
Supplementary Material

A Efficient Updating Rules for Subproblem

In this section, we provide the details on how to efficiently solve the subproblem (6). We can further
rewrite (6) into the following equivalent form

θt = argmin
θ∈∆(`(t),ζ)

α−1〈ψt−1, θ〉+D(θ, θ̃t−1),

where we let ψt−1 := V f t−1 +
∑I
i=1Qi(t−1)gt−1

i . According to Rosenberg and Mansour [2019a],
solving the above problem is decomposed to the following two steps

θt = argmin
θ

α−1〈ψt−1, θ〉+D(θ, θ̃t−1), (16)

θt = argmin
θ∈∆(`(t),ζ)

D(θ, θt). (17)

Note that the first step, i.e., (16), is an unconstrained problem, which has a closed-form solution

θt(s, a, s′) = θ̃t−1(s, a, s′)e−ψ
t−1/α, ∀(s, a, s′) ∈ Sk ×A× Sk+1, ∀k = 0, . . . , L− 1. (18)

The second step, i.e., (17), can be viewed as a projection of θt(s, a, s′) onto the feasible set ∆(`(t), ζ).
With the definition of the feasible set as in (8), further by Theorem 4.2 of Rosenberg and Mansour
[2019a] and Lemma 7 of Jin et al. [2019], and plugging in θt computed as (18), we have

θt(s, a, s′) =
θ̃t−1(s, a, s′)

Z
k(s)
t (µt, βt)

eB
µt,βt

t (s,a,s′), (19)

where k(s) is a mapping for state s to its associated layer index, and Zkt (µ, β) and Bµ,βt are defined
as follows

Bµ,βt (s, a, s′) = µ−(s, a, s′)− µ+(s, a, s′) + (µ+(s, a, s′) + µ−(s, a, s′))εζ`(t)(s, a) + β(s′)

− β(s)− ψt−1(s, a, s′)/α−
∑

s′′∈Sk(s)+1

P̂`(t)(s
′′|s, a)(µ−(s, a, s′′)− µ+(s, a, s′′)),

Zkt (µ, β) =
∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

θ̃t−1(s, a, s′)eB
µ,β
t (s,a,s′),

where β : S → R and µ = (µ+, µ−) with µ+, µ− : S ×A× S → R≥0. Specifically, the variables
µt, βt in (19) are obtained by solving a convex optimization with only non-negativity constraints,
which is

µt, βt = argmin
µ,β≥0

L−1∑
k=0

logZkt (µ, β). (20)

Therefore, by solving (20), we can eventually compute θt by (19). Since (20) is associated with a
convex optimization with only non-negativity constraints, it can be solved much efficiently.

B Structure of Optimization Problem Sequence

We have the following simple sufficient condition which is a direct corollary of Lemma 1 in Nedić
and Ozdaglar [2009]:

Lemma B.1. Suppose that the problem (9) is feasible. Then, the set of Lagrange multipliers V∗t,τ
defined in Assumption 4.1 is nonempty and bounded if the Slater condition holds, i.e., ∃θ ∈ ∆, ε > 0
such that 〈gi, θ〉 ≤ ci − ε, ∀i ∈ {1, . . . , I}.
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In fact, it can be shown that some certain constraint qualification condition more general than Slater
condition can imply the boundedness of Lagrange multipliers (see, for example, Lemma 18 of
Wei et al. [2019]). According to Wei et al. [2019], Assumption 4.1 is weaker than Slater condition
commonly adopted in previous constrained online learning works. The motivation for such a Lagrange
multiplier condition is that it is a sufficient condition of a key structural property on the dual function
q(t,τ)(η), namely, the error bound condition. Formally, we have the following definition.
Definition B.2 (Error Bound Condition (EBC)). Let h(x) be a concave function over x ∈ X , where
X is closed and convex. Suppose Λ∗ := argmaxx∈X h(x) is non-empty. The function h(x) satisfies
the EBC if there exists constants ϑ, σ > 0 such that for any x ∈ X satisfying2 dist(x,Λ∗) ≥ ϑ,

h(x∗)− h(x) ≥ σ · dist(x,Λ∗) with x∗ ∈ Λ∗.

Note that in Definition B.2, Λ∗ is a closed convex set, which follows from the fact that h(x) is a
concave function and thus all superlevel sets are closed and convex. The following lemma, whose
proof can be found in Lemma 5 of Wei et al. [2019], shows the relation between the Lagrange
multiplier condition and the dual function.
Lemma B.3. Fix T ≥ 1. Suppose Assumption 4.1 holds, then for any t ∈ {0, . . . , T − 1} and
τ =
√
T , the dual function q(t,τ)(η) satisfies the EBC with σ > 0 and ϑ > 0.

This lemma is equivalent to Lemma 4.2 in the main text.

C Proofs of Lemmas in Section 5.1

C.1 Proof of Lemma 5.1

We first provide Lemmas C.1 and C.2 below. Then, we give the proof of Lemma 5.1 based on these
lemmas.
Lemma C.1 (Lemma 19 in Jaksch et al. [2010]). For any sequence of numbers x1, . . . , xn with
0 ≤ xk ≤ Xk−1 := max

{
1,
∑k−1
i=1 xi

}
with 1 ≤ k ≤ n, the following inequality holds

n∑
k=1

xk√
Xk−1

≤ (
√

2 + 1)
√
Xn.

Lemma C.2. Let d̂t(s) and dt(s) be the state stationary distributions for θt and θ
t

respectively,
and P̂`(t)(s

′|a, s) and P (s′|a, s) be the corresponding transition distributions. Denote πt(a|s)
as the policy at episode t. There are θt(s, a, s′) = d̂t(s)πt(a|s)P̂`(t)(s′|a, s) and θ

t
(s, a, s) =

dt(s)πt(a|s)P (s′|a, s). On the other hand, there are also d̂t(s′) =
∑
s∈Sk

∑
a∈A θ

t(s, a, s′),∀s′ ∈
Sk+1, and dt(s′) =

∑
s∈Sk

∑
a∈A θ

t(s, a, s′),∀s′ ∈ Sk+1. Then, we have the following inequality

‖θt − θt‖1 ≤
L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

µt(s, a)‖P̂`(t)(·|s, a)− P (·|s, a)‖1,

where we let µt(s, a) = dt(s)πt(a|s).

Proof of Lemma C.2. By the definitions of d̂t, dt, P̂`(t), P , and πt shown in Lemma C.2, we have

‖θt − θt‖1 =

L−1∑
k=0

∑
s∈Sk

∑
a∈A
‖θt(a, s, ·)− θt(a, s, ·)‖1

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)‖P̂`(t)(·|a, s)d̂t(s)− P (·|a, s)dt(s)‖1

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)‖P̂`(t)(·|a, s)d̂t(s)− P (·|a, s)d̂t(s)

+ P (·|a, s)d̂t(s)− P (·|a, s)dt(s)‖1.
2We let dist(x,Λ∗) := minx′∈Λ∗

1
2
‖x− x′‖22 as the Euclidean distance between a point x and the set Λ∗.
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Thus, with the above equalities, and by triangle inequality for ‖ ·‖1, we can bound the term ‖θt−θt‖1
in the following way

‖θt − θt‖1 ≤
L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)[‖P̂`(t)(·|a, s)d̂t(s)− P (·|a, s)d̂t(s)‖1

+ ‖P (·|a, s)d̂t(s)− P (·|a, s)dt(s)‖1]

≤
L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)d̂t(s)‖P̂`(t)(·|a, s)− P (·|a, s)‖1

+

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)‖P (·|a, s)‖1 · |d̂t(s)− dt(s)|.

(21)

Then we need to bound the last two terms of (21) respectively. For the first term of RHS in (21), we
have

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)d̂t(s)‖P̂`(t)(·|a, s)− P (·|a, s)‖1

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

µt(s, a)‖P̂`(t)(·|a, s)− P (·|a, s)‖1,

(22)

since µt(s, a) = πt(a|s)dt(s) denotes the joint distribution probability of (s, a).

