
Supermasks in Superposition

Mitchell Wortsman∗
University of Washington

Vivek Ramanujan∗
Allen Institute for AI

Rosanne Liu
ML Collective

Aniruddha Kembhavi†
Allen Institute for AI

Mohammad Rastegari
University of Washington

Jason Yosinski
ML Collective

Ali Farhadi
University of Washington

Abstract

We present the Supermasks in Superposition (SupSup) model, capable of sequen-
tially learning thousands of tasks without catastrophic forgetting. Our approach
uses a randomly initialized, fixed base network and for each task finds a subnet-
work (supermask) that achieves good performance. If task identity is given at test
time, the correct subnetwork can be retrieved with minimal memory usage. If not
provided, SupSup can infer the task using gradient-based optimization to find a
linear superposition of learned supermasks which minimizes the output entropy.
In practice we find that a single gradient step is often sufficient to identify the
correct mask, even among 2500 tasks. We also showcase two promising extensions.
First, SupSup models can be trained entirely without task identity information, as
they may detect when they are uncertain about new data and allocate an additional
supermask for the new training distribution. Finally the entire, growing set of
supermasks can be stored in a constant-sized reservoir by implicitly storing them
as attractors in a fixed-sized Hopfield network.

1 Introduction

Learning many different tasks sequentially without forgetting remains a notable challenge for neural
networks [47, 56, 23]. If the weights of a neural network are trained on a new task, performance on
previous tasks often degrades substantially [33, 10, 12], a problem known as catastrophic forgetting.
In this paper, we begin with the observation that catastrophic forgetting cannot occur if the weights
of the network remain fixed and random. We leverage this to develop a flexible model capable
of learning thousands of tasks: Supermasks in Superposition (SupSup). SupSup, diagrammed in
Figure 1, is driven by two core ideas: a) the expressive power of untrained, randomly weighted
subnetworks [57, 39], and b) inference of task-identity as a gradient-based optimization problem.

a) The expressive power of subnetworks Neural networks may be overlaid with a binary mask
that selectively keeps or removes each connection, producing a subnetwork. The number of possible
subnetworks is combinatorial in the number of parameters. Researchers have observed that the
number of combinations is large enough that even within randomly weighted neural networks, there
exist supermasks that create corresponding subnetworks which achieve good performance on complex
tasks. Zhou et al. [57] and Ramanujan et al. [39] present two algorithms for finding these supermasks
while keeping the weights of the underlying network fixed and random. SupSup scales to many tasks
by finding for each task a supermask atop a shared, untrained network.

b) Inference of task-identity as an optimization problem When task identity is unknown,
SupSup can infer task identity to select the correct supermask. Given data from task j, we aim
∗Equal contribution. †Also affiliated with the University of Washington. Code available at https://github.

com/RAIVNLab/supsup and correspondence to {mitchnw,ramanv}@cs.washington.edu.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/RAIVNLab/supsup
https://github.com/RAIVNLab/supsup


Supermask 1

!!
Data from 
unknown task

Maximize 
confidence

Converge to 
supermask 2

!" !#

Training: Supermasks Inference: Supermasks in Superposition

Task 3

Supermask 2 Supermask 3

Task 2Task 1
!! !" !# !! !" !#

Figure 1: (left) During training SupSup learns a separate supermask (subnetwork) for each task.
(right) At inference time, SupSup can infer task identity by superimposing all supermasks, each
weighted by an αi, and using gradients to maximize confidence.

to recover and use the supermask originally trained for task j. This supermask should exhibit a confi-
dent (i.e. low entropy) output distribution when given data from task j [19], so we frame inference of
task-identity as an optimization problem—find the convex combination of learned supermasks which
minimizes the entropy of the output distribution.

In the rest of the paper we develop and evaluate SupSup via the following contributions:

1. We propose a new taxonomy of continual learning scenarios. We use it to embed and
contextualize related work (Section 2).

