Supplementary Material

A Efficient Updating Rules for Subproblem

In this section, we provide the details on how to efficiently solve the subproblem (6). We can further
rewrite (6) into the following equivalent form

0! = argmin o (', 0) + D(6, 601,
0eA(L(t),C)

where we let ! ~1 ;= V fi=1 ¢ 2521 Qi(t— 1)gf_1. According to Rosenberg and Mansour [2019a],
solving the above problem is decomposed to the following two steps

6! = argmin o' (', 0) + D(6, 6171, (16)
9

6" = argmin D(6,0"). (17
feA(£(1),¢)

Note that the first step, i.e., (16), is an unconstrained problem, which has a closed-form solution

0'(s,a,5') = Qt_l(s,a,sl)e_wtfl/o‘, V(s,a,s") € Sp x A X Sky1, Vk=0,...,L—1. (18)

The second step, i.e., (17), can be viewed as a projection of 6 (s, a, s') onto the feasible set A(£(t), ¢).
With the definition of the feasible set as in (8), further by Theorem 4.2 of Rosenberg and Mansour
[2019a] and Lemma 7 of Jin et al. [2019], and plugging in o computed as (18), we have

Qtl;l (s, a, s’) eB#tﬁt(
2, (it )

where k(s) is a mapping for state s to its associated layer index, and ZF (1, 3) and B}' *# are defined
as follows

0t(s,a,s') = 5,0,8") (19)

B#’ﬁ(& a, 8/) = u (s,a, SI) - N+(Sv a, SI) + (/1'+(5a a, 3/) +u” (s, a, 3/))"3?(,5)(3’ a)+ B(SI)
—B(s) =" (s,a,8") /o — Z ﬁg(t)(s”|s,a)(,u_(s, a,s") — ut(s,a,s")),

Sllesk(.€)+1

Zf(,u,,ﬂ) = Z Z Z bﬁfl(s,a’S/)er’ﬁ(S,a,s')’

s€S, a€As'€Sk41

where : S — Rand pp = (', ) with ut, ™ = S x A x § — R>(. Specifically, the variables
ut, Bt in (19) are obtained by solving a convex optimization with only non-negativity constraints,
which is

L—1

3 = argmin' > log ZE(s ). 20
w,320 k=0

Therefore, by solving (20), we can eventually compute 6% by (19). Since (20) is associated with a
convex optimization with only non-negativity constraints, it can be solved much efficiently.

B Structure of Optimization Problem Sequence

We have the following simple sufficient condition which is a direct corollary of Lemma 1 in Nedi¢
and Ozdaglar [2009]:

Lemma B.1. Suppose that the problem (9) is feasible. Then, the set of Lagrange multipliers Vy
defined in Assumption 4.1 is nonempty and bounded if the Slater condition holds, i.e., 30 € A, € > 0
such that (g;,0) < c¢; —e, Vi e {1,..., I}
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In fact, it can be shown that some certain constraint qualification condition more general than Slater
condition can imply the boundedness of Lagrange multipliers (see, for example, Lemma 18 of
Wei et al. [2019]). According to Wei et al. [2019], Assumption 4.1 is weaker than Slater condition
commonly adopted in previous constrained online learning works. The motivation for such a Lagrange
multiplier condition is that it is a sufficient condition of a key structural property on the dual function
) (1), namely, the error bound condition. Formally, we have the following definition.
Definition B.2 (Error Bound Condition (EBC)). Ler h(x) be a concave function over x € X, where
X is closed and convex. Suppose N* := argmax, ¢  h(x) is non-empty. The function h(x) satisfies
the EBC if there exists constants ¥, o > 0 such that for any x € X satisfying” dist(x, A*) > 9,

h(x*) — h(x) > o - dist(x, A*) withx* € A*.
Note that in Definition B.2, A* is a closed convex set, which follows from the fact that h(x) is a
concave function and thus all superlevel sets are closed and convex. The following lemma, whose

proof can be found in Lemma 5 of Wei et al. [2019], shows the relation between the Lagrange
multiplier condition and the dual function.

Lemma B.3. Fix T > 1. Suppose Assumption 4.1 holds, then for any t € {0,...,T — 1} and
7 = /T, the dual function q*7) (n) satisfies the EBC with o > 0 and 9 > 0.

This lemma is equivalent to Lemma 4.2 in the main text.

C Proofs of Lemmas in Section 5.1

C.1 Proof of Lemma 5.1

We first provide Lemmas C.1 and C.2 below. Then, we give the proof of Lemma 5.1 based on these
lemmas.

Lemma C.1 (Lemma 19 in Jaksch et al. [2010]). For any sequence of numbers x1, . .. ,x, with
0 <z < Xp_1:=max {1, Zi:ll xl} with 1 < k < n, the following inequality holds

ST < (Va1

=1 VXK1

)

Lemma C.2. Let c/l\t(s) and dy(s) be the state stationary distributions for 0" and 7' respectively,

and ]Sg(t)(s’|a, s) and P(s'|a, s) be the corresponding transition distributions. Denote m(al|s)

as the policy at episode t. There are 0(s,a,s’) = 0?,5(s)7r,g(a|s)134(t)(s’|a7 s) and ét(& a,s) =

di(s)m¢(als)P(s'|a, s). On the other hand, there are also dy(s') = Y oses, doaen 0 (s,a,8"),Vs' €

Sy, and di(s") = cs, Yoaea0'(s,0,8),Vs" € Sp11. Then, we have the following inequality
L-1 k

10" =1 < 3D 3 D wels, )Py (s, a) = PCIs. ).

k=0 j=0 s€S; ac A

where we let (s, a) = di(s)m(als).