Next, we bound the last term of RHS in (21), which is

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)‖P (·|a, s)‖1 · |d̂t(s)− dt(s)| =
L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)|d̂t(s)− dt(s)|,

since ‖P (·|a, s)‖1 =
∑
s′∈Sk+1

P (s′|a, s) = 1. Furthermore, we can bound the last term above as

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)|d̂t(s)− dt(s)|

=

L−1∑
k=0

∑
s∈Sk

|d̂t(s)− dt(s)|

=

L−1∑
k=1

∑
s∈Sk

|d̂t(s)− dt(s)|

=

L−1∑
k=1

∑
s∈Sk

∣∣∣ ∑
s′′∈Sk−1

∑
a∈A

θt(s′′, a, s)−
∑

s′′∈Sk−1

∑
a∈A

θ
t
(s′′, a, s)

∣∣∣,
where the first equality is due to

∑
a∈A πt(a|s) = 1, the second equality is due to d̂t(s0) =

dt(s0) = 1, and the third inequality is by the relations d̂t(s) =
∑
s′′∈Sk−1

∑
a∈A θ

t(s′′, a, s) and

dt(s) =
∑
s′′∈Sk−1

∑
a∈A θ

t
(s′′, a′, s), ∀s ∈ Sk. Further bounding the last term of the above
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equation gives

L−1∑
k=1

∑
s∈Sk

∣∣∣∣ ∑
s′′∈Sk−1

∑
a∈A

θt(s′′, a, s)−
∑

s′′∈Sk−1

∑
a∈A

θ
t
(s′′, a, s)

∣∣∣∣
≤
L−1∑
k=1

∑
s∈Sk

∑
s′′∈Sk−1

∑
a∈A

∣∣∣∣θt(s′′, a, s)− θt(s′′, a, s)∣∣∣∣
=

L−1∑
k=1

∑
s′′∈Sk−1

∑
a∈A

∥∥θt(s′′, a, ·)− θt(s′′, a, ·)∥∥
1

=

L−2∑
k=0

∑
s∈Sk

∑
a∈A

∥∥θt(s, a, ·)− θt(s, a, ·)∥∥
1
,

which eventually implies that the last term on RHS of (21) can be bounded as

L−1∑
k=0

∑
s∈Sk

∑
a∈A

πt(a|s)‖P (·|a, s)‖1 · |d̂t(s)− dt(s)| ≤
L−2∑
k=0

∑
s∈Sk

∑
a∈A

∥∥θt(s, a, ·)− θt(s, a, ·)∥∥
1
.

(23)

Therefore, plugging the bounds (22) and (23) in (21), we have

‖θt − θ̄t‖1 =

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∥∥θt(a, s, ·)− θt(a, s, ·)∥∥
1

≤
L−1∑
k=0

∑
s∈Sk

∑
a∈A

µt(s, a)
∥∥P̂`(t)(·|a, s)− P (·|a, s)

∥∥
1

+

L−2∑
k=0

∑
s∈Sk

∑
a∈A

∥∥θt(s, a, ·)− θt(s, a, ·)∥∥
1
.

Recursively applying the above inequality, we obtain

‖θt − θt‖1 ≤
L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

µt(s, a)
∥∥∥P̂`(t)(·|s, a)− P (·|s, a)

∥∥∥
1
,

which completes the proof.

Now, we are in position to give the proof of Lemma 5.1.

Proof of Lemma 5.1. The proof for Lemma 5.1 adopts similar ideas in Neu et al. [2012], Rosenberg
and Mansour [2019a].

We already know P̂`(t)(s
′|s, a) = θt(s,a,s′)∑

s′∈Sk+1
θt(s,a,s′) and µt(s, a) =

∑
s′∈Sk+1

θt(s, a, s′), ∀s ∈
Sk, a ∈ A, s′ ∈ Sk+1, ∀k ∈ {0, . . . , L− 1}. By Lemma C.2, one can show that

‖θt − θt‖1 ≤
L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

µt(s, a)
∥∥P̂`(t)(·|s, a)− P (·|s, a)

∥∥
1

=

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

[
(µt(s, a)− I{stj = s, atj = a})

∥∥P̂`(t)(·|s, a)− P (·|s, a)
∥∥

1

+ I{stj = s, atj = a}
∥∥P̂`(t)(·|s, a)− P (·|s, a)

∥∥
1

]
,

where we denote I{stj = s, atj = a}) the indicator random variable that equals 1 with probability
µt(s, a),∀s ∈ Sj , a ∈ A and 0 otherwise. Denote ξt(s, a) = ‖P̂`(t)(·|s, a) − P (·|s, a)‖1 for
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abbreviation. We can see that ξt(s, a) ≤ ‖P̂`(t)(·|s, a)‖1 + ‖P (·|s, a)‖1 = 2. Summing both sides
of the above inequality over T time slots, we obtain

T−1∑
t=0

‖θt − θt‖1 ≤
T−1∑
t=0

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

(µt(s, a)− I{stj = s, atj = a})ξt(s, a)

+

T−1∑
t=0

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

[I{stj = s, atj = a}ξt(s, a).

(24)

Next, we bound the first term on RHS of (24). Let F t−1 be the system history up to (t − 1)-th
episode. Then, by the definition of I(·, ·), we have

E
{ ∑
s∈Sj

∑
a∈A

(µt(s, a)− I{stj = s, atj = a})ξt(s, a)
∣∣∣ F t−1

}
= 0,

since ξt is only associated with system randomness history up to t − 1 episodes. Thus, the term∑
s∈Sj

∑
a∈A(µt(s, a) − I{stj = s, atj = a})ξt(s, a) is a martingale difference sequence with

respect to F t−1. Furthermore, by ξt(s, a) ≤ 2 and
∑
s∈Sj

∑
a∈A I{stj = s, atj = a}) = 1, there

would be∣∣∣∣∣ ∑
s∈Sj

∑
a∈A

(µt(s, a)− I{stj = s, atj = a})ξt(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
s∈Sj

∑
a∈A

I{stj = s, atj = a}

∣∣∣∣∣ξt(s, a) +

∣∣∣∣∣ ∑
s∈Sj

∑
a∈A

µt(s, a)

∣∣∣∣∣ξt(s, a) ≤ 4.

Thus, by Azuma’s inequality, we obtain that with probability at least 1− ζ/L,
T−1∑
t=0

∑
s∈Sj

∑
a∈A

(µt(s, a)− I{stj = s, atj = a})ξt(s, a) ≤ 4

√
2T log

L

ζ
.

According to union bound, we further have that with probability at least 1− ζ, the above inequality
holds for all j = 0, ..., L−1. This implies that with probability at least 1−ζ , the following inequality
holds

T−1∑
t=0

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

(µt(s, a)− I{stj = s, atj = a})ξt(s, a) ≤ 2L2

√
2T log

L

ζ
. (25)

On the other hand, we adopt the same argument as the first part of the proof of Lemma 5 in Neu et al.
[2012] to show the upper bound of

∑T−1
t=0

∑L−1
k=0

∑k
j=0

∑
s∈Sj

∑
a∈A I{stj = s, atj = a}ξt(s, a)

in (24). Recall that `(t) denotes the epoch that the t-th episode belongs to. By the definition of the
state-action pair counter N`(s, a) and n`(s, a), we have

N`(t)(s, a) =

`(t)−1∑
q=0

nq(s, a).