2. When task identity (ID) is provided during train and test (later dubbed GG), SupSup is
a natural extension of Mallya et al. [30]. By using a randomly weighted backbone and
controlling mask sparsity, SupSup surpasses recent baselines on SplitImageNet [51] while
requiring less storage and time costs (Section 3.2).

3. When task ID is provided during train but not test (later dubbed GN), SupSup outperforms
recent methods that require task ID [26, 23, 4], scaling to 2500 permutations of MNIST
without forgetting. For these uniform tasks, ID can be inferred with a single gradient
computation (Section 3.3).

4. When task identities are not provided at all (later dubbed NNs), SupSup can even infer task
boundaries and allocate new supermasks as needed (Section 3.4).

5. We introduce an extension to the basic SupSup algorithm that stores supermasks implicitly
as attractors in a fixed-size Hopfield network [20] (Section 3.5).

6. Finally, we empirically show that the simple trick of adding superfluous neurons results in
more accurate task inference (Section 3.6).

2 Continual Learning Scenarios and Related Work
In continual learning, a model aims to solve a number of tasks sequentially [47, 56] without catas-
trophic forgetting [10, 23, 33]. Although numerous approaches have been proposed in the context
of continual learning, there lacks a convention of scenarios in which methods are trained and evalu-
ated [49]. The key identifiers of scenarios include: 1) whether task identity is provided during training,
2) provided during inference, 3) whether class labels are shared during evaluation, and 4) whether
the overall task space is discrete or continuous. This results in an exhaustive set of 16 possibilities,
many of which are invalid or uninteresting. For example, if task identity is never provided in training,
providing it in inference is no longer helpful. To that end, we highlight four applicable scenarios,
each with a further breakdown of discrete vs. continuous, when applicable, as shown in Table 1.

We decompose continual learning scenarios via a three-letter taxonomy that explicitly addresses the
three most critical scenario variations. The first two letters specify whether task identity is given
during training (G if given, N if not) and during inference (G if given, N if not). The third letter
specifies a subtle but important distinction: whether labels are shared (s) across tasks or not (u). In
the unshared case, the model must predict both the correct task ID and the correct class within that

2



Table 1: Overview of different Continual Learning scenarios. We suggest scenario names that provide
an intuitive understanding of the variations in training, inference, and evaluation, while allowing a full
coverage of the scenarios previously defined in [49] and [55]. See text for more complete description.
Scenario Description Task space discreet

or continuous?
Example methods /
task names used

GG Task Given during train and Given during inference Either PNN [42], BatchE [51], PSP [4], “Task learning” [55], “Task-IL” [49]

GNs Task Given during train, Not inference; shared labels Either EWC [23], SI [54], “Domain learning” [55], “Domain-IL” [49]

GNu Task Given during train, Not inference; unshared labels Discrete only “Class learning” [55], “Class-IL” [49]

NNs Task Not given during train Nor inference; shared labels Either BGD, “Continuous/discrete task agnostic learning” [55]

task. In the shared case, the model need only predict the correct, shared label across tasks, so it need
not represent or predict which task the data came from. For example, when learning 5 permutations
of MNIST in the GN scenario (task IDs given during train but not test), a shared label GNs scenario
will evaluate the model on the correct predicted label across 10 possibilities, while in the unshared
GNu case the model must predict across 50 possibilities, a more difficult problem.

A full expansion of possibilities entails both GGs and GGu, but as s and u describe only model
evaluation, any model capable of predicting shared labels can predict unshared equally well using the
provided task ID at test time. Thus these cases are equivalent, and we designate both GG. Moreover,
the NNu scenario is invalid because unseen labels signal the presence of a new task (the “labels trick”
in [55]), making the scenario actually GNu, and so we consider only the shared label case NNs.

