
7 Supplementary Material

7.1 Conditional Kalman Filter equations

As mentioned in Sec. 2.3, the first term in Eq. (5) can be computed using the standard Kalman
smoother. In this work, we are interested mainly in forecasting and parameter estimation (Sec. 3.3.2).
Thus, the filter distribution p(xt | s(p)1:t ,y1:t−1) suffices, however the (conditionally) Gaussian joint
distribution p(x1:t | s(p)1:t ,y1:t−1) could be computed straightforwardly using a Kalman smoother
(e.g. running the RTS smoother backwards). Here we denote the location and covariance parameters
of the Gaussian distributions corresponding to the prediction step as mt|t−1, Vt|t−1, the predictive
distribution (wrt. targets yt) as mt|t, Vt|t, and the update (measurement) step as mt, Vt.

The prediction step is given as
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Similarly, the predictive distribution (used in the update step below) is given as
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And the update step yields
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7.2 SMC marginal likelihood estimate

SMC provides unbiased estimates of the marginal likelihood p(y1:T ) =
∏T
t=1 p(yt | y1:t−1) as a

by-product [9] that can be used for learning (cf. Sec. 3.3.2). The conditionals p(yt | y1:t−1) can be
estimated by
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The approximation of the inner importance-sampling expectation implies using a single sample
(conditioned on s

(p)
1:t−1) as is standard in SMC. The approximation wrt. the outer integral follows
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Note that the above estimate of the conditional p(yt | y1:t−1) = p(y1:t)/p(y1:t−1) is a ratio estimate,
since the previous importance-weights are normalized by the sum of importance-weights. Although
these ratio estimates are in general not unbiased, the product p(y1:T ) ≈

∏T
t=1

∑P
p=1 w̃

(p)
t yields an

unbiased estimator of the marginal likelihood [9, 23].

7.3 Innovation State Space Model

Here we describe the structure of ISSM models used for RSGLS-ISSM. We start by simpler exemplar
instantiations of the ISSM that use a level, level-trend, or seasonality component. In the ISSMs
considered here, the emission and control matrices A,C are determined entirely by the assumed time
series patterns. Only the diagonal state and observation noise covariances Q,R and optionally the
control matrices B,D are learnable; these are computed as a weighted average of base matrices in
our model. We will omit the optional matrices B,D in the following for simplification.

An ISSM with only a level component has just a single latent variable; A = [1], C = [1], and noise
covariances Q = [q1], R = [r1] are positive scalars. The latent state (level) evolves over time only
through innovation with additive noise, and the innovation strength is given by the (square root of
the) scalar covariance R.

An ISSM with level-trend components has a 2-dimensional latent state, one representing the level
and the other representing the slope of a linear trend; the model is defined by

A =

[
1 1
0 1

]
, C =

[
1 1

]
, R =

[
r1 0
0 r2

]
, Q =

[
q1
]
.

Both level and trend component evolve over time through additive noise (with covariance R), and the
level is additionally updated with the (previous) slope of the trend. The sum of the current level and
trend components are emitted (with additive noise given by scalar covariance Q).

ISSMs with seasonal component can be instantiated in several ways. Here we use the same seasonality
models as in [30]. These models are described by a set of seasonal factors that assume a certain
periodicity. For example, day-of-week patterns use 7 factors, one for each day of the week; similarly,
hour-of-day patterns use 24 factors. Each factor can be represented by one component of the latent
state. For day-of-week seasonality, we thus have a 7-dimensional latent state. The transition matrix A
is then the identity matrix, and the emission matrix C = 1{day(t)=j}7j=1

is an indicator (vector) that
selects the component corresponding to the current day, zeroing out all other components. The noise
covariance matrix Q is a (positive) scalar, and R = diag

(
[r1, . . . , r7]� 1{day(t)=j}7j=1

)
is a diagonal

matrix, where all components except the one corresponding to the current day are zeroed out. This is
done here through element-wise multiplication (of the diagonal) with the same indicator as used for
the emission matrix.

As in [30], ISSMs with multiple seasonal components (corresponding to different periodicities) as
well as level or level-trend can be combined. The resulting transition matrix A and noise covariance
matrix R are block-diagonal, where each block corresponds to one component. Similarly, C is a
concatenation of the corresponding components; consequently, the sum of the level, trend and each
currently "active" seasonal component is emitted with additive noise.

