
We deeply thank the reviewers for their very thoughtful reviews that will help improve our paper. All of them commended1

the novelty of our model and the results. We address them separately below. The citation numbers are from the paper.2

Lines 102 – 103 (R1, R4): We are indebted to R1 and R4 for highlighting this typo. The utility function that matches3

the (correct) text is equal to: δ′ · 1{sgn(〈αt, rt(αt, σt)〉) > 0} − ‖xt − rt(αt, σt)‖2. We will fix it in the revision.4

R1: (Upper Bound – Thm 4.1.) If A is a finite set, then GRINDER becomes similar to standard1 feedback graph (FG)5

algorithms ([1]), but the FG is built according to δ-BMR agents, and its regret scales as O(
√
α(G)T log T ) (α(G) being6

the independence number of the FG). We will add a clarifying paragraph after line 271. The case whereA includes both7

continuous and discrete sets of actions is a great direction for future work; in the standard online learning setting, results8

only for metric spaces are known, so it is a big undertaking for cases where `(α, rt(α)) is not Lipschitz (lines 72 – 73).9

R1: (Lower Bound) The σt-induced polytope sets are defined in lines 228 – 230, but following R1’s comments we10

will move the definition outside of the proof. At a high level, these polytopes can be constructed in the dual space by a11

super powerful learner who knows {σt}t∈[T ] (hence the name), but not exactly the agents’ utility function (footnote12

10). These polytopes (with p̃ being the smallest among them) are not affected or observed by GRINDER. We use13

them only as tools for the proof of Thm 4.1. and the lower bound. GRINDER’s polytopes (lines 200 – 214) differ14

from σt-induced ones in poly(d)2 factors, which translates to a log(poly(d)) gap between the two types due to the15

logarithmic dependence of the regret on the smallest polytope (Thm 4.1.). So our bounds are matching up to logarithmic16

factors (hence the “nearly”). R1 was rightly confused, and we will add a clarifying sentence.17

If the learner knew that the agents are truthful, then we would have a standard bandit problem. However, she does not18

know neither xt, nor the agents’ precise utility function (hence the dependence on the σt-induced polytopes and p̃).19

R1: (Related Work) The strategic nature of our agents (making `(α, rt(α)) not Lipschitz) is what differentiates us20

from any related standard online learning setting (lines 70 – 73). We will include an extra sentence highlighting this.21

R1: (Additional Feedback) P0 should be P0 = {p(A)} (p(A) being the polytope representation of A). R1 is also22

right that GRINDER illustrates an advantage of adaptive discretization over non-adaptive ones3. In line 96, this is true23

for the settings of interest (e.g., spam identification). We will clarify accordingly lines 196 and 96 respectively.24

R2: We thank R2 for the positive comments, the typos, the suggestion for Fig. 1, and `(p, rt(p)) (lines 210 – 213) all of25

which we will incorporate. We have extra simulations in Fig. 5, 6 of the paper, and we will also include the benchmark26

that was suggested by R4 (Fig. 1). For the incompatibility, we remark that it is a worst-case result and that EXP3 (Fig. 4,27

5, 6) could also be viewed an algorithm that minimizes external regret.28

R4: (Model) The schools’ admission process can be thought of as another example of our protocol: the school commits29

to a classifier, students get to “observe” it via proxies (e.g., past admitted students), and then, according to their30

original point (e.g., features of their resume) and their manipulation power (e.g., money they spend on SAT) they can31

best-respond. The distribution over classifiers is an excellent direction for future work, as it can “enforce” exploration32

over the dataset. The modeling of nature choosing xt’s adversarially is because we wanted to take a worst-case approach,33

but we conjecture that having the stochasticity that R4 mentions would lead to better regret guarantees, and it is an34

exciting avenue for future work. We agree with R4 regarding h?4. We will add these clarifications to our model.35

R4: (Dependence on δ) δ affects the size of p via the definition of the σt-induced polytopes (lines 228 – 230), and the36

analysis of Q1 (Eq. (2), lines 235 – 243). We will change p to p(δ) to make this clearer.37

Figure 1

R4: (“Convex” Surrogates) No standard convex surrogate can be used since the learner does38

not know precisely function rt(α). Hence, the learner cannot guarantee that `(α, rt(α)) is convex39

in α, even if `(α, z) (z being independent of α) is convex in α! Concretely, we will include40

this counterexample: let h = (1, 1,−1), h′ = (0.5,−1, 0.25) two hyperplanes, a point x =41

(0.55, 0.4), y = +1, δ = 0.1, and let `(h, r(h)) = max{0, 1 − y · 〈h, r(h)〉} (i.e., hinge). We42

will show that when (x, y) is a δ-BMR agent, `(α, r(α)) is no longer convex in α. Take b = 0.543

and construct hb = 0.5h + 0.5h′ = (0.75, 0,−0.375) = (1, 0,−0.5). (x, y) only misreports44

to (say) (0.61, 0.4) when presented with h (as hb and h′ classify x as +1). Computing the loss: `(hb, r(hb)) =45

0.95, `(h, r(h)) = 0.99 and `(h′, r(h′)) = 0.875, so, `(hb, r(hb)) > b`(h, r(h)) + (1 − b)`(h′, r(h′)). Since in46

general `(α, r(α)) is not convex, it is unfair to compare Bandit Gradient Descent (BGD) with GRINDER (so we did47

not include these experiments originally). Since R4 asked for them, we will include Fig. 1, where GRINDER greatly48

outperforms BGD. Identifying surrogate losses that are convex against δ-BMR agents is an exciting future direction!49

1This is precisely how we implemented GRINDER for our simulations with the discrete set of actions (left graphs in Fig. 4, 5, 6)!
2σt polytopes are defined by hyperplanes with a margin of 2δ, but GRINDER’s polytopes are defined with a margin of 4

√
dδ.

3But we cannot use the “standard” adaptive discretization techniques ([21,9]) since `(α, rt(α)) is not Lipschitz (lines 72 – 73).
4We introduced h? in order to explain that the mapping X → {−1,+1} does not have to be linear, but it can be arbitrary.


