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Abstract

Learning matching costs has been shown to be critical to the success of the state-
of-the-art deep stereo matching methods, in which 3D convolutions are applied
on a 4D feature volume to learn a 3D cost volume. However, this mechanism
has never been employed for the optical flow task. This is mainly due to the
significantly increased search dimension in the case of optical flow computation,
i.e., a straightforward extension would require dense 4D convolutions in order to
process a 5D feature volume, which is computationally prohibitive. This paper
proposes a novel solution that is able to bypass the requirement of building a
5D feature volume while still allowing the network to learn suitable matching
costs from data. Our key innovation is to decouple the connection between 2D
displacements and learn the matching costs at each 2D displacement hypothesis
independently, i.e., displacement-invariant cost learning. Specifically, we apply the
same 2D convolution-based matching net independently on each 2D displacement
hypothesis to learn a 4D cost volume. Moreover, we propose a displacement-aware
projection layer to scale the learned cost volume, which reconsiders the correlation
between different displacement candidates and mitigates the multi-modal problem
in the learned cost volume. The cost volume is then projected to optical flow
estimation through a 2D soft-argmin layer. Extensive experiments show that our
approach achieves state-of-the-art accuracy on various datasets, and outperforms
all published optical flow methods on the Sintel benchmark. The code is available
athttps://github.com/jytime/DICL-Flow.

1 Introduction

Both the optical flow estimation and stereo matching aim to find per-pixel dense correspondences
between a pair of input images. In essence, stereo matching can be viewed as a special case of
optical flow where the general 2D flow vector search reduces to 1D search along the epipolar lines.
Despite this similarity, current leading deep stereo matching methods [[15} 44, 41]] and leading deep
optical flow methods [12} 29} 37] seem to follow very different matching strategies and network
architectures. In particular, while both stereo matching and optical flow estimation rely on the cost
volume representation, they differ in how to build the cost volumes.

The state-of-the-art deep stereo matching methods [[15} 144} [41]] learn the matching costs between
shifted features of left and right images, whereas most existing deep optical flow methods often rely on
non-learned metrics such as dot product [12} 29] and cosine similarity [37]]. With the introduction of
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learned costs, stereo matching methods can directly obtain disparity maps from the cost volumes with
a 1D soft-argmin layer. It has been recognised that learning data-adaptive matching cost is the key to
the recent significant advancement of stereo matching methods [15/!44}41]], yet no similar conclusion
has been made for the task of deep optical flow. One of the main reasons for such a discrepancy is
due to the prohibitive computational cost if one attempts to naively apply the matching cost learning
mechanism to optical flow. To learn the matching costs, stereo matching methods only need to
construct a 4D feature volume (2L D H W, where L; D; H; W denote the feature dimension,
disparity range, image height, and image width respectively) by traversally concatenating feature
maps between stereo pairs on each disparity shift and compute the 3D cost volume through a series
of 3D convolutions. In stark contrast, in optical flow estimation, since the searching space becomes
two-dimensional, a direct extension would result in a 5D feature volume 2L U V H W,
where U; V are the 2D search window dimension) and need 4D convolutions to process it, which is
computationally very expensive and limited by current computing resources.

In this paper, we propose a novel solution which bypasses dense 4D convolutions and allows the
network to learn matching costs from data without constructing a 5D feature volume. By our network
design, the matching costs are efficiently learned through a series of 2D convolutions. Compared
with the methods using non-learned metrics, our method achieves a much higher accuracy without
obviously sacrificing computational speed. The key idea is to decouple the connections between
different 2D displacements in learning the matching costs, which is called displacement-invariant cost
learning (DICL). Specifically, we apply the same 2D convolution-based matching net independently
on each 2D displacement candidates to form a 4D cost volume (U V  H W)

Compared with applying 4D convolutions to a 5D feature volume, our proposed matching net has
decoupled the connection along 2D displacements, which removes the correlation between different
displacement hypothesis. Therefore, we further propose a displacement-aware projection (DAP) layer
to scale the learned cost volume along the displacement dimension and mitigate the mutli-modal
problem [[15] in the learned cost volume. The scaled cost volume is then projected to an optical flow
prediction by a 2D soft-argmin layer.