In the experiments of this paper, we used a combination of level component and 1 or 2 seasonal
components for the model variant RSGLS-ISSM: For data with daily measurement frequency (wiki,
exchange), we used only day-of-week seasonality, resulting in a latent state with 7 + 1 dimensions.
In case of hourly data (electricity, traffic, solar), we used both hour-of-day and day-of-week
seasonality, resulting in a latent state with 24 + 7 + 1 dimensions.

7.4 Algorithm

The algorithm for Rao-Blackwellised particle filtering and loss computation for the ARSGLS pro-
posed in Sec. 3 is presented in Alg. 1.
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Algorithm 1 Rao-Blackwellised particle filter with parameter estimation.

Require: st−1, zt−1, mt−1, Vt−1 are tensors with a particle, data, feature dimension. log w̃t−1 has
particle, data dimensions. Data ut, yt have data, feature dimensions. Tensors with counting
indices, i.e. s1:T , have an additional time dimension that is indexed as e.g. st.

1: function FILTER_LOSS(s1:T , z1:T , m1:T , V1:T , u1:T , y1:T )
2: log w̃1, s1, z1, m1, V1← FILTER_STEP(u1,y1)
3: for t← 2 . . . T do
4: log w̃t, st, zt, mt, Vt← FILTER_STEP(log w̃t−1, st−1, zt−1,mt−1, Vt−1,ut,yt)
5: end for
6: L← compute_marginal_estimate(w̃1:T ) . Eq. (13)
7: return L
8: end function

9: function FILTER_STEP(log w̃t−1, st−1, zt−1, mt−1, Vt−1, ut, yt)
10: initial_step← is_initial(log w̃t−1, st−1, zt−1,mt−1, Vt−1) . if not provided (None)
11: if initial_step then
12: logwt ← log(1/P) . uniform weights, P is the number of particles
13: mt−1, Vt−1←m0, V0 . initial state prior p(x0)
14: p(st)← switch_prior(ut) . initial switch prior p(s1)
15: else
16: logwt ← normalise(log w̃t)
17: logwt, st−1, zt−1,mt−1, Vt−1← resample(logwt, st−1, zt−1,mt−1, Vt−1)
18: p(st)← SWITCH_RECURRENT_TRANSITION(st−1,mt−1, Vt−1) . cf. below
19: end if
20: q(st), q(zt)← encoder(yt,ut) . Sec. 3.3.3
21: π(st)← p(st)× q(st) . Eq. (14)
22: st ∼ π(st) . sample switch particles
23: ψt←make_base_params(st,ut) . base matrices A,B,C,D,Q,R
24: mt|t−1, Vt|t−1 ← prediction_step(mt−1,Vt−1, ψt) . Eq. (17) in App. 7.1
25: mt|t, Vt|t← auxiliary_predictive(mt|t−1, Vt|t−1, ψt) . Eq. (18) in App. 7.1
26: p(zt)←N (zt; mt|t, Vt|t)
27: π(zt)← p(zt)× q(zt) . Eq. (14)
28: zt ∼ π(zt) . sample auxiliary particles
29: mt, Vt ← update_step(yt,mt|t, Vt|t, ψt) . Eq. (19) in App. 7.1
30: p(yt)← decoder(zt) . Sec. 3.2
31: log γt← log p(yt) + log p(zt) + log p(st)− log q(zt)− log q(st) . Eq. (12)
32: log w̃t ← logwt + log γt
33: return log w̃t, st, zt, mt, Vt
34: end function

35: function SWITCH_RECURRENT_TRANSITION(st−1,mt−1, Vt−1)
36: Ft, St← make_recurrent_base_params(st−1) . cond. linear state-to-switch transition
37: ms, Vs←marginalise_state(mt−1, Vt−1, Ft, St) . state-to-switch prediction step
38: ps|x ←N (st; ms, Vs) . Gaussian state-to-switch transition
39: ps|s← switch_transition(st−1,ut) . Gaussian switch-to-switch transition
40: p(st)← gaussian_linear_combination(ps|x, ps|s) . sum of means and covariances
41: return p(st)
42: end function
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7.5 Further results

Here we provide further results for ARSGLS on wiki and Box datasets, evaluating the impact of the
encoder and the number of particles during training. Furthermore, we provide pixel accuracy results
for the experiments described in Sec. 5.3. On Box, we run each experiment with 3 different seeds
and for wiki, we run with 4 random seeds as in the main text. Note that for wiki we use a different
initialisation scheme compared to the experiments in the main text (Xavier instead of the default in
Pytorch 1.6), resulting in better scores.