According to Lemma C.1, we have
`(t)∑
q=1

nq(s, a)

max{1,
√
Nq(s, a)}

≤ (
√

2 + 1)
√
N`(t)(s, a). (26)

Since we can rewrite
T−1∑
t=0

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

I{stj = s, atj = a}ξt(s, a)

=

T−1∑
t=0

L−1∑
k=0

k∑
j=0

‖P̂`(t)(·|stj , atj)− P (·|stj , atj)‖1,
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then by Lemma 3.1, the following holds with probability at least 1− ζ,
T−1∑
t=0

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

I{stj = s, atj = a}ξt(s, a)

≤
L−1∑
k=0

k∑
j=0

T−1∑
t=0

√
2|Sj+1| log(T |S||A|/ζ)

max{1, N`(t)(stj , atj)}

≤
L−1∑
k=0

k∑
j=0

`(T )∑
q=1

∑
s∈Sj

∑
a∈A

nq(s, a)

√
2|Sj+1| log(T |S||A|/ζ)

max{1, Nq(s, a)}

≤
L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

(
√

2 + 1)

√
2N`(T )(s, a)|Sj+1| log

T |S||A|
ζ

,

where the first inequality is due to Lemma 3.1, the second inequality is by the definition of the global
counter N`(t)(stj , a

t
j), and the last inequailty is by (26). Thus, further bounding the last term of the

above inequality yields
L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

(
√

2 + 1)

√
2N`(T )(s, a)|Sj+1| log

T |S||A|
ζ

≤
L−1∑
k=0

k∑
j=0

(
√

2 + 1)

√√√√2
∑
s∈Sj

∑
a∈A

N`(T )(s, a)|Sj ||Sj+1||A| log
T |S||A|

ζ

≤
L−1∑
k=0

k∑
j=0

(
√

2 + 1)

√
2T |Sj ||Sj+1||A| log

T |S||A|
ζ

≤ (
√

2 + 1)L|S|

√
2T |A| log

T |S||A|
ζ

,

where the first inequality is due to Jensen’s inequality, the second inequality is by the definition of
N`(T )(s, a) such that

∑
s∈Sj

∑
a∈AN`(T )(s, a) ≤ T , and the last inequality is by bounding the term∑L−1

k=0

∑k
j=0

√
|Sj ||Sj+1| ≤

∑L−1
k=0

∑k
j=0(|Sj |+ |Sj+1|)/2 ≤ L|S|. The above results imply that

with probability at least 1− ζ, the following holds
T−1∑
t=0

L−1∑
k=0

k∑
j=0

∑
s∈Sj

∑
a∈A

I{stj = s, atj = a}ξt(s, a) ≤ (
√

2 + 1)L|S|

√
2T |A| log

T |S||A|
ζ

. (27)

By union bound, combining (24), (25) and (27), we obtain with probability at least 1− 2ζ,
T−1∑
t=0

‖θt − θt‖1 ≤ (
√

2 + 1)L|S|

√
2T |A| log

T |S||A|
ζ

+ 2L2

√
2T log

L

ζ
.

This completes the proof.

C.2 Proof of Lemma 5.2

We provide Lemmas C.3, C.4, and C.5 first. Then, we give the proof of Lemma 5.2 based on these
lemmas.
Lemma C.3 (Lemma 14 in Wei et al. [2019]). Let M and Mo denote the probability simplex and
the set of the probability simplex excluding the boundary respectively. Assuming y ∈Mo, and letting
C ⊆M , then the following inequality holds

h(xopt) + αD(xopt,y) ≤ h(z) + αD(z,y)− αD(z,xopt), ∀z ∈ C,

where xopt ∈ arg minx∈C h(x)+αD(x,y), h(·) is a convex function, andD(·, ·) is the unnormalized
KL divergence in this paper.
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Lemma C.4. For any θ and θ′ satisfying
∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

θ(s, a, s′) = 1, and θ(s, a, s′) ≥
0,∀k ∈ {0, . . . , L − 1} and

∑
s∈Sk

∑
a∈A θ(s, a, s

′) =
∑
a∈A

∑
s′′∈Sk+2

θ(s′, a, s′′),∀s′ ∈
Sk+1,∀k ∈ {0, . . . , L − 2}, we let θk := [θ(s, a, s′)]s∈Sk,a∈A,s′∈Sk+1

denote the vector formed
by the elements θ(s, a, s′) for all sk ∈ Sk, ak ∈ A, sk+1 ∈ Sk+1. We also let θ′k :=
[θ′(s, a, s′)]s∈Sk,a∈A,s′∈Sk+1

similarly denote a vector formed by θ′(s, a, s′). Then, we have

D(θ, θ′) ≥ 1

2

L−1∑
k=0

‖θk − θ′k‖21 ≥
1

2L
‖θ − θ′‖21,

where D(·, ·) denotes the un-normalized Bregman divergence.

Proof of Lemma C.4. We prove the lemma by the following inequality

D(θ, θ′) =

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
θ(s, a, s′)

θ′(s, a, s′)
− θ(s, a, s′) + θ′(s, a, s′)

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
θ(s, a, s′)

θ′(s, a, s′)

≥ 1

2

L−1∑
k=0

‖θk − θ′k‖21 ≥
1

2L

( L−1∑
k=0

‖θk − θ′k‖1
)2

≥ 1

2L
‖θ − θ′‖21,

where the inequality is due to the Pinsker’s inequality since θk and θ′k are two probability distributions
such that ‖θk‖1 = 1 and ‖θ′k‖1 = 1. This completes the proof.

Lemma C.5. For any θ and θ′ satisfying
∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

θ(s, a, s′) = 1, and θ(s, a, s′) ≥
0,∀k ∈ {0, . . . , L − 1} and

∑
s∈Sk

∑
a∈A θ(s, a, s

′) =
∑
a∈A

∑
s′′∈Sk+2

θ(s′, a, s′′),∀s′ ∈
Sk+1,∀k ∈ {0, . . . , L − 2}, letting θ̃′(s, a, s′) = (1 − λ)θ′(s, a, s′) + λ

|A||Sk||Sk+1| ,∀(s, a, s
′) ∈

Sk ×A× Sk+1,∀k = 1, . . . , L− 1 with 0 < λ ≤ 1, then we have

D(θ, θ̃′)−D(θ, θ′) ≤ λL log |S|2|A|,

D(θ, θ̃′) ≤ L log
( |S|2|A|

λ

)
.

Proof of Lemma C.5. We start our proof as follows

D(θ, θ̃′)−D(θ, θ′) =

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
(

log
θ(s, a, s′)

θ̃′(s, a, s′)
− log

θ(s, a, s′)

θ′(s, a, s′)

)
+ θ̃′(s, a, s′)− θ′(s, a, s′)

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
(

log θ′(s, a, s′)− log θ̃′(s, a, s′)
)

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
(

log θ′(s, a, s′)

− log[(1− λ)θ′(s, a, s′) + λ/|A||Sk||Sk+1|]
)
,
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where the last equality is by substituting θ̃′(s, a, s′) = (1−λ)θ′(s, a, s′)+ λ
|A||Sk||Sk+1| ,∀(s, a, s

′) ∈
Sk ×A× Sk+1,∀k = 1, . . . , L− 1. Thus, by bounding the last term above, we further have

D(θ, θ̃′)−D(θ, θ′) ≤
L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)

(
log θ′(s, a, s′)

− (1− λ) log θ′(s, a, s′)− λ log
1

|Sk||Sk+1||A|

)
=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

λθ(s, a, s′)
(

log θ′(s, a, s′) + log(|Sk||Sk+1||A|)
)

≤
L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

λθ(s, a, s′) log(|Sk||Sk+1||A|) ≤ λL log |S|2|A|,

where the first inequality is by Jensen’s inequality and the second inequality is due to log θ′(s, a, s′) ≤
0 since 0 < θ(s, a, s′) ≤ 1, and the last inequality is due to Hölder’s inequality that 〈x,y〉 ≤
‖x‖1‖y‖∞ and |Sk||Sk+1| ≤ |S|2.

Moreover, we have

D(θ, θ̃′) =

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′) log
θ(s, a, s′)

θ̃′(s, a, s′)
− θ(s, a, s′) + θ′(s, a, s′)

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
(

log θ(s, a, s′)− log θ̃′(s, a, s′)
)

=

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
(

log θ(s, a, s′)− log[(1− λ)θ′(s, a, s′) + λ/(|Sk||Sk+1||A|)]
)

≤ −
L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′)
(

log[(1− λ)θ′(s, a, s′) + λ/(|Sk||Sk+1||A|)]
)

≤ −
L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s∈Sk+1

θ(s, a, s′) · log
λ

|Sk||Sk+1||A|
≤ L log

|S|2|A|
λ

,

where the first inequality is due to log θ(s, a, s′) ≤ 0, the second inequality is due to the monotonicity
of logarithm function, and the third inequality is by as well as |Sk||Sk+1| ≤ |S|2. This completes the
proof.

Now we are ready to provide the proof of Lemma 5.2.

