′)) ,max (dp[I ′][k′][`′ − 1], cpu(I \ I ′))]

with the caveat that if k′ = 0 or `′ = 0, then we should skip the corresponding branch of the
second min. By cpu(S) and acc(S) we denote the total load of the corresponding device holding the
contiguous set S; thus cpu(S) =

∑
v∈S pcpuv , and acc(S) comprises: the incoming communication

costs of S (
∑

v cv over v 6∈ S with an edge to S), the processing cost
∑

v∈S paccv , and the outgoing
communication costs of S (

∑
v cv over v ∈ S with an edge to V \ S). If S would not fit on an

accelerator, i.e.,
∑

v∈S mv > M , then we instead set acc(S) =∞.

Runtime and memory usage. The DP table dominates the memory usage, which is O(I · (k+1) ·
(`+ 1)), where by I we denote the number of ideals in G. It takes O(I) time to fill one entry of the
table. The entire DP solution can be implemented to run in time O(I2 · [(k+1) · (`+1)+ |V |+ |E|]),
where the additional term I2 ·(|V |+ |E|) arises due to computing the costs cpu(I \I ′) and acc(I \I ′).

Extensions. A similar DP solution is used in PipeDream [NHP+19], albeit only for layer-
granularity graphs that are linear (i.e., a path). That work also considers two extensions: replication
(where a single subgraph is replicated on multiple devices, creating a hybrid model-parallel/data-
parallel split) and hierarchical accelerator topologies (e.g. clusters of GPUs connected internally with
faster interconnects). Both of these extensions can also be handled by our DP algorithm, at the costs
of O(k + `) and O(I) factors in the runtime, respectively. See Appendix H for more details.

5.1.2 Dynamic Programming Solution – Linearization Heuristic (DPL)

The I2 term in the running time can make the DP solution inefficient for certain DNN workloads that
are both large and strongly branching. To deal with this, one can reduce the search space by adding
artificial edges to the graph. In particular, we use the following version of this technique: find a
Hamiltonian path (in other words, a linear/topological ordering) of the input DAG using a Depth-First
Search (DFS) traversal, and add this path of artificial edges. This yields the largest possible reduction
of the search space: the resulting graph has only one topological ordering, and thus the number I
of ideals becomes the number |V | of nodes plus 1, giving an O(|V |2) term instead of O(I2). The
algorithm so obtained is polynomial-time, but it may not return the optimal solution. In Section 6 we
show that it is very close to optimal for most workloads and provides a compelling trade-off between
solution quality and runtime. We denote it by DPL in that section.

5.1.3 Integer Programming Solution

Our IP solution follows similar main ideas as that for latency minimization (Section 4). However, it
is simpler as, thanks to the maximum-load objective, no scheduling aspect is present. Due to space
constraints, the full formal IP formulation is given in Appendix C.

5.2 Non-Contiguous Splits

Suppose we are given a non-contiguous split of a DNN. We go back to the question from Section 5.1:
how to best schedule our workload? Clearly, we still cannot obtain a smaller average time per sample
than the max-load.2 Fortunately, we can still match the max-load using a variant of pipelining. A
challenge here is that the device-subgraphs may no longer have a linear or acyclic ordering induced
from the input DNN (e.g. in Figure 1b, neither subgraph comes fully before the other). One possible

2However, the optimal max-load of a non-contiguous split can be lower than the best contiguous one.
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(b) PipeDream’s 1F1B schedule.

Figure 4: Pipeline-parallel training schedules. For simplicity the load is drawn as equal for all devices
and for the forward (darker color) and backward passes (lighter color).

solution (Figure 3b for example) is to split non-contiguous subgraphs into smaller ones, so that all
subgraphs can be topologically ordered, and mentally place them on virtual devices; then we build a
pipeline of virtual devices. Now we can build a round-based schedule as before, keeping in mind that
virtual devices belonging to the same real device cannot process concurrently. The bottleneck device
will be the one whose total load (of all virtual devices) is maximal.3 See Figure 3b for an example.

The above discussion shows that our max-load objective does not change when dealing with non-
contiguous splits. Our IP solution (Section 5.1.3, Appendix C) ”natively supports” the non-contiguous
setting, by just removing the contiguity constraint.

5.3 Training and Throughput Maximization

Pipeline parallelism can be applied to training as well, where the task of processing large numbers of
samples (and maximizing throughput) is especially relevant. As discussed at the end of Section 4,
computation graphs for training consist of a forward-pass part and a backward-pass part. Certain
backward nodes operate on the same state (weights/parameters) as their corresponding forward nodes,
and so they must be colocated. Contiguity, if desired, should be enforced separately for the forward
and the backward parts; i.e., a device i would hold a contiguous subgraph of the forward part and a
contiguous subgraph of the backward part. Let FWi and BWi denote their respective loads/costs.

Objective. GPipe [HCB+19] and PipeDream [NHP+19] propose two different pipeline schedules.
Our max-load objective function is appropriate for both these schedules. In PipeDream – see
Figure 4b – after a short ramp-up period, every device starts alternating between processing a forward
sample and a backward sample, which together takes FWi + BWi time. As before, the device
i that maximizes this quantity, i.e., the load, is the bottleneck that decides the throughput of the
system. The GPipe schedule, shown in Figure 4a, first processes all forward samples in a batch,
pipelined as they would be for inference; the average time taken for a sample in this pass is maxi FWi

(ignoring an O(1/n) term). The backward pass then takes place, with an average time of maxi BWi.
We thus get the objective maxi FWi + maxi BWi; the difference between this and the objective
maxi FWi +BWi is insignificant, as we argue in Appendix D. For non-contiguous splits, both types
of schedules can be modified in the same vein as in Section 5.2.

Next we describe how to extend our algorithms from Section 5.1 for training workloads. Integer
Programming: Our IP solution handles training graphs out-of-the-box; the only required modifica-
tion is that we apply the contiguity constraint (16) separately for the forward and the backward parts
(if desired). Dynamic Programming: Our DP algorithm can only find contiguous splits, but now
most devices need to be assigned two contiguous subgraphs (backward and forward). Our solution is
to run the DP only on the forward part, but taking the corresponding backward nodes together with
every considered contiguous subgraph (we also count their cost). See Appendix E for more details.