Proof of Lemma C.2. By the definitions of c?t, dy, ﬁg(t) , P, and 7; shown in Lemma C.2, we have

L—1
108 =81 =3 > > 116 a5 ) =8 (a5, )l

k=0 s€Sk a€A
L
k

S ST ST wulals)l By (Clas ) (5) — PClay 9)d(3)]a

=0 s€Sk aceA

L—1
> wlals) | Pyey (la, s)di(s) — P(|a, 5)di(s)

k=0 s€S), acA
+ P(la, s)di(s) — P(la, s)ds(s)]|1-

*We let dist(x, A*) := mineep= 2[|x — x'||3 as the Euclidean distance between a point x and the set A*.
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Thus, with the above equalities, and by triangle inequality for || - |1, we can bound the term ||6* — 7 II1
in the following way

6" —8'|s < Z S mlals) || Pay (-la, 5)di(s) — P(|a, s)dy(s) |1

k=0 s€S) ac A
+|P(la, 5)di(s) — P(-|a, s)di(s)||1]

Z Y > mlals ()l Pecey (las s) = P(Ja, )14

k=0 s€S) ac A

L—1
£33 S mlals)[PClass) o - dils) — das)]-

k=0 s€Si a€A

1)

Then we need to bound the last two terms of (21) respectively. For the first term of RHS in (21), we
have

h
L

m¢(als)dy (5)[| Pege) (|a, s) = P(|a, )|

0 seS ielA (22)

L
= >3 mls,a)l[ Py (la, s) = P(|a, )]|1,
k=0 s€S8) ac A

>
Il

since (s, a) = m(a|s)di(s) denotes the joint distribution probability of (s, a).
Next, we bound the last term of RHS in (21), which is

Z > mlals)|[P(la, )]s - |d4(s) Z > mal s)|di(s) — di(s)],

k=0 s€Si ac A k=0 s€Si ac A

since || P(-|a, s)[l1 = Yy es,,, L(s'a, s) = 1. Furthermore, we can bound the last term above as

Z 7i(als)|di(s) — di(s)]
=0 s€Sk acA
L—-1 N
= |di(s) — di(s)]
k=0 seS
L—-1 N
=Y > ldi(s) = du(s)|
k=1 seSy
L—-1
= Z l Zﬁt s’ a,s) Z Z
k=1s€S, s"€Skp_1acA s""€Sp_1acA

where the first equality is due to ) . , m¢(als) = 1, the second equality is due to c/l\t(so) =
d¢(s0) = 1, and the third inequality is by the relations d;(s) = >_ s, | Doqea 0'(5”,a,5) and
di(8) = D gres, | 2oaca gt(s”, a',s), Vs € Si. Further bounding the last term of the above
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equation gives

ZZGSCLS ZZ@

L—-1
k=1 s€Sk

s"ESK_1 acA §"ESK_1 aEA
L—1
ZZ Z Zet —9(3 L, 8)
k=1 scS; s”/€Sr_1acA
L—1
=3 > Y leE"a) 8" e,
k=1s"€Sp_1acA
L—

Z Z H9t s, a, (s,a,-)

k=0 s€S), acA

which eventually implies that the last term on RHS of (21) can be bounded as

Z > > mlals)[PClas )l - 1di(s) - da(s)] < Z S S0 (sia,) — 8 (5,00,

k=0 s€S; ac A k=0 s€S ac A
(23)
Therefore, plugging the bounds (22) and (23) in (21), we have
0 =] = Z PIDI ACEDEACESI N
=0 s€S, ac A
< Z >0 (s @)|| Py (la, ) = P(la,s)|),
k=0 s€S; ac A
L—2 »
D IDID I ACTDELACT]
k=0 s€Sk ac A
Recursively applying the above inequality, we obtain
» L—1 k R
=0 <> 3> ut(s,a)HPZ(t)(.|s,a) — P(.|3,a)H1,
k=0 j=0 s€S; ac A
which completes the proof. O

Now, we are in position to give the proof of Lemma 5.1.

Proof of Lemma 5.1. The proof for Lemma 5.1 adopts similar ideas in Neu et al. [2012], Rosenberg
and Mansour [2019a].

We already know Pg(t)( §'|s,a) = % and pu(s,a) = X es, ., 0°(s,a,8), Vs €

Sk,a€ A, s' € Spy1, VE € {0, .. — 1}. By Lemma C.2, one can show that

L-1 k

lot 7'l < Z IIPIPD e(s,0)|| Py (13, @) = P(Js, a)||,

j=0s€S; acA

-1 k
Z >3 [(uls,a) = sl = 5, af = a})|| Py (-]s, @) = P([s, )|,

k=0 j=0s€S; ac A
+1{s" =s, d} —a}HPe (1s,a) = P(|s, a)|,],

where we denote I{ st =5 aj = a}) the indicator random variable that equals 1 with probability
wi(s,a),Vs € Sj,a € A and 0 otherwise. Denote £ (s,a) = ||]3¢(t)(~|s,a) — P(|s,a)||1 for
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abbreviation. We can see that £¥(s, a) < ||13z(t)('|87 a)|l1 + | P(-|s, a)|l1 = 2. Summing both sides
of the above inequality over 7" time slots, we obtain

T-1L-1 k

S - < ST S S (s a) — st = 5, af = a})€ (s, )

t=0 k=0 j=0s€S; acA

T—-1L-1 k
3NN s =5, af = a}¢'(s,a).
t=0 k

=0 j=0 SGSJ‘ acA

(24)

Next, we bound the first term on RHS of (24). Let F~! be the system history up to (¢ — 1)-th
episode. Then, by the definition of I(-, -), we have

E{ > 3 (uls,a) ~ sy = s, a! = a})e(s,a) | 771} =0,
s€Sj acA

since £* is only associated with system randomness history up to ¢ — 1 episodes. Thus, the term
D oses; 2oacali(s,a) — sy = s, aj = a})€*(s, a) is a martingale difference sequence with

respect to F*~!. Furthermore, by {*(s,a) < 2and 35 s 3=, 4 I{s} = s, a = a}) = 1, there
would be

Z Z(ﬂt(sva) - ]I{S§ =35 a;’ = a})gt(sv a)

s€Sj acA

ZZH{S =s, a; = a}

s€S;j ac A

£ (s,a) + ,a) < 4.

> S misofe

s€S; ac A

Thus, by Azuma’s inequality, we obtain that with probability at least 1 — ¢/ L,

T—1
S5 S (wilsia) — I{s! = s, a = a})€'(s.a) < 4 /2T log =.
t=0 se€S; acA C

According to union bound, we further have that with probability at least 1 — (, the above inequality
holds for all j = 0, ..., L — 1. This implies that with probability at least 1 — (, the following inequality
holds

T-1L-1 k
Z Z Z Z Z(Mt(s,a) — ]I{sg = s, a;’» =a})¢'(s,a) < 2L2“2Tlog§. (25)

t=0 k=0 j=0s€S; acA

On the other hand, we adopt the same argument as the first part of the proof of Lemma 5 in Neu et al.