Our contributions are summarized as: 1) To our best knowledge, our method is the first one to
learn matching costs from concatenated features for optical flow estimation, through introducing a
displacement-invariant cost learning module; 2) We propose a displacement-aware projection layer
to reconsider the correlation between different motion hypothesis; and 3) Our method achieves
state-of-the-art accuracy on multiple datasets and outperforms all published optical flow estimation
methods on the Sintel benchmark. We also provide extensive quantitative and qualitative analysis to
verify the effectiveness of our approach.

2 Related Work

Optical Flow Estimation Aiming to find per-pixel dense correspondences between a pair of
images, optical flow estimation is a fundamental vision problem and has been studied for decades [8].
FlowNet [5] makes the first attempt to use deep learning for optical flow estimation, which directly
regresses the optical flow estimation from a pair of images with an encoder-decoder neural network.
DCFlow [35]] replaces the handcrafted image features with learned feature descriptors and utilizes
conventional cost aggregation steps to process the cost volume. Recently, SpyNet [25], PWC-Net [29],
and LiteFlowNet [9] combine conventional strategies such as pyramid, warping, and cost volume into
network design and achieve impressive performance across different benchmarks. Building upon
these methods, Neoral et al. [24] estimate the occlusion masks before flow, Hur and Roth [[11]] utilize a
residual manner for iterative refinement with shared weights, and Yin et al. [39]] hierarchically estimate
local matching distributions and compose them together to form a global density. VCN [37] further
proposes to construct a multi-channel 4D cost volume and use separable volumetric filtering to avoid
the significant amount of memory and computation. SelFlow [20] leverages self-supervised learning
on large-scale unlabelled data and uses the well-trained model as an initialization for supervised
fine-tuning. Additionally, unsupervised learning of optical flow also witnesses a great progress
with the supervision from view synthesis [14]. Researchers further exploit the cues from occlusion
reasoning (34} 22], epipolar constraint [43]], sequence [13l 7], cross-task consistency [45] 40l 26} [19],
knowledge distillation [[18}20], and diverse transformations [[17]].



Figure 1:0Overall Architecture and Flow Prediction Process at One Pyramid Level.The feature net outputs
features at ve pyramid levels. We take the nest feature level (orange) as an example of ow prediction. The
displacement-invariant cost learning module (our matching net) accepts the reference frame feature and warped
target frame feature as input, and then outputs a 4D cost volume. The displacement-aware projection layer
further reweights the learned cost volume according to per-pixel cost distribution. We then apply 2D soft-argmin
on the reweighted costs along tbeandV dimensions and hence achieve an optical ow estimation. For clarity,

the context network is not visualized here.

Very recently, Zhacet al. [42] handle the occlusion caused by feature warping without explicit
supervision while Bar-Haim and Wol2] focus on sampling dif cult examples during training.
Different from the traditional coarse-to- ne mechanism, Teed and D88gdropose to construct a
correlation volume for all pixel pairs and iteratively conduct lookups through a recurrent unit, which
shows a signi cant performance improvement. However, accurate optical ow estimation is still an
open and challenging task, especially for small objects with large motions, textureless regions, and
occlusion areas.

Learning Matching Cost In dense visual matching, the matching cost measures the similar-
ity/dissimilarity between reference frame pixels and the associated target frame pixels. Allowing
the network to learn the matching cost from data is a common practice in stereo matching. The rst
pioneer, MC-CNN-arct33], utilizes several fully connected layers to compute the similarity score of
two patches. GCNetlH] builds a 4D feature volume by concatenating feature maps between stereo
pairs on each disparity shift and allows the network to learn matching cost from it with 3D convo-
lutions. It then becomes some kinds of gold standard pipeline in deep stereo matehihy f].
However, to the best of our knowledge, the mechanism of learning matching costs with concatenated
features has not been employed for optical ow estimation due to the giant 5D feature volume. The
closest method VCN37] leverages an intermediate strategy. Instead of building a 5D volume with
concatenatedhifted feature map# constructs a multi-channel 4D cost volume by concatenating 4D
cost volumes, where each cost volume stores the cosine similarity between the shifted features. A
separable 4D convolution is proposed to process the multi-channel 4D cost volume. Our method, on
the other hand, can learn matching costs directly from concatenated features and outperforms VCN
with a notable margin across various benchmarks.