6 Experiments

In this section we evaluate our algorithms on the following modern DNN models for inference and
training: BERT (with 3, 6, 12, and 24 Transformer layers), ResNet50, Inception-v3, and GNMT.
Due to space constraints, we focus on the throughput (max-load) objective; the results for latency
minimization can be found in Appendix F. We reiterate that we do not evaluate a particular pipelining
system, but algorithms to find high-quality splits for pipelined executions. However, we remark that

3This quantity is the original load of that device, independent of the split into virtual devices.
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Workload Nodes DP (contiguous) IP (contiguous) IP (non-contiguous) DPL Expert
Local search

PipeDream
Scotch

Ideals Runtime TPS Runtime TPS Runtime TPS Gain TPS TPS TPS TPS TPS
Operator-granularity graphs, pipelined inference
BERT-3 235 1428 1s 27.92 1s 27.92 2s 21.91 27% 27.92 - 24.32 - 35.94
BERT-6 418 1923 5s 29.58 4s 29.58 54s (3s*) 28.33 4% 29.58 - 42.52 - 49.80
BERT-12 783 2906 19s 147.48 11m (1m*) 147.48 >20m (18s*) 130.03 13% 147.48 - 257.38 - 230.12
ResNet50 604 241 0s 124.35 15s 124.35 1m (10s*) 124.35 0% 124.35 - 250.08 - 197.84
Operator-granularity graphs, pipelined training
BERT-3 600 2774 8s 65.30 2s 65.30 1s 54.21 20% 65.30 - 66.17 - 416.97
BERT-6 1071 3776 25s 72.86 6s 72.86 13m (2s*) 71.64 1% 79.50 - 94.86 - 130.20
BERT-12 2012 2938 1m 438.00 >20m (1m*) 438.00 >20m (1m*) 373.42 17% 438.00 - 737.99 - 800.79
ResNet50 1243 258 2s 255.19 2m (28s*) 255.19 7s 255.19 0% 255.19 - 530.95 - 379.21
Layer-granularity graphs, pipelined inference
BERT-24 32 30 0s 17.79 1s 17.79 >20m (1s*) 17.71 0.4% 17.79 20.08 17.80 17.79 18.03
ResNet50 177 242 0s 33.77 48s 33.77 14s 33.31 1.3% 33.77 43.92 35.63 39.38 34.50
InceptionV3 326 36596 32m 51.55 3m 51.55 19s 51.52 0% 51.55 102.48 54.03 60.42 54.01
GNMT 96 17914 29s 32.91 4s 32.91 9s 31.68 4% 32.91 46.21 31.75 33.03 34.92
Layer-granularity graphs, pipelined training
BERT-24 64 30 0s 41.75 1s 41.75 9s 39.79 5% 41.75 49.40 39.93 41.75 42.01
ResNet50 354 242 1s 78.63 45s 78.63 15s 76.65 3% 78.65 112.11 81.32 83.67 80.10
InceptionV3 652 36596 58m 122.76 8m 123.35 43s 117.72 5% 123.93 213.65 122.80 128.32 128.32
GNMT 192 17914 42s 107.00 4s 107.00 1s 88.47 21% 107.00 137.15 91.52 107.35 107.00

Table 1: Pipelined workloads for maximization of throughput / minimization of Time-Per-Sample
(TPS, equal to max-load). We run the IP optimizer until it guarantees a solution within 1% of the
optimum, but no longer than 20 minutes. The parenthesized times with asterisks denote the time
it took the optimizer to find the solution of the final value (though it could not yet guarantee its
near-optimality). DPL stands for the DP with the Linearization heuristic (see Section 5.1.2), which
always runs under 3 seconds. The fastest non-DPL runtime for every input is in bold.

our max-load objective function (cost model) is a natural generalization of that of PipeDream, which
has been shown [NHP+19, Figure 15] to closely reflect real performance.

Devices and Setup. We evaluate our algorithms on inputs corresponding to the following deploy-
ment scenarios. The DNN workloads are split across 6 accelerators of the same type (GPU for
layer graphs, a hardware accelerator representing TPUs or FPGAs for operator graphs). We use 3
accelerators in case of the smaller BERT-3 and BERT-6 models. Each accelerator has 16 GB of
DRAM and is connected to the CPU over a PCIE 3.0 interconnect. To assign a cost to each node
and edge in the graph, we profile the workloads on GPU for layer workloads, and we estimate the
numbers for the operator graphs for the hardware accelerator. More details about our experimental
setup, graph topology, and implementations can be found in Appendix E. The code and workloads
used for evaluations are available at https://github.com/msr-fiddle/dnn-partitioning.

Baselines used for comparison. We use the following baselines to compare our solutions:

• Hand-crafted placements, similar to [MGP+18, GCL18, ABVG+19]. This is still a widely used
means for device placement. We perform expert splits only for layer graphs, as the operator
graphs with their much stronger branching are infeasible to split manually. In line with prior
work [SVL14, WSC+16], for GNMT we place each LSTM layer on a separate GPU, and then
balance between 6 devices. We proceed similarly with BERT-24. In ResNet50 and Inception-v3,
we split the convolution, batch normalization, and ReLu layers equally among all devices.
• Scotch [Pel09], a graph partitioning software used for mapping computation graphs onto devices

in a balanced way, taking communication costs between dependent nodes into account. The output
splits are not guaranteed to be contiguous.

• Local search [MKA07] is a heuristic that starts from a random split and repeatedly makes the best
single-node reassignment until a local optimum is reached. We restart 10 times and take the best
solution. Note that this almost always yields a non-contiguous split.

• PipeDream [NHP+19]’s optimizer only supports layer graphs, thus we only run it on our layer
workloads. It requires the input to be a linear path, thus it contracts all branchings to single nodes.

Results. Table 1 shows each workload, the number of nodes (operators or layers) in the graph,
runtimes of our algorithms, and the average Time-Per-Sample (TPS) – that is, the maximum device
load, which is inversely proportional to throughput – of the found splits. We also report the gain
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of best non-contiguous splits over best contiguous splits, and the TPS of the baselines. For better
understanding of the DP runtimes we show the number of ideals in the forward part of each DNN.
Visual splits of graphs obtained for the BERT-3 model by our algorithms are shown in Appendix G.

DP vs. IP (optimality, efficiency). DP and IP (contiguous) both return the optimal split, so their
TPS/max-load values are equal (up to a 1% IP optimality threshold). The optimization problems we
solve are computationally hard, and our algorithms are exponential-time in general; however, we
see that their runtimes are reasonable on real-life DNN inputs due to their workload structure. For
our IP solution we used a commercial-grade solver [GO19] that ran on 4 CPU cores. It is worth
noting that most of the runtime is often spent on certifying the near-optimality of the found solution;
it would therefore be reasonable to cut the computation much sooner, still obtaining high-quality
solutions. For the DP solution we created a single-core, self-contained implementation. Its runtimes
are very competitive with those of the IP, except for the most branching models such as Inception-v3.
We remark that in practice the DP runtime is dominated by the O(I2|E|) term and does not depend
much on the numbers k, ` of devices unless these are very large; in contrast, increasing the number of
accelerators can have a large impact on the IP runtime. Moreover, the DP runtime does not depend
on the node weights, whereas the IP runtime does.