We leave out the discrete vs. continuous distinction as most research efforts operate within one
framework or the other, and the taxonomy applies equivalently to discrete domains with integer “Task
IDs” as to continue domains with “Task Embedding” or “Task Context” vectors. The remainder of this
paper follows the majority of extant literature in focusing on the case with discrete task boundaries
(see e.g. [55] for progress in the continuous scenario). Equipped with this taxonomy, we review three
existing approaches for continual learning.

(1) Regularization based methods Methods like Elastic Weight Consolidation (EWC) [23] and
Synaptic Intelligence (SI) [54] penalize the movement of parameters that are important for solving
previous tasks in order to mitigate catastrophic forgetting. Measures of parameter importance vary;
e.g. EWC uses the Fisher Information matrix [36]. These methods operate in the GNs scenario
(Table 1). Regularization approaches ameliorate but do not exactly eliminate catastrophic forgetting.

(2) Using exemplars, replay, or generative models These methods aim to explicitly or implicitly
(with generative models) capture data from previous tasks. For instance, [40] performs classification
based on the nearest-mean-of-examplars in a feature space. Additionally, [27, 3] prevent the model
from increasing loss on examples from previous tasks while [41] and [45] respectively use memory
buffers and generative models to replay past data. Exact replay of the entire dataset can trivially
eliminate catastrophic forgetting but at great time and memory cost. Generative approaches can
reduce catastrophic forgetting, but generators are also susceptible to forgetting. Recently, [50]
successfully mitigate this obstacle by parameterizing a generator with a hypernetwork [15].

(3) Task-specific model components Instead of modifying the learning objective or replaying data,
various methods [42, 53, 31, 30, 32, 52, 4, 11, 51] use different model components for different tasks.
In Progressive Neural Networks (PNN), Dynamically Expandable Networks (DEN), and Reinforced
Continual Learning (RCL) [42, 53, 52], the model is expanded for each new task. More efficiently,
[32] fixes the network size and randomly assigns which nodes are active for a given task. In [31, 11],
the weights of disjoint subnetworks are trained for each new task. Instead of learning the weights of
the subnetwork, for each new task Mallya et al. [30] learn a binary mask that is applied to a network
pretrained on ImageNet. Recently, Cheung et al. [4] superimpose many models into one by using
different (and nearly orthogonal) contexts for each task. The task parameters can then be effectively
retrieved using the correct task context. Finally, BatchE [51] learns a shared weight matrix on the
first task and learn only a rank-one elementwise scaling matrix for each subsequent task.

Our method falls into this final approach (3) as it introduces task-specific supermasks. However,
while all other methods in this category are limited to the GG scenario, SupSup can be used to achieve
compelling performance in all four scenarios. We compare primarily with BatchE [51] and Parameter
Superposition (abbreviated PSP) [4] as they are recent and performative. BatchE requires very few
additional parameters for each new task while achieving comparable performance to PNN and scaling
to SplitImagenet. Moreover, PSP outperforms regularization based approaches like SI [54]. However,

3



Algorithm Avg Top 1 Bytes
Accuracy (%)

Upper Bound 92.55 10222.81M

89.58 195.18M
SupSup (GG) 88.68 100.98M

86.37 65.50M

BatchE (GG) 81.50 124.99M
Single Model - 102.23M 106 107 108

Total Number of Bytes

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Upper Bound

SupSup (GG)

SupSup (GG) Transfer

BatchE (GG)

BatchE (GG) - Rand W

Separate Heads

Separate Heads - Rand W

Figure 2: (left) SplitImagenet performance in Scenario GG. SupSup approaches upper bound
performance with significantly fewer bytes. (right) SplitCIFAR100 performance in Scenario GG
shown as mean and standard deviation over 5 seed and splits. SupSup outperforms similar size
baselines and benefits from transfer.

both BatchE [51] and PSP [4] require task identity to use task-specific weights, so they can only
operate in the GG setting.

3 Methods
In this section, we detail how SupSup leverages supermasks to learn thousands of sequential tasks
without forgetting. We begin with easier settings where task identity is given and gradually move to
more challenging scenarios where task identity is unavailable.