[2012] to show the upper bound of Z Zj 0 des Yaca{sh = s, af = a}&'(s,a)
in (24). Recall that £(t) denotes the epoch that the t-th episode belongs to. By the definition of the
state-action pair counter Ny(s, a) and ny(s, a), we have

ot)-1
Nf(t)(sva') = ng(s,a)
q=0
According to Lemma C.1, we have
W ny(s,a)
> a < (V2 +1)y/Nogy (5, a). (26)

o=y max{1l, \/Ng(s,a)}

Since we can rewrite
T-1L-1 k

Y DD D Ush=s df =a)é(s,a)

t=0 k=0 j=0s€S; acA

L-1 k
= ZHPZt) |8]7 j) (|S]? _])”17

t=0 k=0 j=0
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then by Lemma 3.1, the following holds with probability at least 1 — ¢,

1 k
ST N Ish =, af = a}e'(s,a)

0 j=0s€S;acA
L—-1 k T-1

2[S;j11|1og(T|S||Al/¢)
Z max{1, Ny (sh, at)}

T—-1L—
k=

1
t=0

M

7=0 t=

k T)
2|Sj41/log(T|S|Al/¢)

jzo;s%gn(’(s’a)\/ max{L, N,(s,a)}

k
Z Z Z(\/é+ 1)\/2N€(T) (s,0)|Sj+1]log T|S<||A|7

k=0 j=0 s€S; ac A

hw
»ao

(]

T
- o

IA

where the first inequality is due to Lemma 3.1, the second inequality is by the definition of the global
counter NN, g(t)( s j) and the last inequailty is by (26). Thus, further bounding the last term of the
above inequality yields

L-1 k

BDID DD NILERY W oy log DA

k=0 j=0 s€S; ac A

L-1 k

T|S||A
3 ICISINED 3 SN PIEE
k=0 j=0 sE€S;j a€A
L—-1 k

IA

T|S||.A
Zf+1\/2T|Sj||Sm|A|1og 54

k=0 j=0 C

<(V2+ 1)LS|\/2T|A| log T"?A',

where the first inequality is due to Jensen’s inequality, the second inequality is by the definition of
Ni(r)(s,a) suchthat }° oo > ,c 4 Necr)(s,a) < T, and the last inequality is by bounding the term

oo Yo VISHIS ] < Skso 5o (18;] + 1Sj411) /2 < LIS]. The above results imply that
with probability at least 1 — ¢, the following holds

T-1L-1 k

Do D Usi =5, af =a)é'(s,a) < (V2+ 1)L|8|\/2TAI log T"SC'A. @7

t=0 k=0 j=0s€S; acA

By union bound, combining (24), (25) and (27), we obtain with probability at least 1 — 2,

T-1
> et - 0 < (V2+ 1)L|S|\/2T|A log TSC”A +2L% [2T log %
t=0

This completes the proof. O

C.2 Proof of Lemma 5.2

We provide Lemmas C.3, C.4, and C.5 first. Then, we give the proof of Lemma 5.2 based on these
lemmas.

Lemma C.3 (Lemma 14 in Wei et al. [2019]). Let M and M?° denote the probability simplex and
the set of the probability simplex excluding the boundary respectively. Assuming y € M?, and letting
C C M, then the following inequality holds

h(x°P") + aD(x°"'y) < h(z) + aD(z,y) — aD(z,x°""), Vz € C,

where x°P! € arg mingec h(x)+aD(x,y), h(-) is a convex function, and D, ) is the unnormalized
KL divergence in this paper.
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Lemma C4. Forany 6 and 0’ satisfying 3 cs, > aen d_ses,,, 0(s,a,5") =1, and 0(s,a,s") =

0.k € {0,....L =1} and 3" 5 3 0cat(5,0,8") = D cadgres,,, (s a.8"),Vs" €

Sky1,Vk € {0,..., L — 2}, we let 0}, := [0(s,a,5")|ses,,acA,s'cs,, denote the vector formed
by the elements 0(s,a,s’) for all s, € Sp,ar € A,skr1 € Sk+1. We also let 0, =
[0'(s,a,5")]ses,,acA,s €Sy, Similarly denote a vector formed by ¢’ (s, a, s'). Then, we have

L 1

DO.6) > 5 S 6k~ 6il1F > 5716 - 017
k 0

where D(-,-) denotes the un-normalized Bregman divergence.

Proof of Lemma C.4. We prove the lemma by the following inequality

ZZZ Z 0(s,a,s") (( ai/)) 0(s,a,s") +0'(s,a,s")

SESKL a€ A SESK 11

= ZZZ@SCLS (ai))

k=0 s€S; ac A é65k+1

h?r

L-1 L—-1

1 1 ?
> = O — 04|17 > — Or — 0, 6—0
> 5 2 0oLl 2 g (S 10—k ) = 51—

where the inequality is due to the Pinsker’s inequality since 6, and ¢j, are two probability distributions
such that ||0x||; = 1 and ||6},||; = 1. This completes the proof. O

Lemma C.5. Forany 6 and ¢’ satisfying 3 cs, > aen doses,,, 0(s,a,5") =1, and 9(5 a,s’) >
0,Vk € {0,...,L =1} and } s, > qent(s,a,5") = Y cad gres, ,0(sa,5"),Vs" €
Sk+1,Vk € {0,...,L — 2}, letting 0'(s,a,s') = (1 — A\ (s,a,s') + WM,V(S,G s') e
S X AX Spa1,Vk=1,..., L —1with0 < X\ < 1, then we have

D(0,6") — D(6,6") < ALlog |S|?| Al
= ISPPIA]
D0, 7) < Llog (255,

Proof of Lemma C.5. We start our proof as follows

0’ 0(s,a,s') (s, a,s")
D(979/)_ Hsas log%_log%
I;J sgs:k aze;\ gg,;ﬂ ( 0'(s,a,s’) 0'(s, a, s’))
+0(s,0,5) = 0'(s,0,5)

i Z Z Z (s,a,s")(log® (s, a,s) flogg'(s,a,s'))
>

0 s€ESK a€A s€ESk 41

Z Z Z o( s,a,s')<log0’(s,a,s’)