Proof of Lemma 5.2. First of all, by Lemma 3.1, we know that

‖P (·|s, a)− P̂`(·|s, a)‖1 ≤ εζ` (s, a),

with probability at least 1− ζ, for all epochs ` and any state and action pair (s, a) ∈ S ×A. Thus,
we have that for any epoch ` ≤ `(T ),

∆ ⊆ ∆(`, ζ)

holds with probability at least 1− ζ.

This can be easily proved in the following way: If any θ ∈ ∆, then for all k = {0, . . . , T − 1},
s ∈ Sk and a ∈ A,

θ(s, a, ·)∑
s′∈Sk+1

θ(s, a, s′)
= P (·|s, a).
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Then, we obtain with probability at least 1− ζ,

∥∥∥ θ(s, a, ·)∑
s′∈Sk+1

θ(s, a, s′)
− P̂`(·|s, a)

∥∥∥
1

≤
∥∥∥ θ(s, a, ·)∑

s′∈Sk+1
θ(s, a, s′)

− P (·|s, a)
∥∥∥

1
+
∥∥∥P (·|s, a)− P̂`(·|s, a)

∥∥∥
1

≤ 0 + εζ` (s, a) ≤ εζ` (s, a).

where the last inequality is by Lemma 3.1. Therefore, we know that θ ∈ ∆(`, ζ), which proves the
above claim.

Therefore, we define the event as follows

Event DT : ∆ ⊆ ∩`(T )
`=1 ∆(`, ζ), (28)

by which we have

Pr(DT ) ≥ 1− ζ.

Thus, for any θ
∗

that is a solution to problem (1), we have θ
∗ ∈ ∆. If event DT happens, then θ

∗ ∈
∩`(T )
`=1 ∆(`, ζ). Now we have that the updating rule of θ follows θt = arg minθ∈∆(`(t),ζ)

〈
V f t−1 +∑I

i=1Qi(t− 1)gt−1
i , θ

〉
+ αD(θ, θ̃t−1) as shown in (6), and also θ

∗ ∈ ∩`(T )
`=1 ∆(`, ζ),∀` holds with

probability at least 1 − ζ. According to Lemma C.3, letting xopt = θt, z = θ
∗
, y = θ̃t−1 and

h(θ) =
〈
V f t−1 +

∑I
i=1Qi(t−1)gt−1

i , θ
〉
, we have that with probability at least 1−ζ , the following

holds for all epochs t = 1, . . . , T

〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θt

〉
+ αD(θt, θ̃t−1)

≤
〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θ

∗〉
+ αD(θ

∗
, θ̃t−1)− αD(θ

∗
, θt),

(29)

which means once given the event DT happens, the inequality (29) will hold.

On the other hand, according to the updating rule of Q(·) in (5), which is Qi(t) = max{Qi(t− 1) +
〈gt−1
i , θt〉 − ci, 0}, we know that

Qi(t)
2 ≤

(
max{Qi(t− 1) +

〈
gt−1
i , θt

〉
− ci, 0}

)2 ≤ (Qi(t− 1) +
〈
gt−1
i , θt

〉
− ci

)2
,

which further leads to

Qi(t)
2 −Qi(t− 1)2 ≤2Qi(t− 1)

(〈
gt−1
i , θt

〉
− ci

)
+
(〈
gt−1
i , θt

〉
− ci

)2
.

Taking summation on both sides of the above inequality from i = 1 to I , we have

1

2

(
‖Q(t)‖2 − ‖Q(t− 1)‖2

)
≤

I∑
i=1

〈
Qi(t− 1)gt−1

i , θt
〉
−

I∑
i=1

Qi(t− 1)ci +
1

2

I∑
i=1

(〈
gt−1
i , θt

〉
− ci

)2
≤

I∑
i=1

〈
Qi(t− 1)gt−1

i , θt
〉
−

I∑
i=1

Qi(t− 1)ci + 2L2,

(30)
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where we let ‖Q(t)‖2 =
∑I
i=1Q

2
i (t) and ‖Q(t− 1)‖2 =

∑I
i=1Q

2
i (t− 1), and the last inequality

is due to
I∑
i=1

(〈gt−1
i , θt〉 − ci)2 ≤2

I∑
i=1

[(〈gt−1
i , θt〉)2 + c2i ]

≤2

I∑
i=1

[‖gt−1
i ‖2∞‖θt‖21 + c2i ]

≤2

I∑
i=1

[L2‖gt−1
i ‖2∞ + c2i ]

≤2[L2(

I∑
i=1

‖gt−1
i ‖∞)2 + (

I∑
i=1

|ci|)2] ≤ 4L2

by Assumption 2.3 and the facts that
∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

θt(s, a, s′) = 1 and θt(s, a, s′) ≥ 0.
Thus, summing up (29) and (30), and then subtracting 〈V f t−1, θt−1〉 from both sides, we have

V
〈
f t−1, θt − θt−1

〉
+

1

2

(
‖Q(t)‖2 − ‖Q(t− 1)‖2

)
+ αD(θt, θ̃t−1)

≤ V
〈
f t−1, θ

∗ − θt−1
〉

+

I∑
i=1

Qi(t− 1)(〈gt−1
i , θ

∗〉 − ci) + αD(θ
∗
, θ̃t−1)− αD(θ

∗
, θt) + 4L2.

We further need to show the lower bound of the term V
〈
f t−1, θt − θt−1

〉
+ αD(θt, θ̃t−1) on LHS

of the above inequality. Specifically, we have

V
〈
f t−1, θt − θt−1

〉
+ αD(θt, θ̃t−1)

= V
〈
f t−1, θt − θ̃t−1

〉
+ V

〈
f t−1, θ̃t−1 − θt−1〉+ αD(θt, θ̃t−1)

≥ −V ‖f t−1‖∞ · ‖θt − θ̃t−1‖1 − V ‖f t−1‖∞ · ‖θ̃t−1 − θt−1‖1 +
α

2

L−1∑
k=0

‖θtk − θ̃t−1
k ‖21

≥ −V
L−1∑
k=0

‖θtk − θ̃t−1
k ‖1 − 2LλV +

α

2

L−1∑
k=0

‖θtk − θ̃t−1
k ‖21

≥ −LV
2α
− 2LλV,

where the first inequality uses Hölder’s inequality and Lemma C.4 that D(θ, θ′) =∑L
k=1D(θk, θ

′
k) ≥ 1

2

∑L
k=1 ‖θk − θ′k‖21 with θk := [θ(s, a, s′)]sk∈Sk,ak∈A,sk+1∈Sk+1

, the sec-
ond inequality is due to θ̃t−1

k = (1 − λ)θt−1
k + λ 1

|A||Sk||Sk+1| , the second inequality is due to

‖θ̃t−1−θt−1‖1 =
∑L−1
k=0 ‖θ̃

t−1
k −θt−1

k ‖1 = λ
∑L−1
k=0

∥∥θt−1
k − 1

|A||Sk||Sk+1|
∥∥

1
≤ λ

∑L−1
k=0

(∥∥θt−1
k

∥∥
1
+∥∥ 1

|A||Sk||Sk+1|
∥∥

1

)
≤ 2λL, and the third inequality is by finding the minimal value of a quadratic

function −V x+ α
2 x

2.

Therefore, one can show that with probability at least 1− ζ, the following inequality holds for all
epochs ` > 0,

1

2

(
‖Q(t)‖2 − ‖Q(t− 1)‖2

)
− LV

2α
− 2LλV (31)

≤ V
〈
f t−1, θ

∗ − θt−1
〉

+

I∑
i=1

Qi(t− 1)(〈gt−1
i , θ

∗〉 − ci) + αD(θ
∗
, θ̃t−1)− αD(θ

∗
, θt) + 4L2.

Note that according to Lemma C.5, we have

D(θ
∗
, θ̃t−1)−D(θ

∗
, θt) = D(θ

∗
, θ̃t−1)−D(θ

∗
, θt−1) +D(θ

∗
, θt−1)−D(θ

∗
, θt)

≤ λL log |S|2|A|+D(θ
∗
, θt−1)−D(θ

∗
, θt).
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Therefore, plugging the above inequality into (31) and rearranging the terms, we further get

V
〈
f t−1, θt−1 − θ∗

〉
≤ 1

2

(
‖Q(t− 1)‖2 − ‖Q(t)‖2

)
+

I∑
i=1

Qi(t− 1)(〈gt−1
i , θ

∗〉 − ci)

+ αλL log |S|2|A|+ αD(θ
∗
, θt−1)− αD(θ

∗
, θt) + 4L2 +

LV

2α
+ 2LλV.

