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Figure A.1: The confidence values for training samples at different epochs during the NLL training of
a ResNet-50 on CIFAR-10 (see §3). Top row: reliability plots using 25 confidence bins; bottom row:
% of samples in each bin. As training progresses, the model gradually shifts all training samples to
the highest confidence bin. Notably, it continues to do so even after achieving 100% training accuracy
by the 300 epoch point.

Appendix: Calibrating Deep Neural Networks using Focal Loss

In §A, we provide some empirical evidence for the observation made in §3 in the main paper using
reliability plots. In §B, we discuss the relation between focal loss and a regularised KL divergence,
where the regulariser is the entropy of the predicted distribution. In §C, we discuss the regularisation
effect of focal loss on a simple setup, i.e. a generalised linear model trained on a simple data
distribution. In §D, we show the proofs of the two propositions formulated in the main text. We then
describe all the datasets and implementation details for our experiments in §E. In §F, we discuss
additional approaches for training using focal loss, and also the results we get from these approaches.
We also provide the Top-5 accuracies of several models as we speculate that calibrated models should
have a higher softmax probability on the correct class even when they misclassify, as compared to
models which are less calibrated. We further provide the results of evaluating our models using
various metrics other than ECE (like AdaECE, Classwise-ECE, MCE and NLL). Next, in §G, we
provide additional results related to the confidence interval experiments performed in §5 of the main
paper. In §H, we provide empirical and qualitative results to show that models trained using focal loss
are calibrated, whilst maintaining their confidence on correct predictions. In §I, we provide a brief
extension of our discussion about Figure 2(e) in the main paper, with a plot of L2 norms of features
obtained from the last ResNet block during training. In §J, we provide some empirical evidence to
support the claims we make in §4 of the main paper about early stopping. Finally, in §K, we discuss
the performance of focal loss on the downstream task of machine translation with beam search. We
choose machine translation as the downstream task because in machine translation, softmax vectors
from a model are directly fed into the beam search algorithm, and hence more calibrated probability
vectors should intuitively produce better translations

A Reliability Plots

In this section, we provide some empirical evidence to support the observation made in §3 of the
main paper that a model, even after attaining perfect training accuracy, can reduce the training NLL
(loss) further by increasing the prediction confidences to match the ground-truth one-hot encoding.
To empirically observe this, we use the ResNet-50 network used for the analysis in §3. We divide
the confidence range [0, 1] into 25 bins, and present reliability plots computed on the training set at
training epochs 100, 200, 300 and 350 (see the top row of Figure A.1). In Figure A.1, we also show
the percentage of samples in each confidence bin. It is quite clear from these plots that over time, the
network gradually pushes all of the training samples towards the highest confidence bin. Furthermore,
even though the network has achieved 100% accuracy on the training set by epoch 300, it still pushes
some of the samples lying in lower confidence bins to the highest confidence bin by epoch 350.
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B Relation between Focal Loss and Entropy Regularised KL Divergence

Here we show why focal loss favours accurate but relatively less confident solutions. We show that it
inherently provides a trade-off between minimizing the KL-divergence and maximizing the entropy,
depending on the strength of γ. We use Lf and Lc to denote the focal loss with parameter γ and
cross entropy between p̂ and q, respectively. K denotes the number of classes and qy denotes the
ground-truth probability assigned to the yth class (similarly for p̂y). We consider the following simple
extension of focal loss:

Lf = −
K∑
y=1

(1− p̂y)γqy log p̂y

≥ −
K∑
y=1

(1− γp̂y)qy log p̂y By Bernoulli’s inequality ∀γ ≥ 1, since p̂y ∈ [0, 1]

= −
K∑
y=1

qy log p̂y − γ

∣∣∣∣∣
K∑
y=1

qyp̂y log p̂y

∣∣∣∣∣ ∀y, log p̂y ≤ 0

≥ −
K∑
y=1

qy log p̂y − γmax
j
qj

K∑
y=1

|p̂y log p̂y| By Hölder’s inequality ||fg||1 ≤ ||f ||∞||g||1

≥ −
K∑
y=1

qy log p̂y + γ

K∑
y=1

p̂y log p̂y ∀j, qj ∈ [0, 1]

= Lc − γH[p̂].

We know that Lc = KL(q||p̂) +H[q]. Combining this equality with the above inequality leads to:

Lf ≥ KL(q||p̂) + H[q]︸︷︷︸
constant

−γH[p̂].

In the case of one-hot encoding (Delta distribution for q), focal loss will maximize −p̂y log p̂y
(let y be the ground-truth class index), the component of the entropy of p̂ corresponding to
the ground-truth index. Thus, it will prefer learning p̂ such that p̂y is assigned a higher value
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Figure B.1: Optimal p̂ for
various values of q.

(because of the KL term), but not too high (because of the entropy term),
and will ultimately avoid preferring overconfident models (by contrast
to cross-entropy loss). Experimentally, we found the solution of the
cross-entropy and focal loss equations, i.e. the value of the predicted
probability p̂ which minimises the loss, for various values of q in a binary
classification problem (i.e. K = 2), and plotted it in Figure B.1. As
expected, focal loss favours a more entropic solution p̂ that is closer
to 0.5. In other words, as Figure B.1 shows, solutions to focal loss
(Equation 2) will always have higher entropy than those of cross-entropy,
depending on the value of γ.

p̂ = argminx −(1−x)γq log x−xγ(1−q) log (1− x) 0 ≤ x ≤ 1 (2)

C Focal Loss and Cross-Entropy on a Linear Model

The behaviour of deep neural networks is generally quite different from linear models and the problem
of calibration is more pronounced in the case of deep neural networks, hence we focus on analysing
the calibration of deep networks in the paper. However, weight norm analysis for the initial layers
is complex due to batchnorm and weight decay. Hence, to see the effect of weight magnification
on miscalibration, here we use a simple network without batchnorm or weight decay, which is a
generalised linear model, and a simple data distribution.

Setup We consider a binary classification problem. The data matrix X ∈ R2×N is created by
assigning each class, two normally distributed clusters such that the mean of the clusters are linearly
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Figure C.1: (a): Norm of logits (b): Norm of weights.

separable. The mean of the clusters are situated on the vertices of a two-dimensional hypercube of
side length 4. The standard deviation for each cluster is 1 and the samples are randomly linearly
combined within each cluster in order to add covariance. Further, for 10% of the data points, the
labels were flipped. 4000 samples are used for training and 1000 samples are used for testing. The
model consists of a simple 2-parameter logistic regression model. fw(x) = σ(w1x1 + w2x2). We
train this model using both cross-entropy and focal loss with γ = 1.