3.1 Preliminaries

In a standard `-way classification task, inputs x are mapped to a distribution p over output neurons
{1, ..., `}. We consider the general case where p = f(x,W ) for a neural network f parameterized
by W and trained with a cross-entropy loss. In continual learning classification settings we have k
different `-way classification tasks and the input size remains constant across tasks2.

Zhou et al. [57] demonstrate that a trained binary mask (supermask) M can be applied to a randomly
weighted neural network, resulting in a subnetwork with good performance. As further explored by
Ramanujan et al. [39], supermasks can be trained at similar compute cost to training weights while
achieving performance competitive with weight training.

With supermasks, outputs are given by p = f (x,W �M) where � denotes an elementwise product.
W is kept frozen at its initialization: bias terms are 0 and other parameters in W are ±c with equal
probability and c is the standard deviation of the corresponding Kaiming normal distribution [17].
This initialization is referred to as signed Kaiming constant by [39] and the constant cmay be different
for each layer. For completeness we detail the Edge-Popup algorithm for training supermasks [39] in
Section E of the appendix.

3.2 Scenario GG: Task Identity Information Given During Train and Inference

When task identity is known during training we can learn a binary mask M i per task. M i are the only
parameters learned as the weights remain fixed. Given data from task i, outputs are computed as

p = f
(
x,W �M i

)
(1)

For each new task we can either initialize a new supermask randomly, or use a running mean of all
supermasks learned so far. During inference for task i we then use M i. Figure 2 illustrates that in
this scenario SupSup outperforms a number of baselines in accuracy on both SplitCIFAR100 and
SplitImageNet while requiring fewer bytes to store. Experiment details are in Section 4.1.

3.3 Scenarios GNs & GNu : Task Identity Information Given During Train Only

We now consider the case where input data comes from task j, but this task information is unknown
to the model at inference time. During training we proceed exactly as in Scenario GG, obtaining k

2In practice the tasks do not all need to be `-way — output layers can be padded until all have the same size.

4



learned supermasks. During inference, we aim to infer task identity—correctly detect that the data
belongs to task j—and select the corresponding supermask M j .

The SupSup procedure for task ID inference is as follows: first we associate each of the k learned
supermasks M i with an coefficient αi ∈ [0, 1], initially set to 1/k. Each αi can be interpreted as
the “belief” that supermask M i is the correct mask (equivalently the belief that the current unknown
task is task i). The model’s output is then be computed with a weighted superposition of all learned
masks:

p(α) = f

(
x,W �

(
k∑
i=1

αiM
i

))
. (2)

The correct mask M j should produce a confident, low-entropy output [19]. Therefore, to recover the
correct mask we find the coefficients α which minimize the output entropyH of p(α). One option is
to perform gradient descent on α via

α← α− η∇αH (p (α)) (3)

where η is the step size, and αs are re-normalized to sum to one after each update. Another option is
to try each mask individually and pick the one with the lowest entropy output requiring k forward
passes. However, we want an optimization method with fixed sub-linear run time (w.r.t. the number
of tasks k) which leads α to a corner of the probability simplex — i.e. α is 0 everywhere except for
a single 1. We can then take the nonzero index to be the inferred task. To this end we consider the
One-Shot and Binary algorithms.

One-Shot: The task is inferred using a single gradient. Specifically, the inferred task is given by

arg max
i

(
−∂H (p (α))

∂αi

)
(4)

as entropy is decreasing maximally in this coordinate. This algorithms corresponds to one step of the
Frank-Wolfe algorithm [7], or one-step of gradient descent followed by softmax re-normalization
with the step size η approaching∞. Unless noted otherwise, x is a single image and not a batch.

Binary: Resembling binary search, we infer task identity using an algorithm with log k steps.
At each step we rule out half the tasks—the tasks corresponding to entries in the bottom half of
−∇αH (p (α)). These are the coordinates in which entropy is minimally decreasing. A task i is
ruled out by setting αi to zero and at each step we re-normalize the remaining entries in α so that
they sum to one. Pseudo-code for both algorithms may be found in Section A of the appendix.