Thus, by taking summation on both sides of the above inequality from 1 to T and assuming Q(0) = 0,
we would obtain that with probability at least 1− ζ, the following inequality holds

T∑
t=1

〈
f t−1, θt−1 − θ∗

〉
≤ 1

V

T∑
t=1

I∑
i=1

Qi(t− 1)(〈gt−1
i , θ

∗〉 − ci) +
TαλL log |S|2|A|

V

+
αD(θ

∗
, θ0) + 4L2T

V
+
LT

2α
+ 2LλT.

(32)

It is not difficult to compute that D(θ
∗
, θ0) ≤ L log |S|2|A| according to the initialization of θ0 by

the uniform distribution. Then, by rearranging the terms, we rewrite (32) as
T−1∑
t=0

〈
f t, θt − θ∗

〉
≤ 1

V

T∑
t=1

I∑
i=1

Qi(t)(〈gti , θ
∗〉 − ci) +

4L2T + (λT + 1)αL log |S|2|A|
V

+
LT

2α
+ 2LλT.

This completes the proof.

C.3 Proof of Lemma 5.3

In thie subsection, we first provide Lemmas C.6 below. Then, we give the proof of Lemma 5.3 based
on these lemmas.
Lemma C.6 (Lemma 5 of Yu et al. [2017]). Let {Z(t), t ≥ 0} be a discrete time stochastic process
adapted to a filtration {F t, t ≥ 0} with Z(0) = 0 and F0 = {∅,Ω}. Suppose there exists an integer
τ > 0, real constants θ > 0, ρmax > 0 and 0 < κ ≤ ρmax such that

|Z(t+ 1)− Z(t)| ≤ ρmax,

E[Z(t+ τ)− Z(t)|F t] ≤
{
τρmax, if Z(t) < ψ
−τκ, if Z(t) ≥ ψ

hold for all t ∈ {1, 2, ...}. Then for any constant 0 < δ < 1, with probability at least 1− δ, we have

Z(t) ≤ ψ + τ
4ρ2

max

κ
log

(
1 +

8ρ2
max

κ2
eκ/(4ρmax)

)
+ τ

4ρ2
max

κ
log

1

δ
, ∀t ∈ {1, 2, ...}.

Now, we are in position to give the proof of Lemma 5.3.

Proof of Lemma 5.3. The proof of this Lemma is based on applying the lemma C.6 to our problem.
Thus, this proof mainly focuses on showing that the variable ‖Q(t)‖2 satisfies the condition of
Lemma C.6.

According to the updating rule of Qi(t), which is Qi(t+ 1) = max{Qi(t) + 〈gti , θt+1〉 − ci, 0}, we
have

|‖Q(t+ 1)‖2 − ‖Q(t)‖2| ≤‖Q(t+ 1)−Q(t)‖2

=

√√√√ I∑
i=1

|Qi(t+ 1)−Qi(t)|2

≤

√√√√ I∑
i=1

|〈gti , θt+1〉 − ci|2,
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where the first inequality is due to triangle inequality, and the second inequality is by the fact that
|max{a+ b, 0} − a| ≤ |b| if a ≥ 0. Then, by Assumption 2.3, we further have√√√√ I∑

i=1

|〈gti , θt+1〉 − ci|2 ≤
I∑
i=1

|〈gti , θt+1〉 − ci| ≤
I∑
i=1

(‖gti‖∞‖θt+1‖1 + |ci|) ≤ 2L,

which therefore implies

|‖Q(t+ 1)‖2 − ‖Q(t)‖2| ≤ 2L.

Thus, with the above inequality, we have

‖Q(t+ τ)‖2 − ‖Q(t)‖2 ≤ |‖Q(t+ τ)‖2 − ‖Q(t)‖2|

≤
τ∑
τ=1

|‖Q(t+ τ)‖2 − ‖Q(t+ τ − 1)‖2|

≤ 2τL,

(33)

such that

E[‖Q(t+ τ)‖2 − ‖Q(t)‖2|F t] ≤ 2τL. (34)

Note that (33) in fact indicates that the random process ‖Q(t+ τ)‖2 − ‖Q(t)‖2 is bounded by the
value 2τL.

Next, we need to show that there exist ψ and κ such that E[‖Q(t+ τ)‖2 − ‖Q(t)‖2|F t] ≤ −τκ if
‖Q(t)‖2 ≥ ψ. Recall the definition of the event DT in (28). Therefore, we have that with probability
at least 1 − ζ, the event DT happens, such that for all t′ = 1, ..., T and any θ ∈ ∩`(T )

`=1 ∆(`, ζ), the
following holds

V
〈
f t
′−1, θt

′−1 − θ∗
〉
≤ 1

2

(
‖Q(t′ − 1)‖22 − ‖Q(t′)‖22

)
+

I∑
i=1

Qi(t
′ − 1)(〈gt

′−1
i , θ〉 − ci)

+ αλL log |S|2|A|+ αD(θ, θ̃t
′−1)− αD(θ, θt

′
) + 4L2 +

LV

2α
+ 2LλV,

which adopts similar proof techniques to (31). Then, the above inequality further leads to the
following inequality by rearranging the terms

‖Q(t′)‖22 − ‖Q(t′ − 1)‖22 ≤ −2V
〈
f t
′−1, θt

′−1 − θ
〉

+ 2

I∑
i=1

Qi(t
′ − 1)(〈gt

′−1
i , θ〉 − ci)

+ 2αλL log |S|2|A|+ 2αD(θ, θ̃t
′−1)− 2αD(θ, θt

′
) + 8L2 +

LV

α
+ 4LλV.

Taking summation from t+ 1 to τ + t on both sides of the above inequality, and by union bound, the
following inequality holds with probability 1− ζ for τ =

√
T and t satisfying 0 ≤ t+ τ ≤ T

‖Q(τ + t)‖22 − ‖Q(t)‖22

≤ −2V

τ+t∑
t′=t+1

〈
f t
′−1, θt

′−1 − θ
〉

+ 2

τ+t∑
t′=t+1

I∑
i=1

Qi(t
′ − 1)(〈gt

′−1
i , θ〉 − ci) + 2αD(θ, θ̃t)

− 2αD(θ, θ̃τ+t) +

τ+t∑
t′=t+1

2α[D(θ, θ̃t
′−1)−D(θ, θt

′−1)] + 8τL2 +
τLV

α
+ 4τLλV.

(35)

Particularly, in (35), the term −2αD(θ, θt
′−1) ≤ 0 due to the non-negativity of Bregman divergence.

By Lemma C.5, we can bound

τ+t∑
τ=t+1

2α[D(θ, θ̃t
′−1)−D(θ, θt

′−1)] ≤ 2ατL log |S|2|A|.
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For the term 2αD(θ, θ̃t), by Lemma C.5, we can bound it as

2αD(θ, θ̃t) ≤ 2αL log(|S|2|A|/λ).