3 Method

In this section, we rst describe the overall architecture and then show how to learn the matching
costs without using a 5D feature volume and 4D convolutions. We further provide the design principle
of our displacement-aware projection layer.

3.1 Overall Architecture

Unlike stereo matching, optical ow methods are often required to handle large 2D displacements.
Constructing a full-size cost volume with all possible displacement hypothesis is considered pro-
hibitive in this case. Therefore, followin@9], we use a coarse-to- ne warping scheme. As shown

in Figure 1, our network adopts a feature net for feature extraction, which consists of ve pyramid



levels withf 1=4; 1=8; 1=16; 1=32; 1=64g resolutions of the input image. At each level, a matching

net computes the matching costs with a max displacemehataing both the vertical and horizon-

tal directions and a displacement-aware projection layer further scales the learned costs along the
displacement plane. Then, a 2D soft-argmin module projects the matching costs to an optical ow
estimation. Additionally, we also adopt a context network (simila2@)[to integrate contextual
information and post-process the optical ow estimation with the help of dilated convolution.

3.2 Displacement-Invariant Cost Learning Module

Since the cost volumes constructed by non-learned matching costs may omit rich information and
limit the ability of subsequent layers, the state-of-the-art deep stereo matching methods leverage 4D
feature volumes and 3D convolutions to learn matching costs. However, a direct extension to optical
ow will result in a prohibitively 5D feature volumes and 4D convolutions, which is impractical since

it will occupy much more GPU memories than 3D convolutions used in stereo. Previous optical ow
estimation methodss| 12, 29] avoids this problem by using a xed matching cost functierg( dot
product or cosine similarity) with learned image features. Recently, this problem has been partially
addressed by VCN3[7]. Instead of storing a full 5D feature volume, they propose a multi-channel
cost volume to reduce the size of the channel dimension.

LetF1;F22R- H W pethel -dimensional feature maps of the W source and target image,
which are extracted by the same featurefrel with a resolution factor (e.g, 1=4) of the input
image resolution. We denote a displacemeni @R Y V and the set of all displacementsldsin
our practice the max displacemen8Bisand hencd&J = f( 3; 3);( 3; 2);::;(0;0);:::;(3;3)g.
VCN computes the matching cost for a pixeht a displacement by the cosine similarity as:

Fl(p) F2(p+ u)
IFYPIi i F2(p + wij’

Cuen(psu) = (1)

Then a 4D cost volum€,., 2 RY ¥V H W s constructed by concatenating the matching
costCycn (p; u) on all displacement candidates itJa V window. To form a multi-channel cost
volumeCK 2 RK U VvV H W 'K 4D cost volumes computed frok different features are
concatenated, where the volume size is redL%edmes compared with the full feature volume.

In contrast, we propose a displacement-invariant cost learning (DICL) module to bypass the require-
ment of building a 5D feature volume while still allowing the network to learn matching costs with
2D convolutions. Mathematically, for each displacement candid&@& ¥ v, we can concatenate
features to form a feature m#g, over all pixelsp 2R H W :

Fu(p) = FXp)jj F?(p + u); )

wherejj concatenates the feature vectbr{p) andF?(p + u). Therefore, for every displacement
hypothesisi, F, is a concatenated feature majR >~ " W speci ed byu and can be processed
by 2D convolutions. In this paper, we propose to apply a 2D matchinG (&to learn the cost:

Cours (P;U) = [ G(Fu)] (p): (3

For every displacement hypothesisn theU V search window, we apply the same matching net

G( ) to learn the matching cost. In other words, instead of processing a 5D feature volume as a whole,
we independently process concatenated feafugeslong the displacement dimension through 2D
matching netJ V times. Therefore, we avoid the requirement of storing a 5D feature volume
and conducting 4D convolutions. Our method is displacement-invariant cost learning (DICL) as the

Table 1:Per Layer Analysis of Processing a 5D Feature Volumek{ U V H W ), whereK
denotes the number of different features in VCN and the dimension of concatenated features in ours. It may be
noted that the gradients need to be stored in full grid for back propagation during the training phase.