7.5.1 Encoder and proposal distribution
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Figure 5: Pixel accuracy (left) and Wasserstein distance (right) on Box with/without encoder.

Here we show the importance of the encoder that approximates the likelihood function by a Gaussian
(cf. Sec. 3.3.3). We conducted experiments where we omit the encoder and thus use a bootstrap
proposal distribution. On wiki, using 32 particles during training without encoder yields CRPS
scores 0.265± 0.010 for rolling evaluation and 0.360± 0.006 for non-rolling (long-term) evaluation,
respectively. In contrast, the same number of particles with encoder yields significantly better CRPS
scores of 0.207± 0.000 and 0.263± 0.003, respectively.

Similarly, the accuracy and Wasserstein distance for the Box dataset is significantly better when using
our ladder-type encoder, as shown in Fig. 5. Without encoder for the proposal distribution, the model
is not able to learn the dynamics and fails to converge to a reasonable fit.

7.6 Number of particles

We evaluate our model for a different numbers of particles (1, 8, 16, 32, 64, 96) used during training.
The performance on the wiki dataset is shown in Fig. 6. Surprisingly, the forecasting performance
does not improve with more particles.
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Figure 6: CRPS scores on wiki dataset for varying number of particles used for training.

In contrast, Fig. 7 shows that using more particles leads to a significantly better forecasting perfor-
mance on the Box dataset as expected.
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Figure 7: Accuracy (left), Wasserstein distance (right) on Box for varying number of particles used for training.
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Figure 8: Pixel accuracies in filter/smoothing (ARSGLS/ KVAE) range (t < 20) and forecast range (t ≥ 20).
Results are averaged over 1000 test samples and 3 independent runs.

7.6.1 Simulated physical environments

Additional to the the Wasserstein distance reported in the main text, we provide pixel accuracies in
Fig. 8

7.7 Experiment details

7.7.1 Pendulum

The model used in the pendulum experiment has 3 and 5 state and switch dimensions, respectively. We
used 10 base matrices (for each of A,C,Q,R and additionally F, S in case of the recurrent model);
the weights are predicted by an MLP with 1 hidden layer of 32 units with leaky relu activations (and a
softmax output). All covariance matrices (R,Q, S) are diagonal and represented as log of the inverse
scale to ensure positive variance. State and switch prior p(x0), p(s1) are both trainable diagonal
Gaussians (scale parameters are again represented as log inverse scale), initialised as the standard
Normal. The switch transition function f(st−1) (cf. Eq.(9)) is an MLP with 1 hidden layer of 32
units and leaky relu activations; no encoder (cf. Sec.3.3.3) is used in this experiment.

Both models are trained using the Adam optimizer with β1 = 0.9, β2 = 0.95, and (initial) learning
rate 1× 10−2 with an exponential decay to 1× 10−4 over a total of 50 epochs. The batch size is 100,
P = 64 particles are used for learning and P = 100 particles for computing the empirical mean and
std. deviation of the GMM (cf. Eq. (8)) filter and forecast distribution in the evaluation plot.

7.7.2 Univariate time series forecasting

A short summary of the datasets, as used in [32], considered for these experiments are given:

• electricity: hourly electricity consumption of 370 customers;
• traffic: hourly occupancy rates of 963 car lanes of San Francisco bay area freeways;
• solar: hourly photo-voltaic production of 137 stations;
• exchange: daily exchange rate of 8 currencies;
• wiki: daily page view of 2000 Wikipedia pages.