Weight Magnification We have argued that focal loss implicitly regularizes the weights of the
model by providing smaller gradients as compared to cross-entropy. This helps in calibration as, if
all the weights are large, the logits are large and thus the confidence of the network is large on all
test points, even on the misclassified points. When the model misclassifies, it misclassifies with a
high confidence. Figure C.1 shows, for a generalised linear model, that the norm of the logits and the
weights of a network blows for Cross Entropy as compared to Focal Loss.

High Confidence for mistakes Figures C.2 (b) and (c) show that running gradient descent with
cross-entropy (CE) and focal loss (FL) both gives the same decision regions i.e. the weight vector
points in the same region for both FL and CE. However, as we have seen that the norm of the weights
is much larger for CE as compared to FL, we would expect the confidence of misclassified test
points to be large for CE as compared to FL. Figure C.2 (a) plots a histogram of the confidence
of the misclassified points and it shows that CE misclassifies almost always with greater than 90%
confidence whereas FL misclassifies with much lower confidence.
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Figure C.2: (a): Confidence of mis-classifications (b): Decision boundary of linear classifier trained
using cross entropy (c): Decision boundary of linear classifier trained using focal loss

D Proofs

Here we provide the proofs of both the propositions presented in the main text. While Proposition 1
helps us understand the regularization effect of focal loss, Proposition 2 provides us the γ values in a
principled way such that it is sample-dependent. Implementing the sample-dependent γ is very easy
as implementation of the Lambert-W function [4] is available in standard libraries (e.g. python scipy).
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Proposition 1. For focal loss Lf and cross-entropy Lc, the gradients ∂Lf

∂w = ∂Lc

∂w g(p̂i,yi , γ), where
g(p, γ) = (1− p)γ − γp(1− p)γ−1 log(p), γ ∈ R+ is the focal loss hyperparameter, and w denotes

the parameters of the last linear layer. Thus
∥∥∥∂Lf

∂w

∥∥∥ ≤ ∥∥∂Lc

∂w

∥∥ if g(p̂i,yi , γ) ∈ [0, 1].

Proof. Let w be the linear layer parameters connecting the feature map to the logit s. Then, using
the chain rule, ∂Lf

∂w =
(
∂s
∂w

)(
∂p̂i,yi
∂s

)(
∂Lf

∂p̂i,yi

)
. Similarly, ∂Lc

∂w =
(
∂s
∂w

)(
∂p̂i,yi
∂s

)(
∂Lc

∂p̂i,yi

)
. The

derivative of the focal loss with respect to p̂i,yi , the softmax output of the network for the true class
yi, takes the form

∂Lf
∂p̂i,yi

= − 1

p̂i,yi

(
(1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi)

)
=

∂Lc
∂p̂i,yi

g(p̂i,yi , γ),

in which g(p̂i,yi , γ) = (1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi) and ∂Lc

∂p̂i,yi
= − 1

p̂i,yi
. It is thus

straightforward to verify that if g(p̂i,yi , γ) ∈ [0, 1], then
∥∥∥ ∂Lf

∂p̂i,yi

∥∥∥ ≤ ∥∥∥ ∂Lc

∂p̂i,yi

∥∥∥, which itself implies

that
∥∥∥∂Lf

∂w

∥∥∥ ≤ ∥∥∂Lc

∂w

∥∥.

Proposition 2. Given a p0, for 1 ≥ p ≥ p0 > 0, g(p, γ) ≤ 1 for all γ ≥ γ∗ = a
b +

1
log aW−1

(
−

a(1−a/b)

b log a
)
, where a = 1− p0, b = p0 log p0, and W−1 is the Lambert-W function [4]. Moreover,

for p ≥ p0 > 0 and γ ≥ γ∗, the equality g(p, γ) = 1 holds only for p = p0 and γ = γ∗.

Proof. We derive the value of γ > 0 for which g(p0, γ) = 1 for a given p0 ∈ [0, 1]. From Proposition
4.1, we already know that

∂Lf
∂p̂i,yi

=
∂Lc
∂p̂i,yi

g(p̂i,yi , γ), (3)

where Lf is focal loss, Lc is cross entropy loss, p̂i,yi is the probability assigned by the model to the
ground-truth correct class for the ith sample, and

g(p̂i,yi , γ) = (1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi). (4)

For p ∈ [0, 1], if we look at the function g(p, γ), then we can clearly see that g(p, γ)→ 1 as p→ 0,
and that g(p, γ) = 0 when p = 1. To observe the behaviour of g(p, γ) for intermediate values of p,
we first take its derivative with respect to p:

∂g(p, γ)

∂p
= γ(1− p)γ−2

[
− 2(1− p)− (1− p) log p+ (γ − 1)p log p

]
(5)

In Equation 5, γ(1 − p)γ−2 > 0 except when p = 1 (in which case γ(1 − p)γ−2 = 0). Thus, to
observe the sign of the gradient ∂g(p,γ)∂p , we focus on the term

−2(1− p)− (1− p) log p+ (γ − 1)p log p. (6)

Dividing Equation 6 by (− log p), the sign remains unchanged and we get

k(p, γ) =
2(1− p)
log p

+ 1− γp. (7)

We can see that k(p, γ) → 1 as p → 0 and k(p, γ) → −(1 + γ) as p → 1 (using l’Hôpital’s rule).
Furthermore, k(p, γ) is monotonically decreasing for p ∈ [0, 1]. Thus, as the gradient ∂g(p,γ)∂p is
positive initially starting from p = 0 and negative later till p = 1, we can say that g(p, γ) first
monotonically increases starting from 1 (as p → 0) and then monotonically decreases down to 0
(at p = 1). Thus, if for some threshold p0 > 0 and for some γ > 0, g(p, γ) = 1, then ∀p > p0,
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g(p, γ) < 1. We now want to find a γ such that ∀p ≥ p0, g(p, γ) ≤ 1. First, let a = (1 − p0) and
b = p0 log p0. Then:

g(p0, γ) = (1− p0)γ − γp0(1− p0)γ−1 log p0 ≤ 1

=⇒ (1− p0)γ−1[(1− p0)− γp0 log p0] ≤ 1

=⇒ aγ−1(a− γb) ≤ 1

=⇒ (γ − 1) log a+ log(a− γb) ≤ 0

=⇒
(
γ − a

b

)
log a+ log(a− γb) ≤

(
1− a

b

)
log a

=⇒ (a− γb)e(γ−a/b) log a ≤ a(1−a/b)

=⇒
(
γ − a

b

)
e(γ−a/b) log a ≤ −a

(1−a/b)

b

=⇒
((
γ − a

b

)
log a

)
e(γ−a/b) log a ≥ −a

(1−a/b)

b
log a

(8)

where a = (1− p0) and b = p0 log p0. We know that the inverse of y = xex is defined as x =W (y),
where W is the Lambert-W function [4]. Furthermore, the r.h.s. of the inequality in Equation 8 is
always negative, with a minimum possible value of−1/e that occurs at p0 = 0.5. Therefore, applying
the Lambert-W function to the r.h.s. will yield two real solutions (corresponding to a principal branch
denoted by W0 and a negative branch denoted by W−1). We first consider the solution corresponding
to the negative branch (which is the smaller of the two solutions):(

(γ − a

b
) log a

)
≤W−1

(
− a(1−a/b)

b
log a

)
=⇒ γ ≥ a

b
+

1

log a
W−1

(
− a(1−a/b)

b
log a

) (9)

If we consider the principal branch, the solution is

γ ≤ a

b
+

1

log a
W0

(
− a(1−a/b)

b
log a

)
, (10)

which yields a negative value for γ that we discard. Thus Equation 9 gives the values of γ for which
if p > p0, then g(p, γ) < 1. In other words, g(p0, γ) = 1, and for any p < p0, g(p, γ) > 1.