Methods Kernel Params ratio Theoretical Inference Memory ratio

4D conv. (K;K; 3;3;3;3) 81K? 9K K Uu V H W u Vv
VCN (2, K;K; 3;3) 18K 2 2K K U VvV H w u Vv
Ours (K; 3;3) 9K 1 K H W 1




Figure 2: Qualitative Example of the Displacement Probability Distribution with Different Kinds of
Matching Costs. The intersection of two yellow lines shows the ground truth location. "MLP' indicates
predicting the matching cost with a three-layer multilayer perceptron.

learned matching cost only depends on the current displacement shifs worth noting that our
method also supports a parallel implementation of the matching net for different displacements.

Our approach allows the network to learn matching cost fully from data without using any non-learned
metrics. Non-learned metrics such as dot product and cosine similarity generally cannot exploit the
rich information of high-dimensional features, and constructing an appropriate distance metric itself
has been a non-trivial research topic [38, 16]. A qualitative example is shown in Figure 2 where the
DICL module achieves a sharper displacement probability (costs after softmax) distribution than
other methods. The probabilities of our result closely gather around the ground truth displacement.
Moreover, our method does not need to construct a 5D volume and can ef ciently compute the
matching cost by 2D convolutions. A detailed analysis of VCN and our method in processing a 5D
volumeK U V H W ) is shown in Table 1. For each layer, our method requifes
trainable parameters al?jsllT memory consumption of the VCN. In real case, VCN requires 1.9G

memory for a pair of images with a crop size of [256, 384] in training while ours only need 1.1G. It
is worth noting that ours i§5:56%faster in inference(;08s vs. 0:18s on Chairs dataset).

3.3 Displacement-Aware Projection Layer

Under our network, the DICL module decouples the connections among the displacement dimension,
where the same 2D convolution based matching net is applied on each displacement hypothesis
independently. However, we may to some extent weaken the correlation between displacement
candidates, compared with directly applying 4D convolutions to a 5D feature volume. To remedy this
issue, we propose to reweight the matching cost at each displacement plane by a linear combination
of the matching costs at all the displacements. Speci cally, for each pix@énote a displacement
candidatas 2 RY Y as(u; V), and then the correspondi, denotes the pixel's matching cost at

u = (u;V). The new weighted matching cc@ﬁ is obtained as:

X
Cy = W(u;v)Cv; 4)
v2u

wherew(,.,) denotes the learned reweighting parameters between the displacearst , and

U is the set of all displacements. We term this as a Displacement-Aware Projection (DAP) Layer.
Along the displacement dimension direction, each slice of the matching cost volume shares the same
displacement hypothesise., 2D optical ow (motion) vector. Our proposed DAP layer exploits the
correlation between different displacement candidates to achieve better matching cost estimation, and
is thus displacement-aware.

Our DAP layer is implemented asla 12D convolution layer as Eq. 4 is de ned invariant to the pixel
location. We rst reshape the 4D cost volurRé’ vV " W to a 3D cost volum&N w
whereN = U V. Then the DAP layer is applied to the 3D cost volume to adaptively adjust the
cost distributions along thie dimension. After that, the 3D cost volume is reshaped back for the
following 2D soft-argmin operation. We visually show the working mechanism of the DAP layer in
Figure 3, and the detailed analysis is in Section 4.3.



Figure 3: Multi-Modal Effect and Visualization of the DAP Layer Kernels. The left column compares an
example pixel's displacement probability, before and after using DAP layer. The right column visualizes several
kernels from a well-trained DAP layer, where white indicates a high value. The DAP layér hag kernels

in total and each kernel maps the input costs to a specandv. Theu andv below each kernel indicate the
corresponding displacement hypothesis of its output cost. The qualitative analysis is provided in Section 4.3.

3.4 Matching Cost to Optical Flow

To achieve a ow from a learned cost volume, a traditional way is to extract the displacement with
the highest probability/lowest matching cost with the Winner-Takes-All (WTA) strategyargmin
operation. However, due to the discrete nature of the cost volume, such a process will not be able to
recover sub-pixel level estimation and is non-differentiable. In stereo matching, a common strategy is
to use a soft-argminlp] operator to make it differentiable and is able to achieve sub-pixel accuracy.
Hence, similar to37], we extend the 1D soft-argmin operation used in disparity estimation to a 2D
soft-argmin operation to project the 4D cost volume into an optical ow prediction as below,
X
d= [u p(u)l; ®)

u2u

whereu denotes the displacement vecfarv), p(u) = ( CS) is the probability of displacement
u after 2D softmax operation along the displacement hypothesis space. Theatefotee expected
optical ow vector.

