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1 Proof of Equation 9

In Eq. 9, we reduce the soft sparsity constraints to the weighted sum of convolution kernels. The
sparsity assumption plays an important role in the derivation, and its effects are also demonstrated in
experiments with different softmax temperature settings in Table 1.

Here, we will give a detailed proof of the derivation process. We start from
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because F (·) is assumed piece-wise linear, ReLU for example, we have λF (x) = F (λx),∀λ ≥ 0.
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The sparsity constraints are enforced here, where only one sparsity group is non-zero and the soft
version relaxes it to only one sparsity group is weighted with one, and others are weighted with small
values closed to zero. Formally, ∃i denotes the index of the activated group, then

s.t. βi → 1 and βj → 0,∀j 6= i.
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Substitute into Y, then we have
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Figure 1: Unified network structure for image restoration (left). Residual block (right)

Grouped with common factors
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2 Computation Complexity

In our paper, we claim the additional complexity of our method is negligible. Here we give a more
detailed illustration of the comparison with conventional convolution.

Given input feature with spatial size p× p and channel number c, the conventional convolution with
kernel size q × q and output channel number c contains q2c2 parameters in kernel (bias is ignored
here). And the convolution operation needs p2q2c2 multiply-add float operations.

In our method with k sparsity groups, the number of parameters in kernels increases to kq2c2.
Additional computation in pooling is float p2c operations. Given cardinality d < c, the number of
additional parameters in MLP is kcd < kc2, and the additional computations in MLP is kcd < kc2.
The weighted sum of convolution kernels also needs kq2c2 multiply-add float operations. Compared
with conventional convolution, the additional cost in our method is

p2c+ kcd+ kq2c2
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k
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which is negligible, when k � p2.

3 Network structure

In the experiments on image denoising, image compression artifacts removal, and ablation study, the
baseline models are following the structure in [? ]. As shown in Fig. 1, the structure is stacked by
multiple residual blocks and additional convolution layers for input and output. The main branch
is designed to learn corruption residual and add with a global skip connection directly from the
input. The modules in blue color are only used for super-resolution task. The residual block has two
convolution layers and an intermediate ReLU activation layer. The width multiplier denotes the ratio
between the number of channels in ReLU activation and residual block inputs. We change both the
convolution layers in residual blocks to our proposed method in experiments.

4 More Ablation Study

4.1 Pooling size

The pooling operation is applied to features before MLP to calculate averaging weights for convolution
kernels. The window size is the only but crucial hyper-parameter in the pooling operation. When the
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Figure 2: Ablation study on different pooling size.

Table 1: Ablation study on MLP depth.

Depth 1 2

# of params (M) 4.755 5.036
FLOPs (M) 1.2 1.2

PSNR 34.87 34.88

pooling size is too small, pooled features may not be stable and lead to an inaccurate combination of
convolution kernels. When the pooling size is too big, pooled features may be over-smoothed and
lead to an identical combination of convolution kernels for any input.

We conduct an ablation study with different sizes in pooling operation during training and test. Results
in Fig. 2 show that: (1) the best pooling size for training is 64, smaller and bigger pooling size get
worse results, which coincides with our analysis; (2) pooling size for evaluation needs to be smaller
than the size for training to get better results.

4.2 MLP depth

We conduct an ablation study on the depth of MLP for averaging weights between sparsity groups.
Results in Table 1 show that adding more layers and parameters in MLP improves the accuracy of
averaging weights prediction and overall model performance, but the improvement is not significant.
Hence, models in our experiments come with only one layer in MLP.

5 Implementation

We implement our method in PyTorch. Our method inherit the conventional convolution layer with
two additional hyper-parameters num_sparsity_groups and num_sparsity_cardinals to specify the
number of sparsity groups and cardinality respectively. Hence our method can be used to replace
conventional convolution layers in any model.

Here is the code snippet (based on PyTorch >= 1.5):

class Conv2d(nn.Conv2d):

def __init__(self ,
in_channels ,
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out_channels ,
kernel_size ,
num_sparsity_groups =1,
num_sparsity_cardinals =1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True ,
padding_mode=’zeros’):

self.num_sparsity_groups = num_sparsity_groups
self.num_sparsity_cardinals = num_sparsity_cardinals
out_channels *= num_sparsity_groups
super(Conv2d , self).__init__(in_channels , out_channels ,
kernel_size , stride ,

padding , dilation , groups , bias ,
padding_mode)
self.mlp = nn.Sequential(

nn.Linear(in_channels ,
self.num_sparsity_groups * self.

num_sparsity_cardinals),)
if self.padding_mode == ’circular ’:

raise NotImplementedError

def _conv_forward(self , input , weight):
sparsity = self.mlp(input.mean([-1, -2]))
sparsity = sparsity.view(

(-1, self.num_sparsity_groups , self.num_sparsity_cardinals))
sparsity = nn.functional.softmax(sparsity , dim =1)
weight = weight.view((self.num_sparsity_groups , self.
num_sparsity_cardinals ,

-1, *weight.shape [1:]))
weight = torch.einsum("abc ,bcdefg ->acdefg", (sparsity , weight))
weight = weight.reshape((-1, *weight.shape [3:]))
bias = self.bias.view(self.num_sparsity_groups , self.
num_sparsity_cardinals ,

-1)
bias = torch.einsum("abc ,bcd ->acd", (sparsity , bias))
bias = bias.reshape (-1)
batch_size = input.shape [0]
input = input.view((1, -1, *input.shape [2:]))
output = nn.functional.conv2d(input , weight , bias , self.stride ,

self.padding , self.dilation ,
self.groups * batch_size)

output = output.view((batch_size , -1, *output.shape [2:]))
return output

6 Visualization

6.1 Super-resolution

We further visually compare our MAN with other state-of-the-art approaches. As shown in the
Figure 3, our method produces higher quality images than others: SRCNN [1], FSRCNN [2],
VDSR [3], LapSRN [4], MemNet [5], EDSR [6] and SRMDNF [7].

6.1.1 Denoising

More visual results on Set12 dataset are shown in Figure 4.

6.1.2 Compression artifact removal

More visual results on LIVE1 dataset are shown in Figure 5.
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Figure 3: Visual comparison results of ×4 image super-resolution on Urban100 dataset
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Figure 4: Visualization for image denosing.
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Figure 5: Visualization for JPEG compression artifact removal.
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