0 s€SK a€A s€ESk 41

—log[(1 = M) (s,a,5") + /\/|A||5k|\3k+1|]),
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where the last equality is by substituting &' (s, a, s') = (1—\)0'(s, a, s') + m, V(s,a,s’) €
S X A X Sgy1,Vk =1,..., L — 1. Thus, by bounding the last term above, we further have

L-1
D(,6) — D(9,0') < Z Z Z Z 9(s7a,s')(log9’(s,a,s')

k=0 s€Sj a€A s€S; 41

/ ! 1
(1 —=X)log#'(s,a,s") — Alog |8k|8k+1|¢4|)
L—-1
=333 > M(s.a.8)(logt'(s,a,5') + log(|Sk||Sk+11]A]))
k=0 s€Si a€A s€Sk 41
L—-1
< Z ST ST Ms,a,8) 10g(ISklISkelIA]) < ALlog [S[?| Al
k=0 s€S, a€A sESk 41

where the first inequality is by Jensen’s inequality and the second inequality is due to log 6’ (s, a, s')
0 since 0 < 6(s,a,s’) < 1, and the last inequality is due to Holder’s inequality that (x,y)
I [y o and [Sk1Sk:a] < [SP.

Moreover, we have

INIA

/

D(0,6) = Z Z Z Z (s, a,s") log g,(( )) 0(s,a,s")+0'(s,a,s")

0 s€S, a€A s€ESk 41

_ZZZ Z 0(s,a,s") logﬁ(sas) 1og§’(s,a,s'))

=0 s€S a€A sESk 41

h

Z Z 0(s,a,s")(logf(s,a,s") —log[(1 = N0 (s,a,s") + N/ (|Sk||Sk+1]|-A])])

k aEA SESK 41

- Z Z Z Z 9(8,@, S/)(IOg[(l - )‘)el(s’avsl) + )‘/(|Sk”8k+1||“4|)])

k=0 s€Sy a€A SESK41

L—-1
A S[2|A
— 0(s,a,s’) - log ——=——— < Llo ,
22 2, 2 s loggraty DY

k=0 s€Si a€A s€Sk11

x-

IN

where the first inequality is due to log 0(s, a, s") < 0, the second inequality is due to the monotonicity
of logarithm function, and the third inequality is by as well as |Sk||Sk+1| < |S|?. This completes the
proof. O

Now we are ready to provide the proof of Lemma 5.2.

Proof of Lemma 5.2. First of all, by Lemma 3.1, we know that
1P(-|s,a) = Pel:|s,a)l1 < &5 (s, a),

with probability at least 1 — ¢, for all epochs ¢ and any state and action pair (s,a) € S x A. Thus,
we have that for any epoch ¢ < ¢(T),

A CA(L,Q)
holds with probability at least 1 — (.

This can be easily proved in the following way: If any § € A, then for all k = {0,...,T — 1},
sc€S,anda € A,

0(s,a,-)
ZS/GS;C+1 0(83 a, S/)

= P(|s,a).
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Then, we obtain with probability at least 1 — (,

= (g )
‘ZS S, (s) a,5) _P(‘|Saa)Hl + HP(-ls,a) —13@(.|.9,a)H1

<0+ ez(s,a) < sﬁ(s,a).
where the last inequality is by Lemma 3.1. Therefore, we know that § € A(, (), which proves the

above claim.

Therefore, we define the event as follows

Event Dy : A C OZ 1 AL, Q), (28)
by which we have

Pr(Dr)>1-C.

Thus, for any @ that is a solution to problem (1), we have 8 € A. If event Dy happens, then § €
ﬁﬁ(Tl)A(@ ¢). Now we have that the updating rule of 6 follows §* = arg mingea (¢(4),¢) <Vf’5’1 +
Zl LQi(t—1)gi1,0) +aD(, 6'=1) as shown in (6), and also 6 € DZ(T)A(E, (), V¢ holds with
probability at least 1 — (. Accordlng to Lemma C.3, letting x°?' = ¢!,z = 6,y = 6!~ and

hO) = (VA Q (t 1)gi~",0), we have that with probability at least 1 — ¢, the following
holds for all epochs ¢t =1, .

I
(VI +>Qult = 1)gl 7%, 0") +aD(e',0")
i=1 (29)
< (v ﬂ1+§:@t—1 L8 ) +aD(@ 6"~ aD(@,0"),

i=1

which means once given the event D happens, the inequality (29) will hold.

On the other hand, according to the updating rule of Q(+) in (5), which is Q;(¢) = max{Q;(t — 1) +
(gi=1,6%) — ¢;, 0}, we know that

Qi(t)? < (max{Qi(t — 1) + ("1, 6") — i, 01)° < (Qut — 1) + (!, 6") — ci)?,

which further leads to

2

Q1) — Qilt — 1)? 2Qu(t — 1) ((g/71,0") — ) + (97,0 — 1)

Taking summation on both sides of the above inequality from ¢ = 1 to I, we have

5 (IO - at - 1)
I I I
<> (Qut- g =it -1 +%Z FLeD-e) g

I
(Qi(t—1)gi", 0"y = > Qilt — 1)e; + 212,

i=1

-

«
I
-
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where we let [ Q(#)[|2 = 321, Q2() and [|Q(t — 1)]|2 = S°1_, Q2(t — 1), and the last inequality
is due to
I

Z(<gt 1 91‘, <2Z gt 1 91‘ —I—Cﬂ

i=1

<2 Z[Hgf_l\\iol\ﬁt\ﬁ +¢f]
i=1
I
<2 [L2)lg 5 + €]

I I
<2[L2(ZH95_1H00 Z'cz ] < 4L?
i=1 =

by Assumption 2.3 and the facts that > s > c 4 Zs'eSkH 0'(s,a,s') = 1and (s, a,s') > 0.
Thus, summing up (29) and (30), and then subtracting (V f*=1, #!~1) from both sides, we have

VL =0 4 5 (HQ( )P = 1Q(t = 1)|*) +aD(8", 61
I
SV{TLO =07+ @it —D((gi 7 0) — ) +aD@ 0 —aD(@,0") + AL,

i=1
We further need to show the lower bound of the term V ( f*=1, 6" — 6'=1) + aD(#", 6'=1) on LHS
of the above inequality. Specifically, we have
V<ft71’0t _ 9t71> + aD(Gt’gtq)
_ V<ft—1,9t o 5t—1> + V<ft—17§t—l _ 9t—1> + aD(et’gt—l)

L-1
— t— — — — « t—
> VI oo 16" =0 = VIS oo 16771 = 0"l + 5 > 116 = 6711
L-1 N OéLfl .
> =V Y N0 = 0,7 = 2LV + o Dl — 6,71
k=0 k=0
L
> _Lv —2L\V,
2a

where the first inequality uses Holder’s inequality and Lemma C.4 that D(6,0") =
L L .