However, the soft-argmin operation is affected by probabilities of all displacement candidates, which
makes it susceptible to multi-modal distributions. That means, it will select the mean value of various
peaks rather than the highest one. The multi-modal distributions are common in occlusion, repetitive,
textureless, and blurry areas. Statistically, we have found our displacement-aware projection layer
can largely mitigate this problem. We defer this discussion to the following section.

4 Experiments

In this section, we provide implementation details and training strategies of our network. We compare
our results with existing state-of-the-art optical ow methods on standard optical ow benchmarks,
i.e, KITTI 2015 [23] and Sintel B], and provide both quantitative and qualitative results. We also
analyze the effect of different matching cost metrics as well as our proposed Displacement-Invariant
Cost Learning (DICL) module and Displacement-Aware Projection (DAP) layer.

4.1 Implementation Detail

Network Architecture  To avoid redundant computation, our feature net projects all the pyramid
level features int@2 dimensions. Therefore the input feature nkigpof a matching neG( ) would

have64 dimensions. We denote a 2D convolution layer speci cationGs,[Cout , kernel size,

stride ]. Our matching net consists of six 2D convolution layers, whose speci cations sequentially
follow [64; 96; 3; 1], [96; 128 3; 2], [128 128 3; 1], [128 64; 3; 1], [64;32 4; 2], [32 1;3;1]. The
second layer downsamples the feature map and the fth layer is a deconvolution layer which upsam-
ples the feature back. All layers except the last one adopt ReLU and batch normalization. We adopt
level-speci ¢ matching nets at different pyramid levels. The displacement-aware projection layer is
implemented as @ 1 convolution along the displacement dimension with a feature dimension of
49U V,andU =V =7).



Table 2:Quantitative Results on KITTI 2015 and Sintel Datasets The metric EPE is the average endpoint

error and Fl-all is the percentage of erroneous pixels over all pixels. The symbol "C+T" indicates a model
pre-trained on the Chair and Things datasets while "+K/S' means further ne-tuned on the KITTI or Sintel
dataset. Parentheses means the results are reported on its training dataset. The unavailable results are marked
as "-'. Best results of 'C+T' and "+K/S' models are separately bolded. Ours-w/o DAP is the model without
displacement-aware projection layer. The time setting refer2dicejnd is reported on an NVIDIA 1080Ti GPU.

Method Time K-15 train K-15test  S-train (EPE) S-test (EPE)
(s) EPE  Fl-all Fl-all Clean Final Clean Final
EpicFlow [27] 15.00 - - 26.29 - - 412 6.29
DCFlow [35] 8.60 - 15.1 14.86 - - 354 512
FlowNet2 [12] 0.12 10.08 30.0 - 2.02 354 396 6.02
PWCNet [29] 0.03 10.35 33.7 - 2.55 3.93 - -
LiteFlowNet [9] 0.09 10.39 285 - 2.48 4.04 - -
C+T  LiteFlowNet2 [10] 0.04 8.97 25.9 - 2.24 3.78 - -
HD®F [39] 0.08 13.17 240 - 3.84 877 - -
VCN [37] 0.18 836 251 - 2.21 3.62 - -
Ours-w/o DAP 0.08 8.78 23.8 - 2.11 3.85 - -
Ours 0.08 8.70 23.6 - 194  3.77 - -
FlowNet2 [12] 0.12 (2.30) (8.6) 11.48 (2.45) (2.01) 416 5.74
PWCNet+ [30] 0.03 (1.50) (5.3 7.72 (1.71) (2.34) 3.45 4.60
LiteFlowNet [9] 0.09 (1.62) (5.6) 9.38 (2.35) (1.78) 454 538
LiteFlowNet2 [10] 0.04 (1.47) (4.8) 7.74 (1.30) (1.62) 345 4.90
+K/S  IRR-PWC [11] 021 (1.63) (5.3) 7.65 (1.92) (2.51) 3.84 458
HD®F [39] 0.08 (1.31) (4.2 6.55 (1.87) 1a9n 479 4.67
SelFlow [20] 0.09 (1.18) - 8.42 (1.68) (1.77) 374 4.26
VCN [37] 0.18 (1.16) (4.2) 6.30 (1.66) (2.24) 281 4.40
Ours-w/o DAP 0.08 (1.09) (3.8) - (2.30) (1.72) - -
Ours 0.08 (.02 (3.9 6.31 @.1) (1.60) 2.12 3.44