Moreover, we can decompose the term 2V
∑τ+t
t′=t+1〈f t

′−1, θ − θt′−1〉+ 2
∑τ+t
t′=t+1

∑I
i=1Qi(t

′ −
1)(〈gt

′−1
i , θ

∗〉 − ci) in (35) as

2V

τ+t∑
t′=t+1

〈
f t
′−1, θ − θt

′−1
〉

+ 2

τ+t∑
t′=t+1

I∑
i=1

Qi(t
′ − 1)(〈gt

′−1
i , θ〉 − ci)

= 2V

τ+t∑
t′=t+1

〈
f t
′−1, θ − θt

′−1
〉

+ 2

I∑
i=1

Qi(t)

τ+t∑
t′=t+1

(〈gt
′−1
i , θ〉 − ci)

+ 2

τ+t∑
t′=t+2

I∑
i=1

[Qi(t
′ − 1)−Qi(t)](〈gt

′−1
i , θ〉 − ci)

≤ 2V
τ+t∑

t′=t+1

〈
f t
′−1, θ

〉
+ 2

I∑
i=1

Qi(t)

τ+t∑
t′=t+1

(〈gt
′−1
i , θ〉 − ci) + 2Lτ2 + 2V Lτ,

where the last inequality is due to

−2V

τ+t∑
t′=t+1

〈
f t
′−1, θt

′−1
〉
≤ 2V

τ+t∑
t′=t+1

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

f t
′−1(s, a, s′)θt

′−1(s, a, s′) ≤ 2V Lτ,

as well as

2

τ+t∑
t′=t+2

I∑
i=1

[Qi(t
′ − 1)−Qi(t)](〈gt

′−1
i , θ〉 − ci)

≤ 2

τ+t∑
t′=t+2

I∑
i=1

t′−2∑
r=t

|〈gri , θr+1〉 − ci| · |〈gt
′−1
i , θ〉 − ci|

≤
τ+t∑

t′=t+2

t′−2∑
r=t

√√√√ I∑
i=1

|〈gri , θr+1〉 − ci|2 +

τ+t∑
t′=t+2

t′−2∑
r=t

√√√√ I∑
i=1

|〈gt′−1
i , θ〉 − ci|2

≤ 2Lτ2,

by Qi(t + 1) = max{Qi(t) + 〈gti , θt+1〉 − ci, 0} and |max{a + b, 0} − a| ≤ |b| if a ≥ 0 for the
first inequality, and Assumption 2.3 for the last inequality.

Therefore, taking conditional expectation on both sides of (35) and combining the above upper
bounds for certain terms in (35), we can obtain

E[‖Q(τ + t)‖2 − ‖Q(t)‖2|F t,DT ]

≤ 2τ2L+ 2αL log(|S|2|A|/λ)

+ 2V τE
[

1

τ

τ+t∑
t′=t+1

〈f t
′−1, θ〉+

1

τ

I∑
i=1

Qi(t)

V

τ+t∑
t′=t+1

(〈gt
′−1
i , θ〉 − ci)

∣∣∣∣F t,DT]
+ 2αλτL log |S|2|A|+ 8τL2 +

τLV

α
+ 4τLλV + 2V Lτ.

(36)

Thus, it remains to bound the term E[ 1
τ

∑τ+t
t′=t+1〈f t

′−1, θ〉 + 1
τ

∑I
i=1

Qi(t)
V

∑τ+t
t′=t+1(〈gt

′−1
i , θ〉 −

ci)|F t,DT ] so as to give an upper bound of the right-hand side of (36). Given the event DT happens
such that ∆ ⊆ ∩`(T )

`=1 ∆(`, ζ) 6= ∅, and since θ is any vector in the set ∩`(T )
`=1 ∆(`, ζ), we can give an
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upper bound of (36) by bounding a term q(t,τ)
(

Q(t)
V

)
, which is formulated as

min
θ∈∩`(T )

`=1 ∆(`,ζ)

E
[1

τ

τ+t∑
t′=t+1

〈
f t
′−1, θ

〉
+

1

τ

I∑
i=1

Qi(t)

V

τ+t∑
t′=t+1

(〈gt
′−1
i , θ〉 − ci)

∣∣∣F t,DT ]

= min
θ∈∩`(T )

`=1 ∆(`,ζ)

〈
f (t,τ), θ

〉
+

I∑
i=1

Qi(t)

V
(〈gi, θ〉 − ci)

≤ min
θ∈∆

〈
f (t,τ), θ

〉
+

I∑
i=1

Qi(t)

V
(〈gi, θ〉 − ci)

= q(t,τ)
(Q(t)

V

)
,

where the inequality is due to ∆ ⊆ ∩`(T )
`=1 ∆(`, ζ) given DT happens and the last equality is obtained

according to the definition of the dual function q in Section 4. We can bound q(t,τ)
(Q(t)

V

)
in the

following way.

According to Assumption 4.1, we assume that one dual solution is η∗t,τ ∈ V∗t,τ . We let ϑ be the
maximum of all ϑ and σ be the minimum of all σ. Thus, when dist(Q(t)

V ,V∗t,τ ) ≥ ϑ, we have

q(t,τ)
(Q(t)

V

)
=q(t,τ)

(Q(t)

V

)
− q(t,τ)(η∗t,τ ) + q(t,τ)(η∗t,τ )

≤− σ
∥∥∥η∗t,τ − Q(t)

V

∥∥∥
2

+
〈
f (t,τ), θ∗t,τ

〉
≤− σ

∥∥∥Q(t)

V

∥∥∥
2

+ σ‖η∗t,τ‖2 +

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

f (t,τ)(s, a, s′)θ∗t,τ (s, a, s′)

≤− σ
∥∥∥Q(t)

V

∥∥∥
2

+ σB + L,

where the first inequality is due to the weak error bound in Lemma 4.2 and weak duality with θ∗t,τ
being one primal solution, the second inequality is by triangle inequality, and the third inequality is
by Assumption 2.3 and Assumption 4.1. On the other hand, when dist(Q(t)

V ,V∗t,τ ) ≤ ϑ, we have

q(t,τ)
(Q(t)

V

)
= min
θ∈∆

〈
f (t,τ), θ

〉
+

I∑
i=1

Qi(t)

V
(〈gi, θ〉 − ci)

= min
θ∈∆

〈
f (t,τ), θ

〉
+

I∑
i=1

[η∗t,τ ]i(〈gi, θ〉 − ci) +

I∑
i=1

(Qi(t)
V
− [η∗t,τ ]i

)
(〈gi, θ〉 − ci)

≤q(t,τ)(η∗t,τ ) +
∥∥∥Q(t)

V
− η∗t,τ

∥∥∥
2
‖g(θ)− c‖2

≤L+ 2ϑL,

where the first inequality is by the definition of q(t,τ)(η∗t,τ ) and Cauchy-Schwarz inequality, and the
second inequality is due to weak duality and Assumption 2.3 such that

q(t,τ)(η∗t,τ ) ≤
〈
f (t,τ), θ∗t,τ

〉
≤
∥∥f (t,τ)

∥∥
∞‖θ

∗
t,τ‖1 ≤ L,∥∥∥Q(t)

V
− η∗t,τ

∥∥∥
2
‖g(θ)− c‖2 ≤ ϑ

√√√√ I∑
i=1

∣∣∣〈gi, θ〉 − ci∣∣∣2 ≤ ϑ I∑
i=1

(‖gi‖∞‖θ‖1 + |ci|) ≤ 2ϑL.

Now we can combine the two cases as follows

q(t,τ)
(Q(t)

V

)
≤ −σ

∥∥∥Q(t)

V

∥∥∥
2

+ σB + 2L+ 2ϑL+ σϑ. (37)

The bound in (37) is due to
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(1) When dist
(Q(t)

V ,V∗t,τ
)
≥ ϑ, we have

q(t,τ)
(Q(t)

V

)
≤ −σ

∥∥Q(t)

V

∥∥
2

+ σB + L ≤ −σ
∥∥Q(t)

V

∥∥
2

+ σB + 2L+ 2ϑL+ σϑ.

(2) When dist
(Q(t)

V ,V∗t,τ
)
< ϑ, we have

q(t,τ)
(Q(t)

V

)
≤ L+ 2ϑL ≤ −σ

∥∥Q(t)

V

∥∥
2

+ σB + 2L+ 2ϑL+ σϑ,

since −σ
∥∥Q(t)

V

∥∥
2

+ σϑ + σB ≥ −σ · dist
(Q(t)

V ,V∗t,τ
)

+ σϑ + σB − σB = σ
[
−

dist
(Q(t)

V ,V∗t,τ
)

+ ϑ
]
≥ 0.