Zk:l D(Gka‘gfg) = %Zﬁzl 10 — e;c”% with 6, := [0(87a’5/)]5k65k»ak6A»Sk+1€Sk+l’ the sec-

ond inequality is due to 0} ' = (1 — \)oL ' + )\m, the second inequality is due to

10 =0l = i 105" =05 Il = Ak 108 — syl < A Skzo (166771, +
|| m H1) < 2)\L, and the third 1nequa11ty is by finding the minimal value of a quadratic
function —Vz + $a?.

Therefore, one can show that with probability at least 1 — ¢, the following inequality holds for all
epochs £ > 0,

1 ) o LV
5 (IQWIF = l1Q(t = DIIF) = 5~ —2LAV 31

I
SV{FTLE =0 ) it —1)((g) 1 0) — i) +aD(0,6"1) — aD(B,0") + AL7.
=1

Note that according to Lemma C.5, we have
D@ 60— D@ ,60) =D(@,6"") — D@ ,0")+ D@ ,6"") - D@, 6
< ALlog|S|?|A| +D(@",6"") — D(@",6").
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Therefore, plugging the above inequality into (31) and rearranging the terms, we further get

I
V{7 =T < 2 (1R - DI - IQWIP) + 30 Qute — D(lgt 7 - )

. s L
+aXLlog|SP Al +aD(@ ,0 ") —aD(6 ,60%) + 4L* + 2—2 +2L\V.

Thus, by taking summation on both sides of the above inequality from 1 to 7" and assuming Q(0) = 0,
we would obtain that with probability at least 1 — (, the following inequality holds

T
_ Ta)L 1 2
Z<ft_179t_1 > < 722621 t—l gt 1 0 > )+ a) C;§|S| |'A|
t=1 t=1 i=1 (32)
aD(@",6°) +4L*T LT
+ 14 T3 200

It is not difficult to compute that D(8", 0°) < Llog|S|?|.A| according to the initialization of 6° by
the uniform distribution. Then, by rearranging the terms, we rewrite (32) as

+ 2LAT.

T-1

S (s -7)

t=0
T I

1 4L2T + (AT + 1)aLl
< —ZZ (g5, 8 — e;) + + AT+ Dallog|SPA] +2L)\T
— Vv
This completes the proof. O

C.3 Proof of Lemma 5.3

In thie subsection, we first provide Lemmas C.6 below. Then, we give the proof of Lemma 5.3 based
on these lemmas.

Lemma C.6 (Lemma 5 of Yu et al. [2017]). Let {Z(t),t > 0} be a discrete time stochastic process
adapted to a filtration {F*,t > 0} with Z(0) = 0 and F° = {0, Q}. Suppose there exists an integer
7 > 0, real constants 0 > 0, ppax > 0 and 0 < k < pax such that

|Z(t+1) = Z(t)] < pmaxs

w20 (T )

hold for all t € {1,2,...}. Then for any constant 0 < § < 1, with probability at least 1 — ¢, we have
4p; 4p? 1
Z(t) S 1/) 47 Pmax 10g <1 + 8pmax "6/(4Pmax)> m log g’ Vt c {172’ }
K K

Now, we are in position to give the proof of Lemma 5.3.

Proof of Lemma 5.3. The proof of this Lemma is based on applying the lemma C.6 to our problem.
Thus, this proof mainly focuses on showing that the variable ||Q(t)||2 satisfies the condition of
Lemma C.6.

According to the updating rule of Q;(t), which is Q; (¢ + 1) = max{Q;(t) + (g¢,0"™!) — ¢;, 0}, we
have
1Q( + Dz — IQ®)I2| <IQ(t+ 1) — Q1) |2

I

= Z |Qi(t+1) — Qi)

I

> gk 60 — e,

=1

IN
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where the first inequality is due to triangle inequality, and the second inequality is by the fact that
| max{a +b,0} — a| < |b| if a > 0. Then, by Assumption 2.3, we further have

I
ZI gt 61+1) —cl2<Zl (gf,0"1) — Z g lso 1611 + lesl) < 2L,

which therefore implies

1Q(t + 1)l[2 — Q) |l2] < 2L.

Thus, with the above inequality, we have

1Q(E+7)l2 = IQ®)I2 < [1Q(E + 7)ll2 — Q) 2]

S IQE+ )2 — [1Q(E+7 =12 (33)
<9l
such that
E[Q( +7)ll2 — |Q(#)[2|F] < 27L. (34)

Note that (33) in fact indicates that the random process ||Q(t + 7)|2 — ||Q(¢)]|2 is bounded by the
value 27L.

Next, we need to show that there exist ¢ and « such that E[||Q(t + 7) (|2 — [|Q(¢)||2| F!] < —7k if
[|Q(t)]|2 > %. Recall the definition of the event Dy in (28). Therefore, we have that with probability

at least 1 — ¢, the event D happens, such that for all ¢/ = ., T and any 0 € ﬂé(T)A( ¢,¢), the
following holds

Ve ) < S (1 - DI - Q)3 +Zta—1 J(g! 10— i)

L
+ aALlog |S[|A| +aD(0,6" ~') — aD(6, 6" ) + 4L* + 2—‘/ +2L\V,
(67

L\D\»—l

which adopts similar proof techniques to (31). Then, the above inequality further leads to the
following inequality by rearranging the terms

I3 1 = 1)1 < —2v (s 16" —0) + 22@ t = 1)((gf ~10) — i)

L
+ 20 Llog [S?|A| + 2aD(6, 6" ~1) — 2aD(6, 6" ) + 8L? + LV anawv.
o

Taking summation from ¢ + 1 to 7 + ¢ on both sides of the above inequality, and by union bound, the
following inequality holds with probability 1 — ¢ for 7 = +/T and ¢ satisfying 0 < t +7 < T

IQ(r+ 63 — QM3

T4t T+t I
<-2v Y (fThe T -0y 12 Y Y Qi —1)((ef 1 0) — ¢) + 2aD(6, 6
tr=t+1 =11 i=1 (35)
" T+t —, , LV
—2aD(0,0"") + > 20[D(0,6" ") - D(0,6" )] + 87L* + —— HATLAV.
t'=t+1

Particularly, in (35), the term —2a.D (0, Otlfl) < 0 due to the non-negativity of Bregman divergence.
By Lemma C.5, we can bound

T4t
> 20[D(0,6" ") — D(9,6" ")) < 2arLlog |S||Al.
T=t+1
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For the term 2aD (0, gt), by Lemma C.5, we can bound it as
2a.D(6,6%) < 2aLlog(|S|?|A|/N).