DPL (DP with the Linearization heuristic) (see Section 5.1.2). The DPL solution runs in time
essentially O(|V |2|E|), which for our workloads is at most seconds. Crucially, the restricted search
space results in a throughput loss of 9% for the BERT-6 training workload, 1% loss for InceptionV3
training, and no loss for all other workloads. Therefore, DPL would be our method of choice for very
large graphs; it would be able to process graphs with tens of thousands of nodes within, say, an hour.

Contiguous vs. non-contiguous splits. Our IP solution is able to find optimal non-contiguous
splits. To the best of our knowledge, our work is the first one to examine non-contiguous splits
for pipelined model parallelism; thus we use our experiments to evaluate the potential gains in
throughput. We observe that on average, the best non-contiguous splits offer an ∼10% gain over the
best contiguous splits; for BERT-3, the gain is as large as 20-27%.

Comparison to other baselines. As seen in Table 1, our non-contiguous splits outperform all
the techniques, with an improvement of up to 2× over hand-crafted expert splits (average 1.46×),
2.08× over local search (average 1.29×), 1.21× over PipeDream (average 1.10×), 7.69× over
Scotch (average 1.50×). Hand-crafted expert placements for the layer-based graphs provide 71%
and 68% of the throughput in comparison to contiguous and non-contiguous splits, respectively. At
the layer granularity, some workloads have a repetitive graph structure, which can be split manually
across devices, yet this turns out to be not enough to obtain optimality. Furthermore, performing a
reasonable human split over operator graphs is infeasible due to the large branching and number of
nodes. Local search fares badly, underscoring the difficult, non-local structure of the optimization
problem, which is also resistant to the heuristics used by Scotch. Finally, PipeDream only considers
linear layer graphs and contracts branchings in the input graph; whereas our technique that does not
contract branches is able to explore a larger search space for operator placement and achieve up to
1.21× higher throughput.

7 Conclusions

In this paper we give algorithms for the problem of model partitioning of DNN workloads. They
target both inference and training, and optimize the objectives of either minimizing latency or
maximizing throughput. Our work follows a principled algorithmic approach, in which we identify
the ”right” combinatorial optimization problem to solve, and find provably optimal splits. While
other approaches struggle to capture long-term dependencies in the graph and require trying large
numbers of placements on the target system, we solve the global, end-to-end joint placement and
scheduling problem in one shot. Our algorithms are efficient and can be run on arbitrary DAGs,
including operator-granularity graphs, and are hardware platform agnostic. Experiments show that
they outperform human experts and significantly improve over state-of-the-art methods.
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Broader Impact

This work does not present any direct foreseeable societal consequence. In general, work that makes
machine learning more scalable and efficient will indirectly magnify its positive and negative impacts.
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min TotalLatency

s.t.
∑k

i=0
xvi = 1 (∀v) (1)

subgraph {v ∈ V : xvi = 1} is contiguous (∀i = 1, ..., k) (2)

M ≥
∑

v
mv · xvi (∀i = 1, ..., k) (3)

CommInui ≥ xvi − xui (∀(u, v) ∈ E) (∀i = 1, ..., k)
(4)

CommOutui ≥ xui − xvi (∀(u, v) ∈ E) (∀i = 1, ..., k)
(5)

TotalLatency ≥ Latencyv (∀v)
SubgraphStarti ≥ Latencyv · CommInvi (∀v) (∀i = 1, ..., k) (6)

SubgraphFinishi = SubgraphStarti +
∑

v
CommInvi · cv

+
∑

v
xvi · paccv +

∑
v
CommOutvi · cv (∀i = 1, ..., k) (7)

Latencyv ≥ xv0 · pcpuv (∀v) (8)
Latencyv ≥ xv0 · pcpuv + Latencyu (∀(u, v) ∈ E) (9)
Latencyv ≥ xvi · SubgraphFinishi (∀v) (∀i = 1, ..., k) (10)

xvi ∈ {0, 1} (∀v) (∀i = 0, ..., k)

Figure 5: A schema of the Integer Program for latency minimization

A Integer Program for Latency Minimization

In this section we present our formal Integer Programming model for the problem of latency mini-
mization.

Computation model. The specific way of invoking subgraphs of computation on accelerators
that we assume here is motivated by production systems at a large cloud provider (anonymized),
where there is no state maintained across any two subgraph invocations other than subgraph model
parameters. Specifically, an accelerator, which is assigned a subgraph S ⊆ V of nodes, can be
invoked when all of its required inputs are ready in DRAM (these are outputs of nodes not in S but
with an edge to S). Once invoked, the accelerator transfers this data to its memory. Next, it processes
operations v ∈ S (in some sequential order). Finally, it transfers the results back to DRAM (these
are outputs of nodes in S with an edge leaving S). This uninterrupted mode of execution is made
possible by S being contiguous.

Another mild assumption we make to streamline the Integer Programming formulation is that the
number ` of CPU cores is no smaller than the width of G, i.e., the maximum number of nodes that
can feasibly be processed in parallel.4

Our formulation. Our IP formulation is presented in Figure 5. Devices/subgraphs of accelerators
are indexed i = 1, ..., k, and the special index i = 0 denotes all CPU cores together. We use binary
variables xvi to denote whether node v should be placed on device/subgraph i, and continuous
variables Latencyv to denote the time at which node v has finished executing and its output (or
that of the subgraph where it is placed) is available in RAM. The objective TotalLatency is the
maximum of Latencyv over all nodes v. All variables except xvi are bound to be non-negative (i.e.,
not necessarily integral). We explain the remaining variables and constraints below:

• The variable CommInui is intended to be 1 if u is not in subgraph i, but has an edge to it (and
0 otherwise). In this case its output needs to be transferred to the corresponding accelerator’s
memory. This is encoded by constraint (4).

4Formally, ` is larger than any antichain: a set A ⊆ V of nodes such that for any u, v ∈ A, u is not reachable
from v.
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• Similarly CommOutui should be 1 if u is in subgraph i and has an edge going out of i. In this
case its output needs to be transferred from the corresponding accelerator to RAM. This is encoded
by constraint (5).

• For a subgraph i, SubgraphStarti is the time at which all its inputs are ready in RAM (not the
accelerator’s memory). This is encoded by constraint (6). SubgraphFinishi is the time at which
all its outputs are ready and have been transferred to RAM. Constraint (7) relates the two by taking
into account the in-transfer, processing inside the subgraph, and the out-transfer.

• Constraint (1) means that every node should be assigned to exactly one subgraph (or a CPU).
• Constraint (3) encodes the requirement that the sum of sizes of nodes on accelerator i should be at

most M .
• Constraints (8) and (9) encode that node v can start processing once all of its predecessors u are

finished. If v is placed on a CPU, then its processing takes pcpuv time. Otherwise, its processing
time is taken into account in constraint (7) of the subgraph i where it is placed; the outputs of i are
available at time SubgraphFinishi, and constraint (10) will set Latencyv to that value.