Once the task is inferred the corresponding mask can be used as in Equation 1 to obtain class
probabilities p. In both Scenario GNs and GNu the class probabilities p are returned. In GNu,
p forms a distribution over the classes corresponding to the inferred task. Experiments solving
thousands of tasks are detailed in Section 4.2.

3.4 Scenario NNs: No Task Identity During Training or Inference

Task inference algorithms from Scenario GN enable the extension of SupSup to Scenario NNs, where
task identity is entirely unknown (even during training). If SupSup is uncertain about the current
task identity, it is likely that the data do not belong to any task seen so far. When this occurs a new
supermask is allocated, and k (the number of tasks learned so far) is incremented.

We consider the One-Shot algorithm and say that SupSup is uncertain when performing task identity
inference if ν = softmax (−∇αH (p (α))) is approximately uniform. Specifically, if kmaxi νi <
1 + ε a new mask is allocated and k is incremented. Otherwise mask arg maxi νi is used, which
corresponds to Equation 4. We conduct experiments on learning up to 2500 tasks entirely without
any task information, detailed in Section 4.3. Figure 4 shows that SupSup in Scenario NNs achieves
comparable performance even to Scenario GNu.

3.5 Beyond Linear Memory Dependence

Hopfield networks [20] implicitly encode a series of binary strings zi ∈ {−1, 1}d with an associated
energy function EΨ(z) =

∑
uv Ψuvzuzv. Each zi is a minima of EΨ, and can be recovered with

gradient descent. Ψ ∈ Rd×d is initially 0, and to encode a new string zi, Ψ← Ψ + 1
dz
izi
>.

5



10 50 100 150 200 250
Num Tasks Learned

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

10 50 100 150 200 250
Num Tasks Learned

SupSup (GNu, H) SupSup (GNu, G) PSP (GG) BatchE (GG) Upper Bound

Figure 3: Using One-Shot to infer task identity, SupSup outperforms methods with access to task
identity. Results shown for PermutedMNIST with LeNet 300-100 (left) and FC 1024-1024 (right).

We now consider implicitly encoding the masks in a fixed-size Hopfield network Ψ for Scenario
GNu. For a new task i a new mask is learned. After training on task i, this mask will be stored as
an attractor in a fixed size Hopfield network. Given new data during inference we perform gradient
descent on the Hopfield energy EΨ with the output entropyH to learn a new mask m. Minimizing
EΨ will hopefully push m towards a mask learned during training while H will push m to be the
correct mask. As Ψ is quadratic in mask size, we will not mask the parameters W . Instead we mask
the output of every layer except the last, e.g. a network with one hidden layer and mask m is given by

f(x,m,W ) = softmax
(
W>2

(
m� σ

(
W>1 x

)))
(5)

for nonlinearity σ. The Hopfield network will then be a similar size as the base neural network. We
refer to this method as HopSupSup and provide additional details in Section B.

3.6 Superfluous Neurons & an Entropy Alternative

Similar to previous methods [49], HopSupSup requires `k output neurons in Scenario GNu. SupSup,
however, is performing `k-way classification without `k output neurons. Given data during inference
1) the task is inferred and 2) the corresponding mask is used to obtain outputs p. The class probabilities
p correspond to the classes for the inferred task, effectively reusing the neurons in the final layer.

SupSup could use an output size of `, though we find in practice that it helps significantly to add
extra neurons to the final layer. Specifically we consider outputs p ∈ Rs and refer to the neurons
{`+1, ..., s} as superfluous neurons (s-neurons). The standard cross-entropy loss will push the values
of s-neurons down throughout training. Accordingly, we consider an objective G which encourages
the s-neurons to have large negative values and can be used as an alternative to entropy in Equation 4.
Given data from task j, mask M j will minimize the values of the s-neurons as it was trained to do.
Other masks were also trained to minimize the values of the s-neurons, but not for data from task j.
In Lemma 1 of Section I we provide the exact form of G in code (G = logsumexp (p) with masked
gradients for p1, ...,p`) and offer an alternative perspective on why G is effective — the gradient of
G for all s-neurons exactly mirrors the gradient from the supervised training loss.