Moreover, we can decompose the term 2V ZZ:;H (F=1,0— 0" 1) 42 thf:ﬁ“ Zle Ot
(9! ~1,8") — ;) in (35) as

T+t T+t I
2v 3 <ft’—1,9—9t’—1>+2 3 S Qi - )((el T 0) — )
t'=t+1 t'=t+1 i=1
T+t I T+t
—2v Y (fhe—e 423 Qi) Y (el o) - )
t—tt1 i=1 t'=t+1
T+t I ,
+2 ) Qi 1) = Qi) ((gf 1 0) — )
t'=t+2 i=1
T+t I T+t
<2v 3 (fL0) 23 Qi) Y (6 — @) +2Lrt + 2V LT,
t'=t+1 =1 t'=t+1

where the last inequality is due to

T+t T+t L—-1
-2V Z <ft,_1,9t/_1>§2V Z Z Z Z Z ft/_l(s,a,s')@t/_l(s,cus’)§2VL7'7
t'=t+1 t'=t+1 k=0 s€Si ac A 3’65k+1
as well as
T+t I
2 3" STQut —1) — Qi) ((gf 1, 8) — ;)
t'=t+2 i1=1
T+t I t'—-2
<2 )0 DD Heh e —al gl ) il
t=t+2 i=1 r=t
T+t t'—2 I T+t t'—2

5 S S r—are 5% 8 50—

t'=t+2 r=t t'=t+2 r=t i=1
< 2L7?,
by Q;(t + 1) = max{Q;(t) + {gt,0""!) — ¢;,0} and |max{a + b,0} — a| < |b] if a > O for the
first inequality, and Assumption 2.3 for the last inequality.

Therefore, taking conditional expectation on both sides of (35) and combining the above upper
bounds for certain terms in (35), we can obtain

E[|Q(r +1)|> — [Q(1)|1*|F*, Dr]
< 272L + 2aL log(|S2|A|/\)

1 T4+t 1 I T4+t ,

—|—2VTE[ ST e) + = (gt 71,0) — c;) ]-"t,DT} (36)
T T
t'=t+1 i=1 t'—t+1

LV
+ 2aAtLlog [S|?|A| + 87L* + —— + 47LAV + 2V Lr.

Thus, it remains to bound the term E[X Z,ZJrl(ft 1)+ 1 ZZ L2 (g Y1 gy —

¢;)|Ft, D] so as to give an upper bound of the right-hand side of (36). leen the event D happens
such that A C ﬂﬁ(:Tl)A(f, ¢) # 0, and since @ is any vector in the set ﬂﬁ(:Tl)A(é, (), we can give an
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upper bound of (36) by bounding a term ¢(*'7) (%) which is formulated as
| T Qi(t T4t )
min ]E{f <ft71 6) . ((gf =%, 0) —¢;) }
veny Ao T t’;l Z t'—zt;1

1
_ min f(t \T) 9 + Z Qz(t gz, Ci)
i=1

0en’™ A(,¢) Vv
I
t)
< ) Qi( ,
min (7, 0) +; 7 ((90,6) — i)
(t,7) Q()
4 ( % )

where the inequality is due to A C OI(T)A(f ,¢) given D happens and the last equality is obtained

according to the definition of the dual function ¢ in Section 4. We can bound ¢*:™) (%) in the
following way.

According to Assumption 4.1, we assume that one dual solution is 77;k - € Vi, Welet 9 be the

maximum of all ¥ and & be the minimum of all . Thus, when dlst( Qu Vi) > 1, we have

q(m)(w) :q(t,r)(%) @) + ()

\%4 \%4
* t T *
<~ ~ ||+ (e 0z,
ey - ,
<o) b+ T YT Y 60500 (50,9
k=0 s€Sy acA s’ €Sy 41
<_7 %H +oB+ I,
Vo ll2

where the first inequality is due to the weak error bound in Lemma 4.2 and weak duality with 0}
being one primal solution, the second inequality is by triangle inequality, and the third inequality is

by Assumption 2.3 and Assumption 4.1. On the other hand, when dist (=5~ ) Vis) < 4, we have

0 (HD) —min (07, 0) + _Z 9O (g,.) e

—mip (707 9>+Zn” (g, 0) =)+ 32 (B2 = 131 (19 0) = )

<q® i)+ |2 - (6) — cll2

<L+ 2V9L,

where the first inequality is by the definition of ¢(*'7) (nf ») and Cauchy-Schwarz inequality, and the
second inequality is due to weak duality and Assumption 2.3 such that

¢y ) < (P70 ) < DN N6 Ll < I

|57 -

Now we can combine the two cases as follows

_ | d 2 _ 1 _
)=l <7y 3 [(90.0) — & <TD(gillocllOl +lesl) < 20L.
i=1 =1

(H)(QXS ) HQ H +&B + 2L +20L +50. (37)

The bound in (37) is due to

25



(1) When d1st(%, Vi, ) > 1, we have
|22

—0

q(t,'r)( ét))

IN

|,+7B+L< —E||@H2+EB+2L+23L+E§.