E Dataset Description and Implementation Details

We use the following image and document classification datasets in our experiments:

1. CIFAR-10 [13]: This dataset has 60,000 colour images of size 32× 32, divided equally into 10
classes. We use a train/validation/test split of 45,000/5,000/10,000 images.

2. CIFAR-100 [13]: This dataset has 60,000 colour images of size 32× 32, divided equally into 100
classes. (Note that the images in this dataset are not the same images as in CIFAR-10.) We again
use a train/validation/test split of 45,000/5,000/10,000 images.

3. Tiny-ImageNet [6]: Tiny-ImageNet is a subset of ImageNet with 64 x 64 dimensional images,
200 classes and 500 images per class in the training set and 50 images per class in the validation
set. The image dimensions of Tiny-ImageNet are twice that of CIFAR-10/100 images.

4. 20 Newsgroups [17]: This dataset contains 20,000 news articles, categorised evenly into 20
different newsgroups based on their content. It is a popular dataset for text classification. Whilst
some of the newsgroups are very related (e.g. rec.motorcycles and rec.autos), others are quite
unrelated (e.g. sci.space and misc.forsale). We use a train/validation/test split of 15,098/900/3,999
documents.

5. Stanford Sentiment Treebank (SST) [32]: This dataset contains movie reviews in the form of
sentence parse trees, where each node is annotated by sentiment. We use the dataset version with
binary labels, for which 6,920/872/1,821 documents are used as the training/validation/test split.
In the training set, each node of a parse tree is annotated as positive, neutral or negative. At test
time, the evaluation is done based on the model classification at the root node, i.e. considering the
whole sentence, which contains only positive or negative sentiment.
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All our experiments required a single 12 GB TITAN Xp GPU. For training networks on CIFAR-10
and CIFAR-100, we use SGD with a momentum of 0.9 as our optimiser, and train the networks for
350 epochs, with a learning rate of 0.1 for the first 150 epochs, 0.01 for the next 100 epochs, and
0.001 for the last 100 epochs. We use a training batch size of 128. Furthermore, we augment the
training images by applying random crops and random horizontal flips. For Tiny-ImageNet, we
train for 100 epochs with a learning rate of 0.1 for the first 40 epochs, 0.01 for the next 20 epochs
and 0.001 for the last 40 epochs. We use a training batch size of 64. It should be noted that for
Tiny-ImageNet, we saved 50 samples per class (i.e., a total of 10000 samples) from the training set as
our own validation set to fine-tune the temperature parameter (hence, we trained on 90000 images)
and we use the Tiny-ImageNet validation set as our test set.

For 20 Newsgroups, we train the Global Pooling Convolutional Network [18] using the Adam
optimiser, with learning rate 0.001, and betas 0.9 and 0.999. The code is a PyTorch adaptation of
[24]. We used Glove word embeddings [28] to train the network. We trained all the models for 50
epochs and used the models with the best validation accuracy.

For the SST Binary dataset, we train the Tree-LSTM [33] using the AdaGrad optimiser with a learning
rate of 0.05 and a weight decay of 10−4, as suggested by the authors. We used the constituency model,
which considers binary parse trees of the data and trains a binary Tree-LSTM on them. The Glove
word embeddings [28] were also tuned for best results. The code framework we used is inspired by
[35]. We trained these models for 25 epochs and used the models with the best validation accuracy.

For all our models, we use the PyTorch framework, setting any hyperparameters not explicitly
mentioned to the default values used in the standard models. For MMCE, we used λ = 2 for all our
experiments as we found it to perform better over all the values we tried. A calibrated model which
does not generalise well to an unseen test set is not very useful. Hence, for all the experiments, we
set the training parameters in a way such that we get best test set accuracies on all datasets for each
model.

F Additional Results

In addition to the sample-dependent γ approach, we try the following focal loss approaches as well:

Focal Loss (Fixed γ): We trained models on focal loss with γ fixed to 1, 2 and 3. We found γ = 3 to
produce the best ECE among models trained using a fixed γ. This corroborates the observation we
made in §4 of the main paper that γ = 3 should produce better results than γ = 1 or γ = 2, as the
regularising effect for γ = 3 is higher.

Focal Loss (Scheduled γ): As a simplification to the sample-dependent γ approach, we also tried
using a schedule for γ during training, as we expect the value of p̂i,yi to increase in general for
all samples over time. In particular, we report results for two different schedules: (a) Focal Loss
(scheduled γ 5,3,2): γ = 5 for the first 100 epochs, γ = 3 for the next 150 epochs, and γ = 2 for the
last 100 epochs, and (b) Focal Loss (scheduled γ 5,3,1): γ = 5 for the first 100 epochs, γ = 3 for the
next 150 epochs, and γ = 1 for the last 100 epochs. We also tried various other schedules, but found
these two to produce the best results on the validation sets.

Finally, for the sample-dependent γ approach, we also found the policy: Focal Loss (sample-
dependent γ 5,3,2) with γ = 5 for p̂i,yi ∈ [0, 0.2), γ = 3 for p̂i,yi ∈ [0.2, 0.5) and γ = 2 for
p̂i,yi ∈ [0.5, 1] to produce competitive results.

In Tables F.1 and F.2, we present the AdaECE and Classwise-ECE scores for all the baselines
discussed in Table 1 of the main paper.

In Table 2 of the main paper, we present the classification errors on the test datasets for all the major
loss functions we considered. Here we also report the classification errors for the different focal loss
approaches in Table F.6. We also report the ECE, Ada-ECE and Classwise-ECE for all the focal loss
approaches in Table F.3, Table F.4 and Table F.5 respectively.