Note that the formulation as presented in Figure 5 is not yet a Mixed-Integer Program (MIP) – but
can be made so.
Lemma A.1. The constraints (2), (6) and (10) can be reformulated as linear constraints.

Proof. To reformulate (6), take H to be a very large number (guaranteed to be larger than Latencyv
in any considered solution) and write

SubgraphStarti ≥ Latencyv − (1− CommInvi) ·H .

If CommInvi = 1, then we recover the original constraint. Otherwise, if CommInvi = 0, the
right-hand side is negative and the constraint becomes vacuous. Constraint (10) can be rewritten
analogously.

To formulate the contiguity constraint (2), we use extra variables zvi, with the following linear
constraints:

zvi ≥ xvi (∀v) (∀i = 1, ..., k) (11)
zvi ≤ zui (∀(u, v) ∈ E) (∀i = 1, ..., k) (12)
zvi ≤ xvi − xui + 1 (∀(u, v) ∈ E) (∀i = 1, ..., k) (13)

Intuitively, one can think of z·i as being a non-increasing sequence that lays above x·i.

Fix i. We claim that the subgraph S = {v ∈ V : xvi = 1} is contiguous if and only if there exists a
vector (zvi)v∈V satisfying constraints (11)–(13).

”Only if” direction: for every v define zvi = 1 if any node in S is reachable from v, and 0 otherwise.
Constraints (11) and (12) are clearly satisfied. For constraint (13), the only interesting case is when
xvi = 0 and xui = 1; then the constraint becomes zvi ≤ 0. This is indeed satisfied as no node w ∈ S
can be reachable from v; if it were, then the triple (u, v, w) would contradict the contiguity of S (cf.
Definition 3.1).

”If” direction: towards a contradiction assume that there are nodes u ∈ S, v 6∈ S and w ∈ S
such that v is reachable from u and w is reachable from v. Without loss of generality assume that
(u, v) ∈ E. Then zvi ≤ 0 by constraint (13). By following the path from v to w and repeatedly
applying constraint (12) we get zwi ≤ zvi, thus zwi ≤ 0. But by constraint (11) we must also have
zwi ≥ 1 since w ∈ S, a contradiction.

Our formulation has O(|V | · k) variables and O((|V |+ |E|) · k) constraints.

Non-pipelined model-parallel training. The algorithm described above can be directly applied to
traditional model-parallel training with no pipelining (one sample at a time, as shown in Figure 2b)
setting. In this case the computation graph contains a forward-pass part followed by a backward-pass
part. A natural extra requirement is that corresponding forward and backward nodes be placed on
the same device, as they operate on the same set of weights. It is easy to express this co-location
constraint: for forward and corresponding backward nodes u and v we require xui = xvi for all i.
The contiguity constraint (see Section A.1 below) should be enforced separately for the forward and
the backward parts.
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min TotalLatency

s.t.
∑kq

j=0
xvj = 1 (∀v) (1)

subgraph {v ∈ V : xvj = 1} is contiguous (∀j > 0) (2)

M ≥
∑

v
mv ·

∑iq

j=(i−1)q+1
xvj (∀i = 1, ..., k) (3*)

CommInuj ≥ xvj − xuj (∀(u, v) ∈ E) (∀j > 0)
(4)

CommOutuj ≥ xuj − xvj (∀(u, v) ∈ E) (∀j > 0)
(5)

TotalLatency ≥ Latencyv (∀v)
SubgraphStartj ≥ Latencyv · CommInvj (∀v) (∀j > 0) (6)

SubgraphFinishj = SubgraphStartj +
∑

v
CommInvj · cv

+
∑

v
xvj · paccv +

∑
v
CommOutvj · cv (∀j > 0) (7)

Latencyv ≥ xv0 · pcpuv (∀v) (8)
Latencyv ≥ xv0 · pcpuv + Latencyu (∀(u, v) ∈ E) (9)
Latencyv ≥ xvj · SubgraphFinishj (∀v) (∀j > 0) (10)

SubgraphStartj ≥ SubgraphFinishj−1 (∀j > 0, j 6= 1 mod q)
(14)

xvj ∈ {0, 1} (∀v) (∀j)

Figure 6: A schema of the Integer Program for latency minimization (non-contiguous splits: q
contiguous subgraphs per accelerator).

A.1 Integer Program for Latency Minimization with Non-Contiguous Splits

Our formulation can be extended to allow every accelerator to hold up to some number q of contiguous
subgraphs. We then need to ensure that their processing times in our schedule do not overlap.

We use a modified Integer Program that provides for a customizable extent of non-contiguity. Here,
an accelerator can be assigned several subsets of nodes S ⊆ V , each of which we will call a subgraph.
The mode of computation described at the beginning of Appendix A is used for every subgraph. We
require every subgraph to be a contiguous set S of nodes.

We index devices/subgraphs as follows. For each accelerator i = 1, ..., k we create q subgraph slots
indexed j = (i− 1)q+1, (i− 1)q+2, ..., iq, where q is a customizable degree of non-contiguity that
can be adjusted for the workload at hand. The special index j = 0 will denote all CPU cores together.

The modified IP formulation is given in Figure 6.

We discuss the constraints that differ from the contiguous version:

• Constraint (3*) encodes the requirement that the sum of sizes of nodes in all subgraphs that
are placed on accelerator i should be at most M .

• Constraint (14) arises because an accelerator i cannot process more than one subgraph at a
time. Therefore we order its subgraphs j = (i− 1)q + 1, ..., iq by the time when they are
processed.

Finally, if collocation constraints are required (e.g. for training), then they should be expressed in
terms of devices rather than subgraphs. That is, for two nodes u and v that should be collocated, we
write xu0 = xv0 and for i = 1, ..., k,

∑iq
j=(i−1)q+1 xuj =

∑iq
j=(i−1)q+1 xvj .

Our formulation has O(|V | · q · k) variables and O((|V |+ |E|) · q · k) constraints.
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min MaxLoad

s.t.
∑k+`

i=1
xvi = 1 (∀v) (15)

the subgraph {v ∈ V : xvi = 1} is contiguous (optional) (∀i) (16)

M ≥
∑

v
mv · xvi (∀i = 1, ..., k)

(17)
CommInui ≥ xvi − xui (∀(u, v) ∈ E) (∀i = 1, ..., k)

(18)
CommOutui ≥ xui − xvi (∀(u, v) ∈ E) (∀i = 1, ..., k)

(19)
MaxLoad ≥ Loadi (∀i)

Loadi =
∑

v
CommInvi · cv +

∑
v
xvi · paccv +

∑
v
CommOutvi · cv (∀i = 1, ..., k)

(20)

Loadi =
∑

v
xvi · pcpuv (∀i = k + 1, ..., k + `)

(21)
xvi ∈ {0, 1} (∀v) (∀i)

Figure 7: A schema of the Integer Program for max-load minimization (throughput maximization).
See Lemma A.1 on how to reformulate constraint (16) to obtain an Integer Program.