(2) When dist(Q7 Vi) < U, we have
q(t’T)(y) < L+20L< —EH%M +7B+ 2L + 20L + 79,

since *EH%HQ +3)+0oB > —7 - dist(%,vt*ﬁ) +5J+06B — 0B = 7| —
dist(22, vy ) + 9] > 0.
Therefore, plugging (37) into (36), we can obtain that given the event D7 happens, the following
holds

E[lQ(r + 13 - 1Q@I3IF*, Dr]

; : , @
<27°L + 7Cya,x + 2aLlog(|S?|Al/A) — 277(1Q(t) ]2,

where we define
— — VL
Cvan i=2TB+T )V + (6 +40)VL + —= +4LAV + 20\ Llog |SI?|A| +8L?

We can see that if [|Q(¢)|l2 > (27L 4+ Cv,a,2)/T + 2aXLlog(|S|*|A|/N)/(GT) + 75/2, then
according to (38), there is

2.2
ElQ( +O)I*|7", Drl <[QW)° — &[0 — —
, 52,2
<lIQM|z = 7ol Q)ll2 + —
TO\ 2
<(lawl- 3"
Due to [|Q(t)||2 > ZZ and by Jensen’s inequality, we have
E[IQ(r +1)[217,Dr] < EIQE + 03I Drl < Q. - . 69)

Then we can compute the expectation E[||Q( +t) |3 — || Q(t)||3]|F!] according to the law of total
expectation. With (33) and (39), we can obtain that

E[|Q(7 + t)ll2 = 1Q(1)[|2|F"]
= P(Dr)E[|Q(7 + )|z — 1Q®) 2|7, Dr] + P(D)E[|Q(7 + t)ll2 — Q) [2|F*, Dr]

< —?(1 — Q) +2ATL = —T[f _g( +2L)} < _%

where we let /4 > ((G/2 + 2L).
Summarizing the above results, we know that if 7/4 > ((5/2 + 2L), then

QE + D2 — 1Q®)ll2| < 2L,

b (D QW) <
BllQ -+l - el < {77 A0Sy,

where we let

27L+ Cyayx  2aLlog(|SI?|Al/N) 10
— + — + —,
o oT 2

— — VL
Cviar=2(GB+G0)V + (6 +40)VL + — +ALAV + 2a\Llog |S|?|A| + 8L
«

P =
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Directly by Lemma C.6, for a certain t € {1, ..., T}, the following inequality holds with probability
at least 1 — 4,

51212 12812 _,,. 641> 1
Q)2 <¢p + 7—"1log (1 + eff/“%)) +7——log 5 (40)
ag g ag

Further employing union bound for probabilities, we have that with probability at least 1 — T'9, for
any t € {1,...,T}, the above inequality (40) holds.

We can understand the upper bound of the term log (1 + 1258721'265/ (32L)) in the following way: (1)
if 12;—526?/(321’) > 1, then this term is bounded by log (252721‘26?/(321’)) =57 + log 256L ; (2)if
125872['263/ (32L) 1, then the term is bounded by log 2. Thus, we have

1282 256>
b (1+ 8 /(32L)><10g2+32L+1g56

This discussion shows that the log term in (40) will not introduce extra dependency on L except a
log L term. This completes our proof. O

C.4 Proof of Lemma 5.5

Lemma C.7 (Lemma 9 of Yu et al. [2017]). Let {Z(t),t > 0} be a supermartingale adapted to
a filtration {F*,t > 0} with Z(0) = 0 and F° = {0,Q}, i.e, E[Z(t + 1)|F!] < Z(t), Vt > 0.
Suppose there exists a constant ¢ > 0 such that {|Z(t + 1) — Z(t)| > <} C {Y (t) > 0}, where Y (t)
is process with Y (t) adpated to F* for all t > 0. Then, for all z > 0, we have

t—1
Pr(Z(t) > z) < e /@ 13" Pr(Y(r) > 0),¥ > 1.
7=0

We are in position to give the proof of Lemma 5.5.

Proof of Lemma 5.5. Now we compute the upper bound of the term Zthl ZfilQi(t -

1)(<gf_1,9*> — ¢;). Note that Z(t) := Ztr=1 Zle Qi(T — 1)((9;_1,§*> — ¢;) is supermartigale
which can be verified by

E[Z()|F ) =E[ 3 Y Qi ~ (g1 — )

T=111=

I
S B~ DIFELF ) — )+ 30D @il — Dl ) )

]_-t—l}

[

Il
&~ .
Il
_
3
Il
—_
~
Il
—_

I
ZZ (T — D) ((g7 71,87 — ¢;) = E[Z(t — 1)),

where Q;(t—1) and g/~ are independent variables with Q;(t —1) > 0 and (E[g}~*|F*~1],0
On the other hand, we can know the random process has bounded drift as

IN

) < ¢

|Z( |_ZQ1 gz’ 701’)

<IIQ()ll24| D [{gt,07) — ¢l

=1
I

<1Q®)llz2 D (gl llf [l + lesl) < 2LIQE)]2,

i=1

where the first inequality is by Cauchy-Schwarz inequality, and the last inequality is by Assumption
2.3. This also implies that for an arbitrary ¢, we have {|Z(t + 1) — Z(t)| > <} C {Y(t) :=
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1Q(t)||2 —</(2L) > 0} since | Z(t+1) — Z(t)| > < implies 2L||Q(¢)]|2 > ¢ according to the above
inequality. Thus, by Lemma C.7, we have

T I
Pr(ZZQi(t ~ (g8 — ) > z> < /T | Z Pr(|Q( )2 > ) 1)

t=1 i=1 t=0
where we could see that boundign ||Q(¢)]|2 is the key to obtaining the bound of Zthl Zle Qi(t —
D({gi,0) = ca)-
Next, we will show the upper bound of the term |[|Q(t)||2. According to Lemma 5.3, if 7 /4 >
¢(G/2 + 2L), setting

27L+ Cyax  2aLlog(|SI?|Al/N) 70
— + — + =,
o oT 2

Cvian =2V (O’B + 3L +29L + 59 + 2£ + 2L +
«

S

aLlog |S|?|A| + 4L2)
V )

we have that with probability at least 1 — §, for a certain ¢ € {1,...,T}, the following inequality
holds

2 2 2
1Q(0) 12 < & + 7225 g1 4 285 ooy | BT 1
o g

)
This inequality is equivalent to

12L2 128L2% _ 412 1
b <|Q(t)”2 > 7 logll + 7] 4 -0 log 5) <0,
g o g

Setting ¢ = 2L + 7% log [1+ 125875265/(32”] + Tg log } and z = /2T'¢%log 7 in (41),
then the following probability hold with probability at least 1 — 27°§ with

I
ZQ’L gm - Ci)

i=1

M |

t

Il
=)

1024 L3 128L2 _ 12813 1 1
2Ly + 7 0 log 1+%e”/(32m +T$10g* Tlog —,
T o] o 6 T6

which completes the proof. O

D Proofs of Lemmas in Section 5.2

D.1 Proof of Lemma 5.6

Proof of Lemma 5.6. We start our proof with the updating rule of Q(-) as follows
Qi(t) =max{Qi(t — 1) + (g;*,6") — ¢;,0}
>Qi(t— 1)+ (g 0" — ¢
>Qi(t— 1) + (g™ L gt=1y Ci+<g§7179t — gty
Rearranging the terms in the above inequality futher leads to
(i 10"1) — e <Qi(t) = Qi(t —1) — (g1, 0" = 0" ).