Finally, calibrated models should have a higher logit score (or softmax probability) on the correct
class even when they misclassify, as compared to models which are less calibrated. Thus, intuitively,
such models should have a higher Top-5 accuracy. In Table F.7, we report the Top-5 accuracies for
all our models on datasets where the number of classes is relatively high (i.e., on CIFAR-100 with
100 classes and Tiny-ImageNet with 200 classes). We observe focal loss with sample-dependent γ to
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-3 (Ours) FLSD-53 (Ours)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 5.08 2.02(1.1) 4.5 2.0(1.1)
ResNet-110 19.05 5.86(2.3) 7.73 4.53(1.2) 19.14 4.85(2.3) 11.12 8.59(1.1) 8.64 4.14(1.2) 8.55 3.96(1.2)

Wide-ResNet-26-10 15.33 2.89(2.2) 4.22 2.81(1.1) 13.16 4.25(1.9) 5.1 5.1(1) 2.08 2.08(1) 2.75 1.63(1.1)
DenseNet-121 20.98 5.09(2.3) 5.04 2.56(1.1) 19.13 3.07(2.1) 12.83 8.92(1.2) 4.15 1.23(1.1) 3.55 1.24(1.1)

CIFAR-10

ResNet-50 4.33 2.14(2.5) 1.74 1.23(1.1) 4.55 2.16(2.6) 3.89 2.92(0.9) 1.95 1.83(1.1) 1.56 1.26(1.1)
ResNet-110 4.4 1.99(2.8) 2.6 1.7(1.2) 5.06 2.52(2.8) 4.44 4.44(1) 1.62 1.44(1.1) 2.07 1.67(1.1)

Wide-ResNet-26-10 3.23 1.69(2.2) 1.7 1.7(1) 3.29 1.6(2.2) 4.27 2.44(0.8) 1.84 1.54(0.9) 1.52 1.38(0.9)
DenseNet-121 4.51 2.13(2.4) 2.03 2.03(1) 5.1 2.29(2.5) 4.42 3.33(0.9) 1.22 1.48(0.9) 1.42 1.42(1)

Tiny-ImageNet ResNet-50 15.23 5.41(1.4) 4.37 4.07(0.9) 13.0 5.56(1.3) 15.28 6.29(0.7) 1.88 1.88(1) 1.42 1.42(1)

20 Newsgroups Global Pooling CNN 17.91 2.23(3.4) 13.57 3.11(2.3) 15.21 6.47(2.2) 4.39 2.63(1.1) 8.65 3.78(1.5) 6.92 2.35(1.5)

SST Binary Tree-LSTM 7.27 3.39(1.8) 8.12 2.84(2.5) 5.01 4.32(1.5) 5.14 4.23(1.2) 16.01 2.16(0.5) 9.15 1.92(0.7)

Table F.1: Adaptive ECE (%) computed for different approaches both pre and post temperature
scaling (cross-validating T on ECE). Optimal temperature for each method is indicated in brackets.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-3 (Ours) FLSD-53 (Ours)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 0.38 0.22(2.1) 0.22 0.20(1.1) 0.34 0.21(1.8) 0.23 0.21(1.1) 0.20 0.20(1.1) 0.20 0.20(1.1)
ResNet-110 0.41 0.21(2.3) 0.24 0.23(1.2) 0.42 0.22(2.3) 0.26 0.22(1.1) 0.24 0.22(1.2) 0.24 0.21(1.2)

Wide-ResNet-26-10 0.34 0.20(2.2) 0.19 0.19(1.1) 0.31 0.20(1.9) 0.21 0.21(1) 0.18 0.18(1) 0.18 0.19(1.1)
DenseNet-121 0.45 0.23(2.3) 0.20 0.21(1.1) 0.42 0.24(2.1) 0.29 0.24(1.2) 0.20 0.20(1.1) 0.19 0.20(1.1)

CIFAR-10

ResNet-50 0.91 0.45(2.5) 0.46 0.42(1.1) 0.94 0.52(2.6) 0.71 0.51(0.9) 0.43 0.48(1.1) 0.42 0.42(1.1)
ResNet-110 0.91 0.50(2.8) 0.59 0.50(1.2) 1.04 0.55(2.8) 0.66 0.66(1) 0.44 0.41(1.1) 0.48 0.44(1.1)

Wide-ResNet-26-10 0.68 0.37(2.2) 0.44 0.44(1) 0.70 0.35(2.2) 0.80 0.45(0.8) 0.44 0.36(0.9) 0.41 0.31(0.9)
DenseNet-121 0.92 0.47(2.4) 0.46 0.46(1) 1.04 0.57(2.5) 0.60 0.50(0.9) 0.43 0.41(0.9) 0.41 0.41(1)

Tiny-ImageNet ResNet-50 0.22 0.16(1.4) 0.16 0.16(0.9) 0.21 0.16(1.3) 0.21 0.17(0.7) 0.16 0.16(1) 0.16 0.16(1)

20 Newsgroups Global Pooling CNN 1.95 0.83(3.4) 1.56 0.82(2.3) 1.77 1.10(2.2) 0.93 0.91(1.1) 1.31 1.05(1.5) 1.40 1.19(1.5)

SST Binary Tree-LSTM 5.81 3.76(1.8) 6.38 2.48(2.5) 3.82 2.70(1.5) 3.99 3.20(1.2) 6.35 2.81(0.5) 4.84 3.24(0.7)

Table F.2: Classwise-ECE (%) computed for different approaches both pre and post temperature
scaling (cross-validating T on ECE). Optimal temperature for each method is indicated in brackets.

produce the highest top-5 accuracies on all models trained on CIFAR-100 and the second best top-5
accuracy (only marginally below the highest accuracy) on Tiny-ImageNet.

In addition to ECE, Ada-ECE and Classwise-ECE, we use various other metrics to compare the
proposed methods with the baselines (i.e. cross-entropy, Brier loss, MMCE and Label Smoothing).
We present the test NLL % before and after temperature scaling in Tables F.8 and F.9, respectively. We
report the test set MCE % before and after temperature scaling in Tables F.10 and F.11, respectively.

We use the following abbreviation to report results on different varieties of Focal Loss. FL-1 refers
to Focal Loss (fixed γ 1), FL-2 refers to Focal Loss (fixed γ 2), FL-3 refers to Focal Loss (fixed γ
3), FLSc-531 refers to Focal Loss (scheduled γ 5,3,1), FLSc-532 refers to Focal Loss (scheduled γ
5,3,2), FLSD-532 refers to Focal Loss (sample-dependent γ 5,3,2) and FLSD-53 refers to Focal Loss
(sample-dependent γ 5,3).