Training  Similar to [12, 29|, we rst pre-train the network on the synthetic dataset FlyingCHalir [
for 150K iterations. The learning raté ) is initially 0:001and reduced by half after 120K. The
model is further trained on FlyingThing&1] for 220K iterations with dr of 0:00025 Then, we
separately ne-tune the network on the Sintg]l ind KITTI [23] dataset for 60K iterations, starting
from alr of 0:00025and dropping it by half at 30K, 50K. We use a batch siz8 pér GPU on the
FlyingChair and? on other datasets, wiBiINVIDIA 1080 Ti GPUs for training.

We use a multi-level, loss for training on all datasets and the loss weightddig): 75; 0:5; 0:5; 0:5

for ows predicted from1=4 to 1=64 resolution. We also follow the augmentation strategy3af,[
including random resizing, cropping, ipping, color jittering, and asymmetric occlusion. To avoid
noisy training in the initial stage, only random cropping is applied in the rst 50K training on the
FlyingChair. More details are available in the supplementary material.

4.2 Quantitative Result

Benchmark Result As shown in Table 2, our approach shows its superiority on various datasets.
On the Sintel " nal' pass benchmark, we achieve an average endpoint error (EBBgaivhich

is signi cantly better than previous state-of-the-art VCR4(Q) and SelFlow 4:26). Our approach

also outperforms all the previous methods on the “clean’ pass with an ERE2ofWith the help

of the DICL module, our inference speed is even faster although we predict matching costs in a
learning-based manner. Additionally, if not ne-tuned (see the C+T part of Table 2), our method
achieves a clear performance improvement on the “clean' pass as well, whereas the only comparable
inference time. On the KITTI 2015 training set, our approach
reaches the smallest EPE and lowest error percentage Fl-all. For the testing set, it is close to the best
one. It is worth noting that KITTI 2015 provides limited training samples (me28ly which may
constrain our learned costs. Instead, if not ne-tuned on KITTI training set (only using Chair and
Thing), our method obtains the best Fl-all among all approaches, which demonstrates its performance
when suf cient data is provided and its strong generalization ability.

method FlowNet212] uses oved:5



Table 3:Ablation study on cost computation metrics. The models for “Chair' were trained on the Chairs
dataset. The models for 'K-15"and *S' were trained on Things dataset.

M Chairs KITTI-15 train Sintel-train (EPE)
ethod
EPE EPE Fl-all Clean Final
Dot Product 1.86 10.39 311 2.57 4.06
Cosine Similarity 1.84 10.45 30.2 2.55 4.03
3-Layer MLP 1.76 9.83 28.9 2.45 3.98
Reduced DICL 1.72 9.77 28.3 2.42 3.99
DICL 1.33 8.78 23.8 2.11 3.85

Displacement-Invariant Cost Learning As shown in Table 3, we also conduct an ablation study to
explore the superiority of our DICL module. We compare different ways of computing the matching
cost by dot productl2, 29], cosine similarity B7], a three-layer MLP, reduced DICL (the same
network structure as DICL but with 11 convolution kernels), and our DICL module. The DICL
module signi cantly outperforms all other methods. On the FlyingChair validation dataset, the dot
product and cosine similarity share a close performah@6@nd1:84). The three-layer multilayer
perceptron (MLP) and the reduced DICL module take pixel-to-pixel concatenated features as input
and learns the distribution of matching cost, hence achieve a slight improveln&hagd1:72).

On the contrary, in learning the matching costs, our DICL module not only considers the similarity
between features, (p) andF, (p + u) but also takes the spatial context into consideration via 2D
convolutions. Compared with using MLP and reduced DICL, the DICL module provides extra spatial
context information and hence successfully utilizes the power of matching cost learning. The DICL
module improves the EPE from aroutid to 1:33. Their performance on the Sintel and KITTI
dataset show the same trend. A qualitative example is provided in Figure 2.