Thus, taking summation on both sides of the above inequality from 0 to 7" — 1 leads to

T-1 T_1
(gt 0) = ) SQUT) = Y gt 0 — 01
t=0 =0

1

T—
T)+ > gt llooll6™ " — 611,
t=0
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where the second inequality is due to Holder’s inequality. Note that the right-hand side of the above
inequality is no less than 0 since Q; (t) = max{Q;(t — 1) + (gi~*,0") — ¢;,0} > 0. Thus, we have

_ -1
lz (9:,0") — i) ] < Qi(T)+ Y il =671
t=0 + t=0
Defining g’ (6") := [(g%,0%),- -+, (g%, 0")] " and ¢ := [c1,- -+ ,cr] ", we would obtain

[i(g%et) - cﬂ
X

T-1 | I
<Rz + D | D lgtlZ e = 6"l
t=0 \ i=1

T—-1 1

<IQD)lz + D D Mgt llocllO™ =6l

t=0 i=1

2

!

<lQ(r ||2+Z||9t 01,

where the third inequality is due to Assumption 2.3. This completes the proof. O

D.2 Proof of Lemma 5.7

Lemma D.1 (Proposition 18 of Jaksch et al. [2010]). The number of epochs up to episode T with
T > |S||A| is upper bounded by

UT) < |S]|Allog <S||A> VTIS[Allog (|8||A|)

where £(-) is a mapping from a certain episode to the epoch where it lives.

We are ready to give the proof of Lemma 5.7.

Proof of Lemma 5.7. We need to discuss the upper bound of the term ||#* — §*~1||; in two different
cases:

1) £(t) =£(t — 1), 1i.e., episodes ¢ and ¢ — 1 are in the same epoch;

(2) (t) > £(t — 1), 1i.e., episodes ¢ and ¢ — 1 are in two different epochs.

For the first case where £(t) = £(t — 1), according to Lemma C.3, letting x°* = ¢,y = 61,
z=0""and h(8) = (V=1 + 1 Qi(t — 1)g!™",6), we have

I
<Vft‘1 +3 Qi - 1)gffl,ef> +aD(@, g
i=1
I ~, ~, ~ ~
< <Vft—1 + ZQl(t _ l)gf—179t—l> + ozD(@t_l,Gt_l) _ OéD(et_l,Ht)

= (v D SR Y~ aD(@ 0.

1=1
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Rearranging the terms and dropping the last term (due to D (01, 6%) > 0) yield

D",0' ) <(V - 1+Zta—1 et 0" ) +aD(e' 0

(V15 e+ 30 @t~ Dl )T ]
=1

< VHIIQE =12 [

Z g~ 113

<(V+1Qe = Dl|2) 16" = '],

where the second inequality is by Holder’s inequality and triangle inequality, the third inequality is by
Assumption 2.3, and the last inequality is due to Assumption 2.3. Note that by Lemma C.4, there is

~ 1 ~
D t pt—1 > t__ pt—1 2.
0.5 > Lo 5

Thus, combining the previous two inequalities, we obtain

2LV + 2L||Q(t — 1) ~
” ( )H ||9t—9t 1”1.

ot — gt—l 2 <
H If < .

The, we obtain the upper bound of || — 691y as follows

2LV +2L||Q(t — 1)]|2

16" 6"y <
«

Since there is

t_ pt—1 t—1 1 _ t_ pt—1y. _
10" =0l = Zuek N = gt = =l =0

where 0y, := [0(s,a,s")]ses,,acA,s'€S,4,» W further have

2LV +2L[Q(t = Dl , M

t_pt=1y, <
167 =01 < (1= Mo -\

(42)

it is difficult to know whether the two solutions #?~1 and
)) # A(¢(t — 1)). Thus, the above derivation does not
|6t — 0= as follows

For the second case where £(¢) > £(t — 1),
6" are in the same feasible set since A(/(t
hold. Then, we give a bound for the term |

L—1 L—1
16" = 6"y <[]+ 16 = Y > 6(s,a8)+ D Y 0'(s,a,8) = 2L, (43)
k=0 s,a,s’ k=0 s,a,s’

However, we can observe that /(t) > £(t — 1) only happens when ¢ is a starting episode for a new
epoch, whose number in 7" episodes is bounded by the number of epochs in T" episodes. According

to Lemma D.1, the total number of epochs £(T') is bounded by ¢(T") < /T|S||A|log[8T/(|S||.A|)]
which only grows in the order of log 7.

Thus, we can decompose the term Z;T:l |6t — 6°=1||; in the following way

T
D P DI e P D A
t=1

t: t<T, t: t<T,
L(t)>£(t—1) L(t)=£(t—1)

<2LUT)+ Y 168 =0,

t: t<T,
o(t)=0(t—1)
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where the inequality is due to (43) and the fact that > 4. <7, 1 <{(T). By (42), we can further
f(t) £(t—1)
bound the last term in the above inequality as

R A

t: t<T,
o(H)=E(t-1)

d 2LV—|—2L||Q(t— D)2 . AL
Z { - Ma + 1-X

t=1

ZHQ s + 2”‘;* 7.

This will eventually lead to

T
dolet =6
t=1

<oum)+ 3 e — 0t
o(t)=£(t—1)
T—-1

2V +al
< 2L+\/T|S||A| ] 7LT,
VIISTATlog g + at:@ 190+ F 355
which completes the proof. O
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