Dataset Model FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 12.86 2.3(1.5) 8.61 2.24(1.3) 5.13 1.97(1.1) 11.63 2.09(1.4) 8.47 2.13(1.3) 9.09 1.61(1.3) 4.5 2.(1.1)
ResNet-110 15.08 4.55(1.5) 11.57 3.73(1.3) 8.64 3.95(1.2) 14.99 4.56(1.5) 11.2 3.43(1.3) 11.74 3.64(1.3) 8.56 4.12(1.2)

Wide-ResNet-26-10 8.93 2.53(1.4) 4.64 2.93(1.2) 2.13 2.13(1) 9.36 2.48(1.4) 4.98 1.94(1.2) 4.98 2.55(1.2) 3.03 1.64(1.1)
DenseNet-121 14.24 2.8(1.5) 7.9 2.33(1.2) 4.15 1.25(1.1) 13.05 2.08(1.5) 7.63 1.96(1.2) 8.14 2.35(1.3) 3.73 1.31(1.1)

CIFAR-10

ResNet-50 3.42 1.08(1.6) 2.36 0.91(1.2) 1.48 1.42(1.1) 4.06 1.53(1.6) 2.97 1.53(1.2) 2.52 0.88(1.3) 1.55 0.95(1.1)
ResNet-110 3.46 1.2(1.6) 2.7 0.89(1.3) 1.55 1.02(1.1) 4.92 1.5(1.7) 3.33 1.36(1.3) 2.82 0.97(1.3) 1.87 1.07(1.1)

Wide-ResNet-26-10 2.69 1.46(1.3) 1.42 1.03(1.1) 1.69 0.97(0.9) 2.81 0.96(1.4) 1.82 1.45(1.1) 1.31 0.87(1.1) 1.56 0.84(0.9)
DenseNet-121 3.44 1.63(1.4) 1.93 1.04(1.1) 1.32 1.26(0.9) 4.12 1.65(1.5) 2.22 1.34(1.1) 2.45 1.31(1.2) 1.22 1.22(1)

Tiny-ImageNet ResNet-50 7.61 3.29(1.2) 3.02 3.02(1) 1.87 1.87(1) 7.77 3.07(1.2) 3.62 2.54(1.1) 2.81 2.57(1.1) 1.76 1.76(1)

20 Newsgroups Global Pooling CNN 15.06 2.14(2.6) 12.1 3.22(1.6) 8.67 3.51(1.5) 13.55 4.32(1.7) 12.13 2.47(1.8) 12.2 2.39(2) 6.92 2.19(1.5)

SST Binary Tree-LSTM 6.78 3.29(1.6) 3.05 3.05(1) 16.05 1.78(0.5) 4.66 3.36(1.4) 3.91 2.64(0.9) 4.47 2.77(0.9) 9.19 1.83(0.7)

Table F.3: ECE (%) computed for different focal loss approaches both pre and post temperature
scaling (cross-validating T on ECE). Optimal temperature for each method is indicated in brackets.

19



Dataset Model FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 12.86 2.54(1.5) 8.55 2.44(1.3) 5.08 2.02(1.1) 11.58 2.01(1.4) 8.41 2.25(1.3) 9.08 1.94(1.3) 4.39 2.33(1.1)
ResNet-110 15.08 5.16(1.5) 11.57 4.46(1.3) 8.64 4.14(1.2) 14.98 4.97(1.5) 11.18 3.68(1.3) 11.74 4.21(1.3) 8.55 3.96(1.2)

Wide-ResNet-26-10 8.93 2.74(1.4) 4.65 2.96(1.2) 2.08 2.08(1) 9.2 2.52(1.4) 5 2.11(1.2) 5 2.58(1.2) 2.75 1.63(1.1)
DenseNet-121 14.24 2.71(1.5) 7.9 2.36(1.2) 4.15 1.23(1.1) 13.01 2.18(1.5) 7.61 2.04(1.2) 8.04 2.1(1.3) 3.55 1.24(1.1)

CIFAR-10

ResNet-50 3.42 1.51(1.6) 2.37 1.69(1.2) 1.95 1.83(1.1) 4.06 2.43(1.6) 2.95 2.18(1.2) 2.5 1.23(1.3) 1.56 1.26(1.1)
ResNet-110 3.42 1.57(1.6) 2.69 1.29(1.3) 1.62 1.44(1.1) 4.91 2.61(1.7) 3.32 1.92(1.3) 2.78 1.58(1.3) 2.07 1.67(1.1)

Wide-ResNet-26-10 2.7 1.71(1.3) 1.64 1.47(1.1) 1.84 1.54(0.9) 2.75 1.85(1.4) 2.04 1.9(1.1) 1.68 1.49(1.1) 1.52 1.38(0.9)
DenseNet-121 3.44 1.85(1.4) 1.8 1.39(1.1) 1.22 1.48(0.9) 4.11 2.2(1.5) 2.19 1.64(1.1) 2.44 1.6(1.2) 1.42 1.42(1)

Tiny-ImageNet ResNet-50 7.56 2.95(1.2) 3.15 3.15(1) 1.88 1.88(1) 7.7 2.9(1.2) 3.76 2.4(1.1) 2.81 2.6(1.1) 1.42 1.42(1)

20 Newsgroups Global Pooling CNN 15.06 2.22(2.6) 12.1 3.33(1.6) 8.65 3.78(1.5) 13.55 4.58(1.7) 12.13 2.49(1.8) 12.19 2.37(2) 6.92 2.35(1.5)

SST Binary Tree-LSTM 6.27 4.59(1.6) 3.69 3.69(1) 16.01 2.16(0.5) 4.43 3.57(1.4) 3.37 2.46(0.9) 4.42 2.96(0.9) 9.15 1.92(0.7)

Table F.4: AdaECE (%) computed for different focal loss approaches both pre and post temperature
scaling (cross-validating T on ECE). Optimal temperature for each method is indicated in brackets.

Dataset Model FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 0.30 0.21(1.5) 0.24 0.22(1.3) 0.20 0.20(1.1) 0.28 0.21(1.4) 0.24 0.21(1.3) 0.25 0.21(1.3) 0.20 0.20(1.1)
ResNet-110 0.34 0.21(1.5) 0.28 0.20(1.3) 0.24 0.22(1.2) 0.34 0.22(1.5) 0.28 0.21(1.3) 0.28 0.21(1.3) 0.24 0.21(1.2)

Wide-ResNet-26-10 0.23 0.19(1.4) 0.18 0.21(1.2) 0.18 0.18(1) 0.24 0.19(1.4) 0.19 0.20(1.2) 0.19 0.19(1.2) 0.18 0.19(1.1)
DenseNet-121 0.33 0.22(1.5) 0.23 0.21(1.2) 0.20 0.20(1.1) 0.31 0.22(1.5) 0.23 0.20(1.2) 0.23 0.22(1.3) 0.19 0.20(1.1)

CIFAR-10

ResNet-50 0.73 0.40(1.6) 0.54 0.45(1.2) 0.43 0.48(1.1) 0.85 0.51(1.6) 0.64 0.48(1.2) 0.56 0.42(1.3) 0.42 0.42(1.1)
ResNet-110 0.74 0.44(1.6) 0.61 0.42(1.3) 0.44 0.41(1.1) 1.02 0.62(1.7) 0.73 0.51(1.3) 0.63 0.44(1.3) 0.48 0.44(1.1)

