
[Reviewer 1] 1.1 Robust sequence submodular vs. robust set submodular. The main differences are two-fold. (i)1

From the algorithmic perspective, while there are some similarities in the designed algorithms, Algorithm 1 is designed2

specifically for the special case of the removal of contiguous elements and achieves a constant approximation ratio for3

any value of τ and k. This is different from the algorithms in [13][14], which achieve constant approximation ratios4

only when τ is very small compared to k. (ii) The analysis with respect to sequence functions is more challenging,5

which mainly stems from the new properties (that are irrelevant for set functions), such as multiple (nonequivalent)6

definitions of the diminishing returns property, two forms of monotonicity, and the impact of the ordering itself. Any7

attempt of adapting algorithms from robust set submodularity needs to carefully consider the aforementioned subtle yet8

critical differences while establishing approximation guarantees. The algorithms for robust set submodularity cannot be9

directly applied to sequence functions, as converting a set into a sequence could result in an arbitrarily bad performance.10

1.2 Applications. The order is important in many cases, e.g., when the recommended videos are part of a movie series11

or a TV show. In fact, movie recommendation and TV show recommendation have been modeled as sequence functions12

in [12] and [6], respectively. As noted in the motivating example in [12], if the model determines that the user might be13

interested in The Lord of the Rings series, then recommending The Return of the King first and The Fellowship of the14

Ring last could make the user unsatisfied with an otherwise excellent recommendation. Moreover, the user may not15

watch all the recommended videos possibly because the user has already watched some of them or does not like them16

(e.g., due to low ratings and/or unfavorable reviews). While the objective functions in some applications may not always17

be sequence submodular, in Section 4, we introduce generalized formulations that account for approximate sequence18

submodularity and approximate backward monotonicity and leverage them to prove approximation results of the19

proposed algorithms under weaker assumptions, which we believe hold for a wider range of applications. 1.3 Empirical20

evaluation. We agree that empirical evaluation is important. However, as a very first study on this new problem, we21

choose to focus on fundamentals and rigorous analyses, such as designing and theoretically analyzing algorithms,22

introducing and clarifying subtle yet critical properties of sequence functions, proving approximation guarantees for23

important variants of the problem, and providing useful insights for further studies. This is in line with other relevant24

work that investigates new problems and focuses on theoretical studies, such as robust set submodular maximization25

[13] and sequence submodular maximization [9]. We believe that this work serves as an important first step towards the26

design and analysis of efficient algorithms for robust sequence submodular maximization, which can be further explored27

through empirical evaluations for specific applications. 1.4 Simple algorithms. While our greedy algorithms are28

simple, the theoretical analysis is more challenging, and the presented approximation guarantees are highly nontrivial.29

Please also see “1.1 Robust sequence submodular vs. robust set submodular.”30

[Reviewer 2] 2.1 Theoretical results. Algorithm 2 allows the removal of arbitrary τ elements, and thus, it is not31

surprising that achieving a stronger approximation guarantee (than that in Theorem 3) becomes more challenging if32

not impossible. On the other hand, Algorithm 1 achieves a constant approximation ratio for any value of τ in the33

special case of the removal of contiguous elements. Note that even for robust set submodularity, to the best of our34

knowledge, the developed algorithms achieve a constant approximation ratio only when τ is very small compared35

to k [13][14]. 2.2 Contiguous removal of elements. The assumption of the removal of contiguous elements can36

model a spatial relationship such as sensors in close proximity or a temporal relationship such as consecutive episodes37

of a TV show. We exploit the properties of such a special case to design Algorithm 1, which achieves a constant38

approximation ratio for any value of τ . Note that there is no such special case in robust (set) submodular maximization.39

2.3 Extension of [13][14]. It is unclear whether the algorithms in [13][14] can be properly extended to our problem,40

and even if so, it is more likely that establishing their approximation guarantees would require a more sophisticated41

analysis, which calls for more in-depth investigations. We believe that our work serves as an important first step towards42

developing efficient algorithms for robust sequence submodular maximization. Note that the analysis of our simple43

greedy algorithms is already very sophisticated. Please also see “1.1 Robust sequence submodular vs. robust set44

submodular.” 2.4 Evaluation. Please see “1.3 Empirical evaluation.” 2.5 References [6][12][MFKK]. While these45

references assume that the sequential relationship among elements is encoded as a directed acyclic graph, we consider a46

general setting without such structures. It would indeed be interesting to explore our algorithms when the sequential47

relationship is encoded in a specific graphical form. We will elaborate on such discussions in the revised version.48

[Reviewer 3] 3.1 Approximation ratios. The approximation ratio in Theorem 3 is pretty clean. The approximation49

ratio in Theorems 1 and 2 is the maximum of two terms (see supplementary files): the first is a constant; the second50

depends on τ and k. Thus, it is lower bounded by a (clean) constant independent of τ and k. We include the second51

term as it leads to a better overall approximation ratio for a larger k. The additional parameters (α and µ’s) render the52

approximation ratios in Theorems 4-6 somewhat complex, but they are necessary for the generalized formulations.53

[Reviewer 4] 4.1 Motivating examples. Please see “1.2 Applications.” 4.2 Experiments. Please see “1.3 Empirical54

evaluation.” 4.3 Bounds. Please see “2.1 Theoretical results.” 4.4 Concrete functions. Please refer to [5] for55

some concrete sequence submodular functions, such as the one in Eq. (10) of [5], which is the expected fraction of56

accomplished subtasks. 4.5 Bounds plot. Thanks for the suggestion. We will add such figures in the revised version.57