B Proofs

B.1 Proof of Fact 5.2

Proof. ”Only if” direction: we take I = {v ∈ V : some node in S is reachable from v} and
I ′ = I \ S. Clearly I is an ideal and S = I \ I ′; it remains to show that I ′ is an ideal. For this, take
any edge (u, v) ∈ E with v ∈ I ′; we need to show that u ∈ I ′. Since v ∈ I , we also have u ∈ I . It
remains to show that u 6∈ S. Assume otherwise, i.e., that u ∈ S. Since v ∈ I , some node w ∈ S is
reachable from v. But v 6∈ S; thus the triple (u, v, w) contradicts the contiguity of S.

”If” direction: towards a contradiction assume that there are nodes u ∈ S, v 6∈ S and w ∈ S such
that v is reachable from u and w is reachable from v. We have w ∈ S ⊆ I and I is an ideal, so
v ∈ I . Since v 6∈ S = I \ I ′, we must have v ∈ I ′. Since I ′ is an ideal, also u ∈ I ′. However,
u ∈ S = I \ I ′, a contradiction.

C Integer Program for Throughput Maximization (Max-Load
Minimization)

Our IP formulation is presented in Figure 7. We index devices as follows: accelerators are assigned
indices i = 1, ..., k and CPUs are indexed i = k + 1, ..., k + `. As in Appendix A, we use binary
variables xvi to denote whether node v should be placed on device i. The variables CommInvi,
CommOutvi and constraints (15)–(19) are also analogous to those used in the latency-minimization
IP. However, this IP is simpler as, thanks to the maximum-load objective, no scheduling aspect is
present. The objective MaxLoad is the maximum over Loadi for all devices i, which is given by
constraint (20) for accelerators and (21) for CPUs.

D Objective Functions Across Schedules

In Section 5.3 we have argued that for PipeDream schedules, the objective function that accurately
reflects the quality of any split, that is, the average time taken per sample (inverse throughput), is
maxi(FWi + BWi), where FWi and BWi are the respective loads/costs of the forward and the
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Figure 8: Cumulative training time for forward and backward layers of ResNet50 (layer graph). The
time accumulates with each layer progressively, that is, the i-th entry is the sum of processing times
of layers from 1 to i.

backward subgraph associated with device i. This is the objective function that we minimize in both
our IP and DP solutions.

In the case of GPipe schedules, we have argued that the objective function can be formulated as
maxi FWi +maxi BWi. This is equal to the former if the maximizing i’s are the same – that is, if
the bottleneck device is the same for the pipelined forward pass (the first seven columns in Figure 4a)
as for the pipelined backward pass (the next seven columns).

This usually holds true for real-world DNN workloads due to three factors described below:

• For any device, its forward subgraph S and its backward subgraph S′ contain paired nodes;
that is, most nodes in the backward subgraph S′ have a corresponding forward node, which,
due to colocation constraints, will be in S, and vice versa. For instance, most forward nodes
operate on a set of weights, for which the backward pass then computes gradients and weight
updates.

• The processing and communication times of such corresponding/colocated nodes are cor-
related; for example, if the forward node corresponds to a matrix multiplication, then the
processing times of both forward and backward nodes will grow with the size of the matrix.

• In fact, GPipe uses a re-materialization technique [CXZG16] to save memory: it discards
stashed activations generated in the forward pass (needed later in the backward pass), and
instead reruns the forward pass operators in the backward pass to re-materialize the required
stashed activations for the backward operators. If this is reflected in the DNN workload
operator-graph or layer-graph, then it further increases the aforementioned correlation
between forward and backward times.

In Figure 8 we plot cumulative forward and backward times for an example training workload (that
does not use re-materialization), which grow at a similar pace. These runtimes have been profiled on
a GPU.

The above discussion motivates the use of our objective maxi(FWi + BWi) as a proxy for the
objective maxi FWi +maxi BWi also in the case of GPipe schedules. Nonetheless, our IP solution
can also be adjusted to optimize the latter objective. Unsurprisingly, we empirically find that splits
found by optimizing either objective differ by at most 6% when using re-materialization.

E Throughput Maximization – Implementation, Further Details and Results

The code of our implementations and the DNN workloads we used as inputs can be found at
https://github.com/msr-fiddle/dnn-partitioning.

This section extends and provides more details for Section 6.

• In Section E.1 we discuss the computing setup used to run our experiments, how the input
workloads are obtained, and more details on how our solutions (especially the Dynamic
Programming method) preprocess the input before invoking the core algorithm.
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Workload DP IP (contiguous) IP (non-contiguous) Expert Local search PipeDream Scotch Single acc.
Operator-granularity graphs, pipelined inference
BERT-3 1.00× 1.00× 1.27× - 1.15× - 0.78× 0.57×
BERT-6 1.00× 1.00× 1.04× - 0.70× - 0.59× 0.38×
BERT-12 1.00× 1.00× 1.13× - 0.57× - 0.64× 0.23×
ResNet50 1.00× 1.00× 1.00× - 0.50× - 0.63× 0.38×
Operator-granularity graphs, pipelined training
BERT-3 1.00× 1.00× 1.20× - 0.99× - 0.16× 0.53×
BERT-6 1.00× 1.00× 1.02× - 0.77× - 0.56× 0.38×
BERT-12 1.00× 1.00× 1.17× - 0.59× - 0.55× 0.23×
ResNet50 1.00× 1.00× 1.00× - 0.48× - 0.67× 0.37×
Layer-granularity graphs, pipelined inference
BERT-24 1.00× 1.00× 1.00× 0.89× 1.00× 1.00× 0.99× 0.19×
ResNet50 1.00× 1.00× 1.01× 0.77× 0.95× 0.86× 0.98× 0.17×
InceptionV3 1.00× 1.00× 1.00× 0.50× 0.95× 0.85× 0.95× 0.17×
GNMT 1.00× 1.00× 1.04× 0.71× 1.04× 1.00× 0.94× 0.18×
Layer-granularity graphs, pipelined training
BERT-24 1.00× 1.00× 1.05× 0.85× 1.05× 1.00× 0.99× 0.19×
ResNet50 1.00× 1.00× 1.03× 0.70× 0.97× 0.94× 0.98× 0.17×
InceptionV3 1.00× 1.00× 1.04× 0.57× 1.00× 0.96× 0.96× 0.17×
GNMT 1.00× 1.00× 1.21× 0.78× 1.17× 1.00× 1.00× 0.21×

Table 2: Throughput maximization results, same as in Table 1 in Section 6, but presented in terms
of throughput improvement in relation to the DP (Dynamic Program, contiguous splits) being 1×.
For example, on BERT-3 inference operator-graph, the best non-contiguous split offers 1.27× the
throughput of the best contiguous one, and Scotch gives 0.78× the throughput of the best contiguous
one. In addition, we show the single-accelerator throughput (placing the entire DNN workload on
one accelerator). See Figure 9 for a graphical representation of data in this table.