Wide-ResNet-26-10 0.59 0.39(1.3) 0.37 0.36(1.1) 0.44 0.36(0.9) 0.61 0.37(1.4) 0.42 0.42(1.1) 0.37 0.33(1.1) 0.41 0.31(0.9)
DenseNet-121 0.74 0.44(1.4) 0.45 0.39(1.1) 0.43 0.41(0.9) 0.88 0.47(1.5) 0.52 0.43(1.1) 0.56 0.47(1.2) 0.41 0.41(1)

Tiny-ImageNet ResNet-50 0.18 0.17(1.2) 0.16 0.16(1) 0.16 0.16(1) 0.18 0.17(1.2) 0.16 0.16(1.1) 0.16 0.17(1.1) 0.16 0.16(1)

20 Newsgroups Global Pooling CNN 1.73 0.98(2.6) 1.51 1.00(1.6) 1.31 1.05(1.5) 1.59 1.15(1.7) 1.54 1.10(1.8) 1.50 0.99(2) 1.40 1.19(1.5)

SST Binary Tree-LSTM 5.46 3.63(1.6) 3.34 3.34(1) 6.35 2.81(0.5) 4.32 3.60(1.4) 3.95 3.90(0.9) 3.52 3.39(0.9) 4.84 3.24(0.7)

Table F.5: Classwise-ECE (%) computed for different focal loss approaches both pre and post
temperature scaling (cross-validating T on ECE). Optimal temperature for each method is indicated
in brackets.

Dataset Model FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53

CIFAR-100

ResNet-50 22.8 23.15 22.75 23.49 23.24 23.55 23.22
ResNet-110 22.36 22.53 22.92 22.81 22.96 22.93 22.51

Wide-ResNet-26-10 19.61 20.01 19.69 20.13 20.13 19.71 20.11
DenseNet-121 23.82 23.19 23.25 23.69 23.72 22.41 22.67

CIFAR-10

ResNet-50 4.93 4.98 5.25 5.66 5.63 5.24 4.98
ResNet-110 4.78 5.06 5.08 6.13 5.71 5.19 5.42

Wide-ResNet-26-10 4.27 4.27 4.13 4.11 4.46 4.14 4.01
DenseNet-121 5.09 4.84 5.33 5.46 5.65 5.46 5.46

Tiny-ImageNet ResNet-50 50.06 47.7 49.69 50.49 49.83 48.95 49.06

20 Newsgroups Global Pooling CNN 26.13 28.23 29.26 29.16 28.16 27.26 27.98

SST Binary Tree-LSTM 12.63 12.3 12.19 12.36 13.07 12.3 12.8

Table F.6: Error (%) computed for different focal loss approaches.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 (Ours)
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CIFAR-100

ResNet-50 76.7 93.77 76.61 93.24 76.8 93.69 76.57 92.86 76.78 94.44
ResNet-110 77.27 93.79 74.9 92.44 76.93 93.78 76.57 92.27 77.49 94.78

Wide-ResNet-26-10 79.3 93.96 79.41 94.56 79.27 94.11 78.81 93.18 79.89 95.2
DenseNet-121 75.48 91.33 76.25 92.76 76 91.96 75.95 89.51 77.33 94.49

Tiny-ImageNet ResNet-50 50.19 74.24 46.8 70.34 48.69 73.52 52.88 76.15 50.94 76.07

Table F.7: Top-1 and Top-5 accuracies computed for different approaches.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53

CIFAR-100

ResNet-50 153.67 99.63 125.28 121.02 105.61 92.82 87.52 100.09 92.66 94.1 88.03
ResNet-110 179.21 110.72 180.54 133.11 114.18 96.74 90.9 112.46 95.85 97.97 89.92

Wide-ResNet-26-10 140.1 84.62 119.58 108.06 87.56 77.8 74.66 88.61 78.52 78.86 76.92
DenseNet-121 205.61 98.31 166.65 142.04 115.5 93.11 87.13 107.91 93.12 91.14 85.47

CIFAR-10

ResNet-50 41.21 18.67 44.83 27.68 22.67 18.6 18.43 25.32 20.5 18.69 17.55
ResNet-110 47.51 20.44 55.71 29.88 22.54 19.19 17.8 32.77 22.48 19.39 18.54

Wide-ResNet-26-10 26.75 15.85 28.47 21.71 17.66 14.96 15.2 18.5 15.57 14.78 14.55
DenseNet-121 42.93 19.11 52.14 28.7 22.5 17.56 18.02 27.41 19.5 20.14 18.39

Tiny-ImageNet ResNet-50 232.85 240.32 234.29 235.04 219.07 202.92 207.2 217.52 211.42 204.71 204.97

20 Newsgroups Global Pooling CNN 176.57 130.41 158.7 90.95 140.4 115.97 109.62 128.75 123.72 124.03 109.17

SST Binary Tree-LSTM 50.2 54.96 37.28 44.34 53.9 47.72 50.29 50.25 53.13 45.08 49.23

Table F.8: NLL (%) computed for different approaches pre temperature scaling.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53

CIFAR-100

ResNet-50 106.83 99.57 101.92 120.19 94.58 91.80 87.37 92.77 91.58 92.83 88.27
ResNet-110 104.63 111.81 106.73 129.76 94.65 91.24 89.92 93.73 91.30 92.29 88.93

Wide-ResNet-26-10 97.10 85.77 95.92 108.06 83.68 80.44 74.66 84.11 80.01 80.40 78.14
DenseNet-121 119.23 98.74 113.24 136.28 100.81 91.35 87.55 98.16 91.55 90.57 86.06

CIFAR-10

ResNet-50 20.38 18.36 21.58 27.69 17.56 17.67 18.34 19.93 19.25 17.28 17.37
ResNet-110 21.52 19.60 24.61 29.88 17.32 17.53 17.62 23.79 20.21 17.78 18.24

Wide-ResNet-26-10 15.33 15.85 16.16 21.19 15.48 14.85 15.06 15.81 15.38 14.69 14.23
DenseNet-121 21.77 19.11 24.88 28.95 18.71 17.21 18.10 21.65 19.04 19.27 18.39

Tiny-ImageNet ResNet-50 220.98 238.98 226.29 214.95 217.51 202.92 207.20 215.37 211.57 205.42 204.97

20 Newsgroups Global Pooling CNN 87.95 93.11 99.74 90.42 87.24 93.60 94.69 97.89 93.66 91.73 93.98

SST Binary Tree-LSTM 41.05 38.27 36.37 43.45 45.67 47.72 45.96 45.82 54.52 45.36 49.69

Table F.9: NLL (%) computed for different approaches post temperature scaling (cross-validating T
on ECE).

