
We thank all reviewers for the valuable advice and questions. Our responses are provided below.1

Reviewer #1: Thank you for your valuable suggestions. We are sorry for the typo causing confusions in Assumption 2.2.2

We will add the missing factor 1/T and change the summation to
∑T−1
t=0 . Furthermore, we will follow the suggestions3

to polish our paper and add the empirical comparisons.4

Reviewer #2: (Technical intuition behind the dual multiplier Q.) At round t, we have obtained the constraints5

〈gt−1
i , θ〉 − ci ≤ 0 for all i ∈ [I]. By Lagrangian duality theory, with these constraints and the loss function 〈f t−1, θ〉,6

we can have a Lagrange function whose dual variables are Qi for the i-th constraint for all i ∈ [I] and should be7

non-negative. Then, the dual multiplier updating step in Eq. (5) can be viewed as a one-step dual ascent in an online8

setting. The operation max{·, 0} is to guarantee the dual multiplier always non-negative. This is the main intuition9

behind the dual multiplier updating step. We will add this discussion in our paper.10

(Importance of the loop-free assumption.) In our paper, this loop-free assumption is a standard assumption for11

episodic MDP. Technically, this assumption is a important for Lemma 5.1 to hold. Lemma 5.1 essentially gives the12

upper bound of the distance between the chosen occupancy measure and the true occupancy measure. Without the13

loop-free assumption, we need to develop new techniques to bound such distance. The loop-free assumption can14

potentially be weakened to the assumption that the underlying MDP has a fixed renewal state under any policy. We15

leave this as our future work.16

(Typo.) In line 203, f (t,τ)(θ) and gi(θ) should be corrected as 〈f (t,τ), θ〉 and 〈gi, θ〉. Thanks for pointing out the typo.17

Reviewer #3: (Techniques from existing works.) We remark that the goal of this paper is to provide theoretical18

analysis of the constrained MDP scenario which are not fully studied before and present new bounds for this problem.19

In general, our paper provides a novel high probability bound for the mirror descent algorithms which is not a trivial20

extension of the paper Yu et al. 2017, as their paper only studied the online gradient algorithm in Euclidean space.21

On the other hand, our paper studies the problem without knowing the transition model, and involves the exploration22

step to deal with this challenge. Thus, we cannot directly apply Yu et al. 2017. Moreover, our work is beyond the23

simple constrained online learning setting and focuses on a more challenging constrained MDP problem. On the other24

hand, comparing to the previous work Rosenberg et al. 2019, we fully exploit the doubling of epoch length to obtain a25

sublinear constraint violation bound. This also provides a new insight on the application of epoch length doubling.26

(The hyper-parameters of the algorithm require the knowledge of ϑ, B, and σ.) As shown in Theorem 4.3, the27

settings of hyper-parameters α, V, λ in our algorithm do not need ϑ, B, and σ. The constants ϑ, B, and σ are mainly28

for the purpose of theoretical analysis. Here σ is the only constant that are associated with a hyper-parameter ζ , namely,29

ζ ∈ (0, 1/(4 + 8L/σ)]. And ζ corresponds to the confidence interval εζ` defined as Eq. (3). In practice, we can set ζ30

sufficiently small, which will further guarantee that the probability 1− 4ζ in Theorem 4.3 is large. This will not affect31

the value of εζ` too much as it only depends on a factor of log1/2(1/ζ).32

(Is the dependence on parameters L, S,A tight?) As discussed in Jaksch et al., 2010, the lower bound of the regret33

for learning the unconstrained episodic MDP is Ω(
√
L|S||A|T ). The best known upper bound of the regret for the34

unconstrained episodic MDP is Õ(L|S|
√
|A|T ) (Rosenberg and Mansour, 2019a) with a gap Õ(

√
L|S|) to the lower35

bound. Different from the aforementioned works, in this paper, we study a constrained MDP. Intuitively, solving the36

constrained problem is more challenging than solving the unconstrained problem, as the class of the unconstrained37

MDPs is a subset of the constrained MDPs (since the constrained problem can be reduced to the unconstrained problem38

when the feasible set is the whole space.). For the constrained MDP, our paper can still obtain an Õ(L|S|
√
|A|T )39

regret, which matches the best known upper bound for the unconstrained MDP. But whether this is an optimal result40

remains to be explored. We leave the rigorous proof of the lower bound for the constrained MDP as our future work.41

Reviewer #4: (Comparisons to the result in Ding et al.,2020.) In order to compare with the result in Ding et al.,2020,42

we introduce a new notation |X| to denote the upper bound of the number of states at each layer. Thus, |S| in our paper43

is upper bounded by L|X|. Then, our regret bound and constraint violation are equivalently Õ(
√
L4|X|2|A|T ). In44

Ding et al.,2020, for the tabular case, the dimension d is |X||A|, H is equivalently L, and K is equivalent to T in our45

paper. Thus, their results on regret bound and constraint violation can be rewritten as Õ(
√
L8|X|3|A|3T ), which has46

worse dependencies on the factors L, |X|, |A|.47

(More details of solving the constrained sub-problem.) Solving the constrained sub-problem is basically in two48

steps: (1) perform an unconstrained mirror descent step, which admits a closed-form solution (Rosenberg and Mansour,49

2019a); (2) project the iterate in the last step to the feasible set formed by the constraints. Note that the projection step 250

is another constrained minimization problem, whose objective is a KL divergence. Furthermore, we can reformulate this51

latter constrained minimization into its dual form, which is a convex optimization with only non-negativity constraints.52

Now this new problem can be efficiently solved as the constraints are much simpler than before. This algorithm is53

described in detail in Section 4.2 of Rosenberg and Mansour, 2019a. We will add this algorithm to our paper.54