• In Section E.2 we present the numerical results of the experimental evaluation in Section 6
in an equivalent form, comparing the throughput of the baselines to that of our Dynamic
Programming (contiguous) algorithm.

• In Section E.3 we measure the throughput advantage that can be obtained by using finer-
granularity operator graphs in lieu of layer graphs.

E.1 Implementation and Experimental Setup

Computing setup. All our experiments are executed on a machine with an Intel Xeon E5-2673 v4
CPU and 64 GB of RAM running Ubuntu 18.04. The dynamic programming solution is implemented
in C++ and compiled with gcc 7.4 using the -O3 optimization flag; it is a sequential (single-threaded)
implementation. The Integer Programming formulations are solved using Gurobi 8.1 [GO19], which
runs on 4 CPU cores. The IP models are constructed using Gurobi bindings for Python; the runtime
of this construction is insignificant.

Inputs (workloads). We benchmark our algorithms on diverse and widely used deep learn-
ing workloads ranging from transformer models (BERT) and convolutional neural networks
(ResNet, Inception) to translation LSTM-based models (GNMT). We exported BERT [VSP+17]
and ResNet [HZRS15b] operator graphs through the ONNX Runtime library [ONN20]. It allows
exporting the operator graph topology for deep learning models by taking as input their forward
pass and appending the corresponding backward pass to generate an output in ONNX format. We
obtained all the layer graphs from previous work [HNP+18]. All the graphs (both operator- and
layer-granularity) have the node runtimes profiled or estimated; we then convert the topology of each
graph to a JSON format, comprising all the relevant information about the graph that is required of
an input instance of our algorithms (see Section 3).

DP preprocessing. In our Dynamic Programming solution we need to handle colocation constraints
given in the input: certain pairs of nodes operate on the same state and thus they are required to be on
the same device. A common scenario where this arises concerns forward and backward nodes that
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Figure 9: An illustration of throughput maximization results from Table 2, with DP (contiguous)
serving as 1×. The blue bars are algorithms from this work, whereas the non-blue-colored bars show
baselines. Plots (a) and (b) represent throughput improvements for operator-level graphs, and (c) and
(d) for layer-level graphs.
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operate on the same set of weights, but pairs of forward nodes (or pairs of backward nodes) can also
be colocated. In the input files this is expressed via the colorClass field: nodes of the same color
class must be placed on the same device.

Moreover, for training workloads, the DP can natively find only contiguous splits, but now most
devices need to be assigned two contiguous subgraphs (backward and forward). Therefore we run
the DP only on the forward part, but we take the corresponding backward nodes together with every
considered contiguous subgraph. However, some care is required to make sure that we assign those
backward nodes that do not have a corresponding forward node; we call these backward nodes
orphaned.

For the reasons outlined above, our solution needs to run a series of preprocessing steps before the
core DP method can be applied:

• For every color class C ⊆ V , i.e., a set of nodes that must be colocated, let CFW and CBW be
the forward and backward nodes in C, respectively (so that C = CFW ∪ CBW). We contract
each set CFW and each set CBW (that is, we compress each of them into a single node; this
new node will be forward for CFW and backward for CBW).

• The input graph was guaranteed to be acyclic at the beginning, but the new contracted
graph may no longer be acyclic. For instance, there could be a path u, v, w where u and
w are colocated (but not v); then the contracted graph will have edges in both directions
between v and the new node corresponding to {u,w}. In the original graph, any colocation-
respecting contiguous split would need to contain all of u, v, w in a single subgraph; more
generally, every strongly connected component in the contracted graph needs to be colocated.
Therefore, we contract all strongly connected components. Now the contracted graph is
again acyclic.

• Later, when we run the DP, while considering a subgraph S of forward nodes we will
consider the subgraph S′ of their corresponding backward nodes at the same time, and take
the total computation and communication cost of S ∪ S′ into account. Thus, when we have
assigned all forward nodes, we will have also assigned all backward nodes that are not
orphaned. However, orphaned nodes would not be assigned to any subgraph/device.
To prevent this behavior, we introduce new artificial forward nodes, to be images of the
orphaned backward nodes. When the DP decides where to place these new forward nodes, it
will also have decided the placement of the orphaned backward nodes. (At the end we will
remove the artificial nodes from the final split.)
However, if the new nodes are isolated (have no adjacent edges), then the number of ideals
grows exponentially5; furthermore, as the placement of the new forward and orphaned
backward nodes is arbitrary, we may end up with non-contiguous splits on the backward
side.
To deal with these issues, we also add new artificial edges adjacent to the new artificial nodes.
Since backward nodes and edges mostly resemble a mirror image of their corresponding
forward nodes and edges, we add the new edges in such a way as to also build such a mirror
image. Namely, for a backward edge (u′, v′) where at least one of u′, v′ is orphaned, we
add a forward edge (v, u), where u and v are the forward images of u′ and v′ respectively
(note that at least one of u, v is a new artificial node).

After these preprocessing steps, we can use our core DP method on the contracted graph. Once this is
done, we map the resulting splits back to the original graph and return the result. For more details on
implementation, see the attached code and the comments therein.

We remark that due to our preprocessing steps, the number of ideals may sometimes be smaller than
the number of nodes in the initial input graph (this happens for several of our workloads in Table 1).

Non-uniform outgoing communication costs. In the case of operator graphs, the input files for
our solvers are created based on ONNX computation graphs. There, communication costs are given
on edges, rather than on nodes as we require in our model (see Section 3). In the vast majority of

5Suppose we have introduced r such new nodes; since each of them is free to be or not be in an ideal, the
number of ideals grows by a factor 2r , and the DP runtime, which depends on the number of ideal pairs I ′, I
with I ′ ⊆ I , grows by a factor 3r .
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Workload DP (run on original
operator graph)

DP (run on contracted
layer graph)

Gain

Operator-granularity graphs, pipelined inference
BERT-3 27.92 27.92 0%
BERT-6 29.58 29.58 0%
BERT-12 147.48 159.43 8%
ResNet50 124.35 129.15 4%
Operator-granularity graphs, pipelined training
BERT-3 65.30 65.30 0%
BERT-6 72.86 72.86 0%
BERT-12 438.00 465.41 6%
ResNet50 255.19 269.63 6%

Table 3: Throughput maximization; throughput advantage of optimization on the operator-granularity
level vs. the layer-granularity level (see Section E.3), for optimal contiguous splits.

cases, all edges going out of the same node u have the same cost, and we can set that cost as parameter
cu. However, sometimes there could be two or more edges with different costs going out of the same
node in an ONNX graph; this situation corresponds to e.g. sending different parts of the operator’s
output to different operators. In this case, we perform the following reduction:

Suppose that u has outgoing edges to nodes v1, v2, ..., vr with possibly different edge costs
d1, d2, ..., dr. For every outgoing edge (u, vj), we subdivide it: insert a new node wj in the middle
and replace the edge (u, vj) with two edges (u,wj) and (wj , vj). The new node wj should have
pcpuwj

= paccwj
= mwj = 0 and be colocated with u. We set cwj = dj . Finally, set cu to any value, say

∞; this communication cost will never be paid in any feasible solution, as now u is colocated with
all of its successors, which are w1, w2, ..., wr.