Therefore, plugging (37) into (36), we can obtain that given the event DT happens, the following
holds

E[‖Q(τ + t)‖22 − ‖Q(t)‖22|F t,DT ]

≤ 2τ2L+ τCV,α,λ + 2αL log(|S|2|A|/λ)− 2τσ‖Q(t)‖2,
(38)

where we define

CV,α,λ := 2(σB + σ ϑ)V + (6 + 4ϑ)V L+
V L

α
+ 4LλV + 2αλL log |S|2|A|+ 8L2

We can see that if ‖Q(t)‖2 ≥ (2τL + CV,α,λ)/σ + 2αλL log(|S|2|A|/λ)/(στ) + τσ/2, then
according to (38), there is

E[‖Q(τ + t)‖2|F t,DT ] ≤‖Q(t)‖2 − τσ‖Q(t)‖2 −
σ2τ2

2

≤‖Q(t)‖22 − τσ‖Q(t)‖2 +
σ2τ2

4

≤
(
‖Q(t)‖2 −

τσ

2

)2

.

Due to ‖Q(t)‖2 ≥ τσ
2 and by Jensen’s inequality, we have

E[‖Q(τ + t)‖2|F t,DT ] ≤
√

E[‖Q(τ + t)‖22|F t,DT ] ≤ ‖Q(t)‖2 −
τσ

2
. (39)

Then we can compute the expectation E[‖Q(τ + t)‖22 − ‖Q(t)‖22|F t] according to the law of total
expectation. With (33) and (39), we can obtain that

E[‖Q(τ + t)‖2 − ‖Q(t)‖2|F t]
= P (DT )E[‖Q(τ + t)‖2 − ‖Q(t)‖2|F t,DT ] + P (DT )E[‖Q(τ + t)‖2 − ‖Q(t)‖2|F t,DT ]

≤ −τσ
2

(1− ζ) + 2ζτL = −τ
[σ

2
− ζ
(σ

2
+ 2L

)]
≤ −σ

4
τ,

where we let σ/4 ≥ ζ(σ/2 + 2L).

Summarizing the above results, we know that if σ/4 ≥ ζ(σ/2 + 2L), then

|‖Q(t+ 1)‖2 − ‖Q(t)‖2| ≤ 2L,

E[‖Q(t+ τ)‖2 − ‖Q(t)‖2|F t] ≤
{

2τL, if ‖Q(t)‖2 < ψ
−σ4 τ, if ‖Q(t)‖2 ≥ ψ

,

where we let

ψ =
2τL+ CV,α,λ

σ
+

2αL log(|S|2|A|/λ)

στ
+
τσ

2
,

CV,α,λ = 2(σB + σ ϑ)V + (6 + 4ϑ)V L+
V L

α
+ 4LλV + 2αλL log |S|2|A|+ 8L2.
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Directly by Lemma C.6, for a certain t ∈ {1, ..., T}, the following inequality holds with probability
at least 1− δ,

‖Q(t)‖2 ≤ψ + τ
512L2

σ
log

(
1 +

128L2

σ2 eσ/(32L)

)
+ τ

64L2

σ
log

1

δ
. (40)

Further employing union bound for probabilities, we have that with probability at least 1− Tδ, for
any t ∈ {1, . . . , T}, the above inequality (40) holds.

We can understand the upper bound of the term log
(
1 + 128L2

σ2 eσ/(32L)
)

in the following way: (1)
if 128L2

σ2 eσ/(32L) ≥ 1, then this term is bounded by log
(

256L2

σ2 eσ/(32L)
)

= σ
32L + log 256L2

σ2 ; (2) if
128L2

σ2 eσ/(32L) < 1, then the term is bounded by log 2. Thus, we have

log

(
1 +

128L2

σ2 eσ/(32L)

)
≤ log 2 +

σ

32L
+ log

256L2

σ2 .

This discussion shows that the log term in (40) will not introduce extra dependency on L except a
logL term. This completes our proof.

C.4 Proof of Lemma 5.5

Lemma C.7 (Lemma 9 of Yu et al. [2017]). Let {Z(t), t ≥ 0} be a supermartingale adapted to
a filtration {F t, t ≥ 0} with Z(0) = 0 and F0 = {∅,Ω}, i.e., E[Z(t + 1)|F t] ≤ Z(t), ∀t ≥ 0.
Suppose there exists a constant ς > 0 such that {|Z(t+ 1)−Z(t)| > ς} ⊂ {Y (t) > 0}, where Y (t)
is process with Y (t) adpated to F t for all t ≥ 0. Then, for all z > 0, we have

Pr(Z(t) ≥ z) ≤ e−z
2/(2tς2) +

t−1∑
τ=0

Pr(Y (τ) > 0),∀t ≥ 1.

We are in position to give the proof of Lemma 5.5.

Proof of Lemma 5.5. Now we compute the upper bound of the term
∑T
t=1

∑I
i=1Qi(t −

1)(〈gt−1
i , θ

∗〉 − ci). Note that Z(t) :=
∑t
τ=1

∑I
i=1Qi(τ − 1)(〈gτ−1

i , θ
∗〉 − ci) is supermartigale

which can be verified by

E[Z(t)|F t−1] =E
[ t∑
τ=1

I∑
i=1

Qi(τ − 1)(〈gτ−1
i , θ

∗〉 − ci)
∣∣∣F t−1

]
=

I∑
i=1

E[Qi(t− 1)|F t−1](〈E[gt−1
i |F t−1], θ

∗〉 − ci) +

t−1∑
τ=1

I∑
i=1

Qi(τ − 1)(〈gτ−1
i , θ

∗〉 − ci)

≤
t−1∑
τ=1

I∑
i=1

Qi(τ − 1)(〈gτ−1
i , θ

∗〉 − ci) = E[Z(t− 1)],

whereQi(t−1) and gt−1
i are independent variables withQi(t−1) ≥ 0 and 〈E[gt−1

i |F t−1], θ
∗〉 ≤ ci.

On the other hand, we can know the random process has bounded drift as

|Z(t+ 1)− Z(t)| =
I∑
i=1

Qi(t)(〈gti , θ
∗〉 − ci)

≤‖Q(t)‖2

√√√√ I∑
i=1

∣∣〈gti , θ∗〉 − ci∣∣2
≤‖Q(t)‖2

I∑
i=1

(‖gti‖∞‖θ
∗‖1 + |ci|) ≤ 2L‖Q(t)‖2,

where the first inequality is by Cauchy-Schwarz inequality, and the last inequality is by Assumption
2.3. This also implies that for an arbitrary ς , we have {|Z(t + 1) − Z(t)| > ς} ⊂ {Y (t) :=
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‖Q(t)‖2− ς/(2L) > 0} since |Z(t+ 1)−Z(t)| > ς implies 2L‖Q(t)‖2 > ς according to the above
inequality. Thus, by Lemma C.7, we have

Pr

( T∑
t=1

I∑
i=1

Qi(t− 1)(〈gt−1
i , θ

∗〉 − ci) ≥ z
)
≤ e−z

2/(2Tς2) +

T−1∑
t=0

Pr

(
‖Q(t)‖2 >

ς

2L

)
, (41)

where we could see that boundign ‖Q(t)‖2 is the key to obtaining the bound of
∑T
t=1

∑I
i=1Qi(t−

1)(〈gt−1
i , θ

∗〉 − ci).

Next, we will show the upper bound of the term ‖Q(t)‖2. According to Lemma 5.3, if σ/4 ≥
ζ(σ/2 + 2L), setting

ψ =
2τL+ CV,α,λ

σ
+

2αL log(|S|2|A|/λ)

στ
+
τσ

2
,

CV,α,λ := 2V

(
σB + 3L+ 2ϑL+ σϑ+

L

2α
+ 2Lλ+

αλL log |S|2|A|+ 4L2

V

)
,

we have that with probability at least 1 − δ, for a certain t ∈ {1, . . . , T}, the following inequality
holds

‖Q(t)‖2 ≤ ψ + τ
512L2

σ
log[1 +

128L2

σ2 eσ/(32L)] + τ
64L2

σ
log

1

δ
.

This inequality is equivalent to

Pr

(
‖Q(t)‖2 > ψ + τ

512L2

σ
log[1 +

128L2

σ2 eσ/(32L)] + τ
64L2

σ
log

1

δ

)
≤ δ.