For all datasets, the same model and training hyper-parameters (except learning rate) were used.
Furthermore, RSGLS-ISSM and ARSGLS use the same model architecture where possible. For these
datasets, each model are given time-features (hour of day, day of week, etc.) and time-series
indicators as inputs u1:T as in [30, 33]. Time-series indicators are embedded in 50 dimensions
(except 8 dimensions for exchange dataset), and combined with the time-features by a single neural
network layer with 64 units and leaky relu activations.

The state dimension of RSGLS-ISSM is determined by the ISSM structure (cf. App.7.3), whereas for
ARSGLS the state has 16 dimensions. The switch s and auxiliary variable z (in case of ARSGLS) have
10 dimensions each. Furthermore, 20 base matrices are used. In case of RSGLS these include only
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D,Q,R, F, S since A,C are determined by the ISSM. ARSGLS uses additionally learnable matrices
A,C. For both models B was not used. The weights for averaging the matrices are predicted by an
MLP with 1 hidden layer of 64 units with leaky relu activations and a softmax output (taking st as
input). Covariance matrices (R,Q, S) are diagonal and parametrised as the log of the inverse scale.

The state prior p(x0) is a trainable diagonal Gaussian, initialised as the standard Normal; the switch
prior p(s1 | u1) is a diagonal Gaussian for which the location and scale parameters are predicted by
a linear transformation (and additional softplus in case of scale), taking the 64 input features from
the embedding and subsequent neural network layer (see above) as inputs. Similarly, the switch
transition function f(st−1,ut) (cf. Sec. 3.1) is an MLP with 1 hidden layer of 64 units and leaky relu
activations, which takes both the 64 input features and the previous switch as inputs.

Encoders differ for RSGLS-ISSM and ARSGLS, respectively, since the latter has the additional auxiliary
variable (cf. Sec. 3.2). However, in both cases the proposal distribution is formed as a product of
Gaussians as described in Sec. 3.3.3. For RSGLS-ISSM, the encoder is a diagonal Gaussian for which
the parameters are predicted by an MLP with 1 hidden layer of 64 units and leaky relu activations
(outputs corresponding to the scale use softplus activations). The additional non-linear emission
model of ARSGLS is a diagonal Gaussian for which the parameters are predicted by an MLP with 2
hidden layers with 64 units and leaky relu activations. The ladder encoder shares an MLP that predicts
the parameters of the Gaussians corresponding to the auxiliary and switch variable, respectively. This
shared MLP has 3 hidden layers with leaky relu activations; the parameters of the Gaussians are
predicted from the 2nd and 3rd (last) hidden layer, respectively.

Each model is trained using the Adam optimizer with β1 = 0.9, β2 = 0.95. For solar, the initial
learning rate is 1× 10−2, for electricity 1× 10−3 and for all other datasets 5× 10−3. In each
experiment, the learning rate is decayed over a total of 2500 iterations by a factor 10−2. The batch
size is 50 and P = 10 particles are used.

7.7.3 Simulated physical environments

Model architectures (for components that are similar between both models) are chosen as in [11],
except that the state dimension and number of base matrices is 10 for both, instead of 4 and 3,
respectively. Furthermore, the (diagonal) covariance matrices R,Q (parameterised as log inverse
scale, i.e. logR−1/2) are learnable, whereas in [11] these are fixed hyperparameters.

The switch in ARSGLS has 8 dimensions, and the switch prior is a trainable diagonal Gaussian,
initialised as the standard Normal. The auxiliary variable has 6 dimensions for Pong (to encode the
position of the ball and both pads) and 2 dimensions for all other datasets as in [11]. The switch
transition function f(st−1) from Eq. (9) is an MLP with 1 hidden layer of 64 units and relu activations.
The ladder encoder of ARSGLS uses the same convolutional architecture for the auxiliary variable
as the encoder in KVAE, and an additional hidden layer with 64 units for the switch. In contrast to
the KVAE, the Gaussian from the encoder is combined with the respective Gaussian of the generative
model as a product of these densities (cf. Sec. 3.3.3).

The same optimisation hyper-parameters are used for training as in [11], with the exception that we
train each model for 400 epochs with an initial learning rate of 0.002, decaying every 20 epochs
by 0.85 (instead of 80 epochs with initial learning rate 0.007 with the same decay). The number of
particles in ARSGLS is P = 32.
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