After obtaining a final split, we may remove the artificial nodes wj from the solution. It is easy
to see that the way we have set the outgoing communication costs c on nodes reflects the edge-
communication costs given in the input ONNX graph.

E.2 Throughput Advantages of Our Algorithms

In this section we present the numerical results of the experimental evaluation in Section 6 in an
equivalent form, displaying the throughput advantages obtained by our algorithms with respect to
baselines. See Table 2 on page 19 and Figure 9 on page 20.

E.3 Advantage of Operator vs. Layer Graphs

In this section we measure the throughput advantage that can be obtained by using finer-granularity
operator graphs in lieu of layer graphs. No conclusions on this matter can be drawn from the
experimental results of Section 6 or Appendix F alone, as our operator-graph and layer-graph
workloads are disjoint.6 Therefore we proceed as follows: for each operator-graph workload, we
manually annotate all nodes to group them into corresponding layers. Then we contract each layer
and run the DP algorithm on the layer-graph thus obtained.

We present the results of this experiment in Table 3. We compare the optimal contiguous splits. The
results show that finding the best split on the more precise operator level results in a throughput
advantage of up to 8%.

F Experiments – Latency Minimization

In this section we evaluate our Integer Programming (IP) based algorithm for latency minimization.
We consider the most relevant deployment scenario: single-sample inference with memory-bound

6Even though the ResNet50 DNN architecture appears in both lists, these input graphs come from different
sources; the layer-graph ResNet50 has runtimes profiled on a GPU, while the operator-graph ResNet50 has
runtimes estimated for a non-GPU hardware accelerator. Thus the corresponding results are incomparable.
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accelerators (that is, when the entire model does not fit on one accelerator). We run our algorithm for
the same inference workloads as in Section 6. As before, we use Gurobi to solve our IP formulation.

Devices, implementation, experimental setup. We run experiments on the same inference work-
loads as in Section 6. However, to model a memory-bound deployment scenario where splits are
necessary to fit the DNN, we assume an accelerator DRAM size of either 600 MB (for smaller DNNs,
of size at most 3.6GB) or 2 GB (for larger DNNs, of size at least 9GB), and a number of accelerators
such that the total accelerator memory is 1.4–1.8 times the size of the DNN. Note that this implies, in
particular, that a single-accelerator split is not feasible for any of our workloads. In keeping with
the mild assumption made at the beginning of Appendix A, we assume 8 CPU cores. For other
implementation details, please refer to Appendix E.1.

Baselines. We compare our IP algorithm against four baseline solutions. The first is the following
greedy algorithm:

• contract colocated nodes and any strongly connected components that arise (as in Ap-
pendix E),

• fix a topological ordering of the nodes,

• for every available accelerator, place as many nodes (in the topological order above) as will
fit on the accelerator,

• place any remaining nodes on the CPU.

The greedy algorithm returns a contiguous split that is feasible (i.e. satisfies the memory size
constraints). For all our test workloads, it is able to place all nodes on accelerators (thus it does not
use the CPU). However, it does not take processing times or communication costs into account when
selecting the split. The runtimes of this baseline are under 0.5s.

Our second baseline is meant to answer the following question: If we obtain splits by optimizing
the max-load objective, as we would for the throughput maximization task (that pertains to the
pipelined setting), are they ”good” in terms of minimizing latency as well? Therefore, we obtain
contiguous splits by running the max-load DP algorithm of Section 5.1.1, and then we report the
single-sample latency that they obtain. The runtimes of this baseline are essentially the same as those
of the max-load DP reported in Section 6 for the corresponding DNNs.

The third baseline is Scotch [Pel09], a graph partitioning software used for mapping computation
graphs onto devices in a balanced way, taking communication costs between dependent nodes into
account (used also in Section 6). It produces non-contiguous splits.

The fourth baseline are human-expert placements, the same as used in Section 6.

We do not compare against a local search heuristic, as it is not clear how to design one that satisfies
the memory bounds.

Results. Table 4 shows each workload, the number of nodes (operators or layers) in the graph, and
the latencies found by our IP algorithm and by the baselines. We also report running times.

As we remarked in Section 5, the latency minimization task is significantly harder than throughput
maximization as it contains a scheduling component. This is reflected in the performance of our
IP algorithm: for five out of eight workloads used, the IP solver did not converge to certified
(near-)optimality within 1 hour. However, it still comes out far ahead:

• The IP, even where it could not prove that it has found an optimal solution, does no worse
than the baselines. In fact, it outperforms the best of them by a margin of around 20% in
terms of the solution value (latency) for half of the considered workloads.

• Similarly as for max-load minimization (Section 6), we note that the solution quality
improves slowly over time, and most of the runtime is often spent on certifying the near-
optimality of the found solution; it would therefore be reasonable to cut the computation
much sooner, still obtaining high-quality solutions.

• In particular, for each workload it took the IP solver at most 7 minutes to match the solution
quality of the best baseline.
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Workload Nodes Greedy Max-load DP Scotch Expert IP
Latency Latency Latency Latency Latency Runtime MIP Gap Gain

Operator-granularity graphs, single-query inference
BERT-3 235 416.20 415.90 497.75 - 408.47 3m (6s*) <1% 1.8%
BERT-6 418 494.13 445.48 564.61 - 438.06 >1h (1m*) 12.6% 1.7%
BERT-12 783 867.84 1327.03 1755.41 - 729.56 >1h (10m*) 93.8% 19.0%
ResNet50 604 839.54 1123.65 857.73 - 672.06 >1h (7m*) 54.0% 24.9%
Layer-granularity graphs, single-query inference
BERT-24 32 100.22 108.03 108.03 111.94 100.22 14s (1s*) <1% 0.0%
ResNet50 354 4197.06 1443.79 3610.87† OOM 1191.02 >1h (19m*) 93.1% 21.2%
InceptionV3 652 2485.24 1621.74 3068.00† OOM 1318.08 >1h (43m*) 93.5% 23.0%
GNMT 192 268.50 244.33 636.91† 293.40† 225.6 3m (1m*) <1% 8.3%