To further prove the validity of our Table 4: PWCNet and VCN with our DICL module. Models
DICL module, we replace the nonwere trained and evaluated on the Chairs dataset.

learned metrics of two well-known
pipelines PWCNetd9] and VCN [37] Me_thod% PWCNet PWCNet+DICITVCN VCN+DICL
with our DICL module and report the _Chair EPE 2.00 1.83 1.66 145

results on the Chairs dataset in Table 4.

With our DICL module, both PWCNet and VCN achieve a notable improvement: 8.5% for PWCNet
(2:00vs.1:83) and 12.7% for VCN 1:66 vs. 1:45).

Displacement-Aware Projection Layer As reported in Table 2, although the counterpart "Ours-
w/o DAP' model has showed outstanding performance, the DAP layer generally improves its EPE
by around 0.1 pixel on various datasets. The improvement is consistent no matter if ne-tuning on
speci ¢ datasets, which shows the correlation of motions is not limited to datasets and veri es the
generalization ability of the DAP layer.

4.3 Qualitative Analysis

Multi-Modal Effect and How the DAP Layer

Works To explore how the DAP layer im-

proves accuracy, we visualize the probability

maps before and after the DAP layer. A typical

example is shown in Figure 3. The initial prob-

ability map has two peaks with the highest prob-

ability of 0:35. Although these two peaks are

spatially close, it constrains the network's con-

dence on sub-pixel prediction. As discussed in

Section 3.4, such a multi-modal problem is an

inherent drawback of the soft-argmin operation.

The DICL module cannot solve this problem be=igure 4: Histogram of the dpeax distribution with
cause it decouples the feature connections alosgd without the DAP layer, with a bin size of 0.001.
the displacementV) dimension. Instead, the

DAP layer re-weights the costs of different displacements, dynamically selects the optimal one, and
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Figure 5: Qualitative Results on the Sintel and KITTI 2015 Test Dataset. The results are downloaded from
the benchmark websites. The left and middle examples come from Sintel while the right one is from KITTI. For
each example, the left column compares the predicted flow and the right column provides the error map against
ground truth flow. The white metric value on the left top corner indicates the EPE or Fl-all of this example.

hence improves the prediction confidence (now the highest probability is 0.66). Statistically, we can
depict the degree of the multi-modal problem as dcqx, the difference value between the highest value
and the second of the UV probability map. On the Sintel dataset, the DAP layer increases the
median dp.,j from 0:57 to 0:63, which is an obvious improvement since dyeqr 2 [0; 1]. The detailed
distribution of d. is shown in Figure

To further analyze how the DAP layer solves this problem, we also visualize its kernels as shown in
Figure[3] The DAP layerisal 1 convolution with U V kernels. Each kernel maps the U~V
costs (49 in our implementation) to a new one. It can be verified that, a kernel tends to have a high
reaction to input cost C;,, (U; V) and its neighbour displacement candidates, if this kernel maps input
costs to C,y(U; V). This conforms to our design target that displacement candidates belonging to
the same motion (close in the UV space) should share close confidence, since motions tend to be
continuous. The learned kernels also have negative values (generally the dark regions in kernel
visualization), which indicates a peak would be suppressed if another far-away peak exists.

Visualization of Benchmark Result We compare our visualization results on the Sintel and KITTI
2015 benchmarks, as shown in Figure[3] It is worth noting that for the textureless region (indicted by
a red rectangle on the left example), our method provides a confident and smooth prediction while the
results of others are noisy, which shows the benefit of matching cost learning. The middle example
verifies that our method can handle complicated objects and fast motions, where we achieve a much
lower EPE than the competing methods. The right example comes from the KITTI benchmark and
indicates that our approach is also good at small objects. The leg of the road sign (circled by orange)
is very thin and only occupies several pixels. Our result accurately depicts the road sign’s contour
while those of other methods are twisted.

5 Conclusion

To the best of our knowledge, we are the first one to learn the matching costs from concatenated
features for optical flow estimation. To overcome the necessity of building a 5D feature volume
and conducting 4D convolutions, we decouple the connections between different displacements in
computing the matching costs, which enables us to apply the same 2D convolution based matching
net to each displacement independently. To further handle the multi-modal issue in the learned cost
volume, we introduce a displacement-aware projection layer, which scales the matching costs by
exploiting the correlation among different displacements. Experimental results on the KITTI 2015
and Sintel datasets show that our method obtains a new state-of-the-art. In the future, we plan to
further speed up the implementation to achieve real-time performance.
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