Setting ς = 2Lψ+ τ 1024L3

σ log
[
1 + 128L2

σ2 eσ/(32L)
]

+ τ 128L3

σ log 1
δ and z =

√
2Tς2 log 1

Tδ in (41),
then the following probability hold with probability at least 1− 2Tδ with

T−1∑
t=0

I∑
i=1

Qi(t)(〈gti , θ
∗〉 − ci)

≤
(

2Lψ + τ
1024L3

σ
log
[
1 +

128L2

σ2 eσ/(32L)
]

+ τ
128L3

σ
log

1

δ

)√
T log

1

Tδ
,

which completes the proof.

D Proofs of Lemmas in Section 5.2

D.1 Proof of Lemma 5.6

Proof of Lemma 5.6. We start our proof with the updating rule of Q(·) as follows

Qi(t) = max{Qi(t− 1) + 〈gt−1
i , θt〉 − ci, 0}

≥Qi(t− 1) + 〈gt−1
i , θt〉 − ci

≥Qi(t− 1) + 〈gt−1
i , θt−1〉 − ci + 〈gt−1

i , θt − θt−1〉.

Rearranging the terms in the above inequality futher leads to

〈gt−1
i , θt−1〉 − ci ≤Qi(t)−Qi(t− 1)− 〈gt−1

i , θt − θt−1〉.

Thus, taking summation on both sides of the above inequality from 0 to T − 1 leads to

T−1∑
t=0

(〈gti , θt〉 − ci) ≤Qi(T )−
T−1∑
t=0

〈gti , θt+1 − θt〉

≤Qi(T ) +

T−1∑
t=0

‖gti‖∞‖θt+1 − θt‖1,
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where the second inequality is due to Hölder’s inequality. Note that the right-hand side of the above
inequality is no less than 0 since Qi(t) = max{Qi(t− 1) + 〈gt−1

i , θt〉 − ci, 0} ≥ 0. Thus, we have[
T−1∑
t=0

(〈gti , θt〉 − ci)

]
+

≤ Qi(T ) +

T−1∑
t=0

‖gti‖∞‖θt+1 − θt‖1.

Defining gt(θt) := [〈gt1, θt〉, · · · , 〈gtI , θt〉]> and c := [c1, · · · , cI ]>, we would obtain

∥∥∥∥∥
[
T−1∑
t=0

(gt(θt)− c)

]
+

∥∥∥∥∥
2

≤‖Q(T )‖2 +

T−1∑
t=0

√√√√ I∑
i=1

‖gti‖2∞‖θ
t+1 − θt‖1

≤‖Q(T )‖2 +

T−1∑
t=0

I∑
i=1

‖gti‖∞‖θt+1 − θt‖1

≤‖Q(T )‖2 +

T∑
t=1

‖θt − θt−1‖1,

where the third inequality is due to Assumption 2.3. This completes the proof.

D.2 Proof of Lemma 5.7

Lemma D.1 (Proposition 18 of Jaksch et al. [2010]). The number of epochs up to episode T with
T ≥ |S||A| is upper bounded by

`(T ) ≤ |S||A| log

(
8T

|S||A|

)
≤
√
T |S||A| log

(
8T

|S||A|

)
,

where `(·) is a mapping from a certain episode to the epoch where it lives.

We are ready to give the proof of Lemma 5.7.

Proof of Lemma 5.7. We need to discuss the upper bound of the term ‖θt − θt−1‖1 in two different
cases:

(1) `(t) = `(t− 1), i.e., episodes t and t− 1 are in the same epoch;

(2) `(t) > `(t− 1), i.e., episodes t and t− 1 are in two different epochs.

For the first case where `(t) = `(t − 1), according to Lemma C.3, letting xopt = θt, y = θ̃t−1,
z = θ̃t−1 and h(θ) =

〈
V f t−1 +

∑I
i=1Qi(t− 1)gt−1

i , θ
〉
, we have

〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θt

〉
+ αD(θt, θ̃t−1)

≤
〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θ̃t−1

〉
+ αD(θ̃t−1, θ̃t−1)− αD(θ̃t−1, θt)

=
〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θ̃t−1

〉
− αD(θ̃t−1, θt).
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Rearranging the terms and dropping the last term (due to D(θt−1, θt) ≥ 0) yield

αD(θt, θ̃t−1) ≤
〈
V f t−1 +

I∑
i=1

Qi(t− 1)gt−1
i , θ̃t−1 − θt

〉
+ αD(θt−1, θ̃t−1)

≤
(
V ‖f t−1‖∞ +

I∑
i=1

Qi(t− 1)‖gt−1
i ‖∞

)
‖θ̃t−1 − θt‖1

≤

V + ‖Q(t− 1)‖2

√√√√ I∑
i=1

‖gt−1
i ‖2∞

 ‖θ̃t−1 − θt‖1

≤(V + ‖Q(t− 1)‖2)‖θ̃t−1 − θt‖1,

where the second inequality is by Hölder’s inequality and triangle inequality, the third inequality is by
Assumption 2.3, and the last inequality is due to Assumption 2.3. Note that by Lemma C.4, there is

D(θt, θ̃t−1) ≥ 1

2L
‖θt − θ̃t−1‖21.

Thus, combining the previous two inequalities, we obtain

‖θt − θ̃t−1‖21 ≤
2LV + 2L‖Q(t− 1)‖2

α
‖θt − θ̃t−1‖1.

The, we obtain the upper bound of ‖θt − θ̃t−1‖1 as follows

‖θt − θ̃t−1‖1 ≤
2LV + 2L‖Q(t− 1)‖2

α
.

Since there is

‖θt − θ̃t−1‖1 =

L−1∑
k=0

∥∥θtk − (1− λ)θt−1
k − λ 1

|S|2|A|
1
∥∥

1
≥ (1− λ)‖θt − θt−1‖1 − λL,

where θk := [θ(s, a, s′)]s∈Sk,a∈A,s′∈Sk+1
, we further have

‖θt − θt−1‖1 ≤
2LV + 2L‖Q(t− 1)‖2

(1− λ)α
+

λL

1− λ
. (42)

For the second case where `(t) > `(t− 1), it is difficult to know whether the two solutions θt−1 and
θt are in the same feasible set since ∆(`(t)) 6= ∆(`(t − 1)). Thus, the above derivation does not
hold. Then, we give a bound for the term ‖θt − θt−1‖1 as follows

‖θt − θt−1‖1 ≤‖θt‖1 + ‖θt−1‖1 =

L−1∑
k=0

∑
s,a,s′

θt(s, a, s′) +

L−1∑
k=0

∑
s,a,s′

θt(s, a, s′) = 2L. (43)

However, we can observe that `(t) > `(t− 1) only happens when t is a starting episode for a new
epoch, whose number in T episodes is bounded by the number of epochs in T episodes. According
to Lemma D.1, the total number of epochs `(T ) is bounded by `(T ) ≤

√
T |S||A| log[8T/(|S||A|)]

which only grows in the order of log T .

Thus, we can decompose the term
∑T
t=1 ‖θt − θt−1‖1 in the following way

T∑
t=1

‖θt − θt−1‖1 =
∑
t: t≤T,

`(t)>`(t−1)

‖θt − θt−1‖1 +
∑
t: t≤T,

`(t)=`(t−1)

‖θt − θt−1‖1

≤2L`(T ) +
∑
t: t≤T,

`(t)=`(t−1)

‖θt − θt−1‖1,
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where the inequality is due to (43) and the fact that
∑

t: t≤T,
`(t)>`(t−1)

1 ≤ `(T ). By (42), we can further

bound the last term in the above inequality as∑
t: t≤T,

`(t)=`(t−1)

‖θt − θt−1‖1

≤
T∑
t=1

[
2LV + 2L‖Q(t− 1)‖2

(1− λ)α
+

λL

1− λ

]

≤ 2L

(1− λ)α

T−1∑
t=0

‖Q(t)‖2 +
2V + αλ

(1− λ)α
LT.

This will eventually lead to

T∑
t=1

‖θt − θt−1‖1

≤ 2L`(T ) +
∑

`(t)=`(t−1)

‖θt − θt−1‖1

≤ 2L
√
T |S||A| log

8T

|S||A|
+

2L

(1− λ)α

T−1∑
t=0

‖Q(t)‖2 +
2V + αλ

(1− λ)α
LT,

which completes the proof.
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