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53

CIFAR-100

ResNet-50 44.34 36.75 39.53 26.11 33.22 21.03 13.02 26.76 23.56 22.4 16.12
ResNet-110 55.92 24.85 50.69 36.23 40.49 32.57 26 37.24 29.56 34.73 22.57

Wide-ResNet-26-10 49.36 14.68 40.13 23.79 27 15.14 9.96 27.81 17.59 13.64 10.17
DenseNet-121 56.28 15.47 49.97 43.59 35.45 21.7 11.61 38.68 18.91 21.34 9.68

CIFAR-10

ResNet-50 38.65 31.54 60.06 35.61 31.75 25 21.83 30.54 23.57 25.45 14.89
ResNet-110 44.25 25.18 67.52 45.72 73.35 25.92 25.15 34.18 30.38 30.8 18.95

Wide-ResNet-26-10 48.17 77.15 36.82 24.89 29.17 30.17 23.86 37.57 30.65 18.51 74.07
DenseNet-121 45.19 19.39 43.92 45.5 38.03 29.59 77.08 33.5 16.47 17.85 13.36

Tiny-ImageNet ResNet-50 30.83 8.41 26.48 25.48 20.7 8.47 6.11 16.03 9.28 8.97 3.76

20 Newsgroups Global Pooling CNN 36.91 31.35 34.72 8.93 34.28 24.1 18.85 26.02 25.02 24.29 17.44

SST Binary Tree-LSTM 71.08 92.62 68.43 39.39 95.48 86.21 22.32 76.28 86.93 80.85 73.7

Table F.10: MCE (%) computed for different approaches pre temperature scaling.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-1 FL-2 FL-3 FLSc-531 FLSc-532 FLSD-532 FLSD-53

CIFAR-100

ResNet-50 12.75 21.61 11.99 18.58 8.92 8.86 6.76 7.46 6.76 5.24 27.18
ResNet-110 22.65 13.56 19.23 30.46 20.13 12 13.06 18.28 13.72 15.89 10.94

Wide-ResNet-26-10 14.18 13.42 16.5 23.79 10.28 18.32 9.96 13.18 11.01 12.5 9.73
DenseNet-121 21.63 8.55 13.02 29.95 10.49 11.63 6.17 6.21 6.48 9.41 5.68

CIFAR-10

ResNet-50 20.6 22.46 23.6 40.51 25.86 28.17 15.76 22.05 23.85 24.76 26.37
ResNet-110 29.98 22.73 31.87 45.72 29.74 23.82 37.61 26.25 25.94 11.59 17.35

Wide-ResNet-26-10 26.63 77.15 32.33 37.53 74.58 29.58 25.64 28.63 20.23 19.68 36.56
DenseNet-121 32.52 19.39 27.03 53.57 19.68 22.71 76.27 21.05 32.76 35.06 13.36

Tiny-ImageNet ResNet-50 13.33 12.82 12.52 17.2 6.5 8.47 6.11 5.97 7.01 5.73 3.76

20 Newsgroups Global Pooling CNN 36.91 31.35 34.72 8.93 34.28 24.1 18.85 26.02 25.02 24.29 17.44

SST Binary Tree-LSTM 88.48 91.86 32.92 35.72 87.77 86.21 74.52 54.27 88.85 82.42 76.71

Table F.11: MCE (%) computed for different approaches post temperature scaling (cross-validating T
on ECE).

G Bar plots

In this section, we present additional results in reference to Figure 4 in the main paper. In particular,
we compute 90% confidence intervals for ECE, AdaECE and Classwise-ECE using 1000 bootstrap
samples following [15] and present the resulting confidence intervals as bar plots in Figures G.1,
G.2, G.3 and G.4. These plots further corroboate the observations made in Section 5 of the main
paper. We find that FLSD-53 broadly produces the lowest calibration errors, and in quite a few cases
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Figure G.1: Bar plots with confidence intervals for ECE, AdaECE and Classwise-ECE computed for
ResNet-50 (first 3 figures) and ResNet-110 (last 3 figures) on CIFAR-100.
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Figure G.2: Bar plots with confidence intervals for ECE, AdaECE and Classwise-ECE computed for
Wide-ResNet-26-10 (first 3 figures) and DenseNet-121 (last 3 figures) on CIFAR-100.
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Figure G.3: Bar plots with confidence intervals for ECE, AdaECE and Classwise-ECE computed for
Wide-ResNet-26-10 (first 3 figures) and DenseNet-121 (last 3 figures) on CIFAR-10.
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Figure G.4: Bar plots with confidence intervals for ECE, AdaECE and Classwise-ECE computed for
ResNet-50 on Tiny-ImageNet.

(especially before temperature scaling) the differences in calibration errors between cross-entropy
and focal loss are statistically significant.

H Focal Loss is Confident and Calibrated

In extension to what we present in Section 5 of the main paper, we also follow the approach adopted
in [16], and measure the percentage of test samples that are predicted with a confidence of 0.99
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Dataset Model Cross-Entropy (Pre T) Cross-Entropy (Post T) MMCE (Pre T) MMCE (Post T) Focal Loss (Pre T) Focal Loss (Post T)
|S99|% Accuracy |S99|% Accuracy |S99|% Accuracy |S99|% Accuracy |S99|% Accuracy |S99|% Accuracy

CIFAR-10 ResNet-110 97.11 96.33 11.5 97.39 97.65 96.72 10.62 99.83 61.41 99.51 31.10 99.68
CIFAR-10 ResNet-50 95.93 96.72 7.33 99.73 92.33 98.24 4.21 100 46.31 99.57 14.27 99.93

Table H.1: Percentage of test samples predicted with confidence higher than 99% and the correspond-
ing accuracy for Cross Entropy, MMCE and Focal loss computed both pre and post temperature
scaling (represented in the table as pre T and post T respectively).

or more (we call this set of test samples S99). In Table H.1, we report |S99| as a percentage of
the total number of test samples, along with the accuracy of the samples in S99 for ResNet-50 and
ResNet-110 trained on CIFAR-10, using cross-entropy loss, MMCE loss, and focal loss. We observe
that |S99| for the focal loss model is much lower than for the cross-entropy or MMCE models before
temperature scaling. However, after temperature scaling, |S99| for focal loss is significantly higher
than for both MMCE and cross-entropy. The reason is that with an optimal temperature of 1.1, the
confidence of the temperature-scaled model for focal loss does not reduce as much as those of the
models for cross-entropy and MMCE, for which the optimal temperatures lie between 2.5 to 2.8. We
thus conclude that models trained on focal loss are not only more calibrated, but also better preserve
their confidence on predictions, even after being post-processed with temperature scaling.