Table 4: Single-sample inference workloads for latency minimization. We run the IP optimizer
until it guarantees a solution within 1% of the optimum, but no longer than 60 minutes. Where the
optimization was terminated after 60 minutes, we report the optimality gap that the solver was able to
certify at that time. The parenthesized times with asterisks denote the time it took the optimizer to
find a solution within 2% of the final value (though it could not yet guarantee its near-optimality). We
also report the latencies obtained by the four baselines described in Section F; their running times are
always under 0.5s (Greedy, Scotch) or the same as reported in Section 6 (Max-load DP). Daggers†
denote a slight (between 20% and 34%) violation of the memory constraints, and ”OOM” denotes a
major violation (more than a factor 3×). The best latency for each workload is given in bold. In the
column ”Gain” we report the advantage of our IP algorithm’s solution over the best baseline.
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Figure 10: Optimal contiguous (top) and non-contiguous (bottom) splits of the BERT-3 operator-level
inference graph onto 3 accelerators and 1 CPU (for throughput maximization). Each node is colored
based on its placement – red color indicates CPU placement, and each remaining color indicates a
different accelerator. The non-contiguous split achieves a 27% higher throughput. If viewed on a
computer, the figures can be zoomed in to an arbitrary degree for better inspection.

Comparison to baselines.

• Greedy: our algorithm achieves latency lower by up to 72% (i.e., over 3× faster inference;
23% lower latency on average).

• Max-load DP: the latency-IP achieves lower by up to 42% (17% on average). This shows
that the best splits for latency minimization are, indeed, different from the best splits for
max-load minimization (throughput maximization for pipelined settings). Still, the max-
load DP turns out to be the best baseline in 5 out of the 8 cases, showing some degree of
compatibility between the two objectives.

• Scotch: our algorithm achieves latency lower by up to 67% (40% on average). In fact,
Scotch never does better than the greedy heuristic. Furthermore, as it does not balance
devices with respect to memory usage, it violates the memory constraints by up to 34% in
some cases.

• Human expert splits: as in Section 6, we provide them for layer graphs only, due to the
large node counts and high branching of operator graphs. As the expert splits were not
designed with our strictly memory-bound scenario in mind, two of them are unbalanced
with respect to memory usage, violating the size constraints by more than a factor 3×. For
the other two, our algorithm achieves latency lower by up to 23% (17% on average).
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G BERT-3 Splits for Throughput Maximization

See Figure 10 for an illustration of an example pair of optimal contiguous (top) and non-contiguous
(bottom) splits of an operator-level graph that are returned by our algorithms.

H Extensions

In this section, which deals with throughput maximization (i.e. the pipelined setting), we briefly
explain how to adjust our model and solutions so as to account for certain different or more complex
deployment scenarios that appear in related work or in practice.

H.1 Interleaving Communication and Computation

Throughout the paper we have assumed that accelerators are invoked when their inputs are ready,
at which point they are transferred to the accelerator memory; next, computation takes place;
next, outgoing transfers take place (see Section 3). After that, the in-transfer for the subsequent
sample/minibatch may begin, and so on. For this reason, the load of a device is defined as the sum
of the computation cost and the communication cost. However, it is also reasonable to assume that
communication (data transfers) may proceed in parallel to computation, at least for different samples.
For instance, once we have finished the in-transfer for sample 1, we might simultaneously start
the processing of sample 1 and the in-transfer for sample 2. This is the setting considered in the
PipeDream paper [HNP+18].

Both of our solutions (DP and IP) can be easily adjusted to this setting: one just needs to define the
load of a device as the maximum of the computation cost and the communication cost, rather than the
sum. In terms of pipeline schedules, one can think of splitting the device into two virtual devices, one
holding the communication portion of the load and the other holding the computation portion, that
can be processing at the same time. Then either virtual device could be a bottleneck in the pipeline.

In fact, one can further assume that the in-transfer and the out-transfer are done over separate channels
(full-duplex communication); then a maximum of three quantities (in-transfer cost, computation,
out-transfer cost) should be used.

H.2 Replication

An alternative to model parallelism is data parallelism: an approach where the entire model is
replicated over multiple devices that process minibatches in parallel. When using this approach,
the communication cost associated with synchronizing the parameters of the entire model proves
to be very high for many DNN workloads. Nevertheless, it can also yield large gains for other
workloads, especially sparser ones (with a small number of parameters relative to computation cost).
PipeDream [HNP+18] proposed a hybrid model-parallel/data-parallel approach, where we form a
pipeline, but certain subgraphs in this pipeline can be replicated over multiple devices. This allows
the automated partitioner to replicate those fragments of the network that will reap the most benefit
while keeping synchronization costs low.

We can also introduce this capability into our DP algorithm. When the DP decides whether to place
the currently considered subgraph on a CPU or on an accelerator, now it will also decide how many de-
vices to use. That is, in the DP relation, where previously we had max (dp[I ′][k′ − 1][`′], acc(I \ I ′)),
now we write7

mink
′

k′′=1 max (dp[I ′][k′ − k′′][`′], acc(I \ I ′, k′′)) ,
where acc(I \ I ′, k′′) is the average time per sample for this subgraph when replicated over k′′
accelerators. In absence of weight synchronization, this average time would be just acc(I \ I ′)/k′′.
Weight synchronization (assuming efficient AllReduce collective communication) contributes a term(
(k′′ − 1) ·

∑
v∈I\I′ mv

)
/(k′′ · B), where mv are sizes of weights associated with nodes and B

is the communication bandwidth. Thus, acc(I \ I ′, k′′) should be either the sum or maximum of
these two terms, depending on our assumption of interleaving communication with computation (see
Section H.1).

7We treat the CPU-related term similarly.
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This modification of the DP increases the running time by a factor of O(max(k, `)). The memory
usage remains unchanged.

H.3 Accelerator Hierarchies

Throughout the paper we have assumed a homogeneous system with k accelerators and ` CPU cores
(probably a single machine). To more precisely capture a distributed setting, one can consider a
hierarchical collection of accelerators, such as clusters of GPUs connected internally with faster
interconnects and externally (i.e. between clusters) with slower connections (or over a network). Such
a multi-level model is used in PipeDream [HNP+18]. Now, the cost of transferring data over an edge
between two nodes depends on whether these nodes are placed on devices in the same or different
clusters (or even on different machines). The main new challenge is knowing which cost should be
taken into account.

The DP solution in PipeDream handles this by dynamically computing optimal splits not only for
prefixes of the input network (that correspond to our ideals), but for every contiguous segment of the
network. We remark that we can use the same method, at a cost of an O(I)-factor increase in both
memory usage (number of DP states) and running time.
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