Figure H.1: Qualitative results showing the performance of Cross Entropy, Brier loss, MMCE and
Focal Loss (sample-dependent γ 5,3) for a ResNet-50 trained on CIFAR-10. The first row of images
have been correctly classified by networks trained on all four loss functions and the second row of
images have all been incorrectly classified. For each image, we present the actual label, the predicted
label and the confidence of the prediction both before and after temperature scaling.
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In Figure H.1, we present some qualitative results to support this claim and show the improvement in
the confidence estimates of focal loss in comparison to other baselines (i.e., cross entropy, MMCE and
Brier loss). For this, we take ResNet-50 networks trained on CIFAR-10 using the four loss functions
(cross entropy, MMCE, Brier loss and Focal loss with sample-dependent γ 5,3) and measure the
confidence of their predictions for four correctly and four incorrectly classified test samples. We
report these confidences both before and after temperature scaling. It is clear from Figure H.1 that for
all the correctly classified samples, the model trained using focal loss has very confident predictions
both pre and post temperature scaling. However, on misclassified samples, we observe a very low
confidence for the focal loss model. The ResNet-50 network trained using cross entropy is very
confident even on the misclassified samples, particularly before temperature scaling. Apart from
focal loss, the only model which has relatively low confidences on misclassified test samples is the
one trained using Brier loss. These observations support our claim that focal loss produces not only a
calibrated model but also one which is confident on its correct predictions.

I Ordering of Feature Norms

As an extension to the discussion related to Figure 2(e) in the main paper, we plot the L2 norm of
the features/activations obtained from the last ResNet block (right before the linear layer is applied
on these features to get the logits). We plot these norms throughout the training period for networks
trained on cross-entropy and focal loss with γ set to 1, 2 and 3 in Figure I.1. We observe that there
is a distinct ordering of feature norms for the four models: cross-entropy has the highest feature
norm, followed by focal loss with γ = 1, followed by focal loss with γ = 2 and finally focal loss
with γ = 3. Furthermore, this ordering is preserved throughout training. As we saw from Figure 2(e)
in the main paper, from epoch 150 onwards (i.e., the epoch from which the networks start getting
miscalibrated), there is a flip in the ordering of weight norms of the last linear layer. From epoch 150
onwards, the weight norms also follow the exact same ordering that we observe from Figure I.1 here.
This shows that throughout training the initial layer weights (before last linear layer) of the network
trained using focal loss are also regularized to favor lower norm of the output features, thus possibly
leading to less peakiness in final prediction as compared to that of cross-entropy loss (see the ‘Peak
at the wrong place’ paragraph of Section 3 of the main paper).

J Early stopping

From Figure 2(a), one may think that intermediate models (using early stopping) might provide better
accuracy and calibration. However, there is no ideal approach for early stopping. For fair comparison,
we train ResNet50, CIFAR-10 using cross-entrpy and focal loss with the best (in hindsight) possible
early stopping. We train each model for 350 epochs and choose the 3 intermediate models with the
best val set ECE, NLL and classification error, respectively. We present the test set performance in
Table J.1.
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Figure I.1: L2 norm of features obtained from the last ResNet block (before the linear layer) of
ResNet-50 averaged over entire training dataset of CIFAR-10 using a batch size of 128.
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Criterion Loss Epoch Error ECE %

ECE CE 151 7.34 1.69
ECE FLSD-53 257 5.52 0.85
NLL CE 153 6.69 2.28
NLL FLSD-53 266 5.34 1.33
Error CE 344 5.0 4.46
Error FLSD-53 343 4.99 1.43

Full CE 350 4.95 4.35
Full FLSD-53 350 4.98 1.55

Table J.1: Classification errors and ECE scores obtained from ResNet-50 models trained using
cross-entropy and focal loss with different early stopping criteria (best in hindsight ECE, NLL and
classification error on the validation set) applied during training. In the table CE and FL stand for
cross-entropy and focal loss respectively and the Full Criterion indicates models where early stopping
has not been applied.
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Figure K.1: Changes in test set BLEU score and validation set ECE with temperature, for models
trained using (a) cross-entropy with hard targets (CE) (b) cross-entropy with label smoothing (LS)
(α = 0.1), and (c) focal loss (FL) (γ = 1).

From the table, we can observe that: 1) On every early stopping criterion, the model trained on
focal loss outperforms the one trained on cross-entropy in both error and ECE, 2) ECE as a stopping
criterion provides better test set ECE, but increases the test error significantly, 3) even without early
stopping, focal loss achieves consistently better error and ECE compared to cross-entropy using any
stopping criterion.

K Machine Translation: A Downstream Task

In this section, we explore machine translation with beam search as a relevant downstream task for
calibration. Following the setup in [20], we train the Transformer architecture [37] on the WMT 2014
English-to-German translation dataset. The training settings (like optimiser, LR schedule, etc.) are the
same as [37]. We chose machine translation as a relevant task because the softmax vectors produced
by the transformer model are directly fed into the beam search algorithm, and hence softmax outputs
from a calibrated model should intuitively produce better translations and a better BLEU score.

We train three transformer models, one on cross-entropy with hard target labels, the second on
cross-entropy with label smoothing (with smoothing factor α = 0.1) and the third on focal loss with
γ = 1. In order to compare these models in terms of calibration, we report the test set ECE (%) both
before and after temperature scaling in the first row of Table K.1. Furthermore, to evaluate their
performance on the English-to-German translation task, we also report the test set BLEU score of
these models in the second row of Table K.1. Finally, to study the variation of test set BLEU score
and validation set ECE with temperature, we plot them against temperature for all three models in
Figure K.1.

We observe from Table K.1 that the model trained on focal loss outperforms its competitors on
ECE and also has a competitive edge over other methods on BLEU score as well. The focal loss

Metrics CE (α = 0.0) LS (α = 0.1) FL (γ = 1.0)

ECE% Pre T / Post T / T 10.16/2.59/1.2 3.25/3.25/1.0 1.69/1.69/1.0
BLEU Pre T / Post T 26.31/26.21 26.33/26.33 26.39/26.39

Table K.1: Test set ECE and BLEU score both pre and post temperature scaling for cross-entropy (CE)
with hard targets, cross-entropy with label smoothing (LS) (α = 0.1) and focal loss (FL) (γ = 1).
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model also has an optimal temperature of 1, just like the model trained on cross-entropy with label
smoothing. From Figure K.1, we can see that the models obtain the highest BLEU scores at around
the same temperatures at which they obtain low ECEs, thereby confirming our initial notion that
a more calibrated model provides better translations. However, since the optimal temperatures are
tuned on the validation set, they don’t often correspond to the best BLEU scores on the test set. On
the test set, the highest BLEU scores we observe are 26.33 for cross-entropy, 26.36 for cross-entropy
with label smoothing, and 26.39 for focal loss. Thus, the performance of focal loss on machine
translation (a downstream task related to calibration) is also very encouraging.
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