4 Experiments

4.1 Scenario GG: Task Identity Information Given During Train and Inference

Datasets, Models & Training In this experiment we validate the performance of SupSup on
SplitCIFAR100 and SplitImageNet. Following Wen et al. [51], SplitCIFAR100 randomly partitions
CIFAR100 [24] into 20 different 5-way classification problems. Similarly, SplitImageNet randomly
splits the ImageNet [5] dataset into 100 different 10-way classification tasks. Following [51] we use a
ResNet-18 with fewer channels for SplitCIFAR100 and a standard ResNet-50 [18] for SplitImageNet.
The Edge-Popup algorithm from [39] is used to obtain supermasks for various sparsities with a
layer-wise budget from [35]. We either initialize each new mask randomly (as in [39]) or use a
running mean of all previous learned masks. This simple method of “Transfer” works very well, as
illustrated by Figure 2. Additional training details and hyperparameters are provided in Section D.

6



0 1000 2000
Num Tasks Learned

0.91

0.92

0.93

0.94

0.95

A
cc

ur
ac

y

Upper Bound SupSup (GNu, H) SupSup (GNu, G) Lower Bound SupSup (NNs, H)

0 500 1000 1500 2000 2500
Num Tasks Learned

0.4

0.6

0.8

A
cc

ur
ac

y

Upper Bound SupSup (GNu, H) SupSup (GNu, G) Lower Bound SupSup (NNs, H)

0 500 1000 1500 2000 2500
Num Tasks Learned

0.4

0.6

0.8

A
cc

ur
ac

y

SupSup (NNs, H) SupSup (GNu, H) SupSup (GNu, G) Upper Bound Lower Bound

Figure 4: Learning 2500 tasks and inferring task identity using the One-Shot algorithm. Results for
both the GNu and NNs scenarios with the LeNet 300-100 model using output size 500.

Computation In Scenario GG, the primary advantage of SupSup from Mallya et al. [31] or Wen et
al. [51] is that SupSup does not require the base model W to be stored. Since W is random it suffices
to store only the random seed. For a fair comparison we also train BatchE [51] with random weights.
The sparse supermasks are stored in the standard scipy.sparse.csc3 format with 16 bit integers.
Moreover, SupSup requires minimal overhead in terms of forwards pass compute. Elementwise
product by a binary mask can be implemented via memory access, i.e. selecting indices. Modern
GPUs have very high memory bandwidth so the time cost of this operation is small with respect to
the time of a forward pass. In particular, on a 1080 Ti this operation requires ∼ 1% of the forward
pass time for a ResNet-50, less than the overhead of BatchE (computation in Section D).

Baselines In Figure 2, for “Separate Heads” we train different heads for each task using a trunk (all
layers except the final layer) trained on the first task. In contrast “Separate Heads - Rand W” uses a
random trunk. BatchE results are given with the trunk trained on the first task (as in [51]) and random
weights W . For “Upper Bound”, individual models are trained for each task. Furthermore, the trunk
for task i is trained on tasks 1, ..., i. For “Lower Bound” a shared trunk of the network is trained
continuously and a separate head is trained for each task. Since catastrophic forgetting occurs we
omit “Lower Bound” from Figure 2 (the SplitCIFAR100 accuracy is 24.5%).

4.2 Scenarios GNs & GNu: Task Identity Information Given During Train Only

Our solutions for GNs and GNu are very similar. Because GNu is strictly more difficult, we focus on
only evaluating in Scenario GNu. For relevant figures we provide a corresponding table in Section H.

Datasets Experiments are conducted on PermutedMNIST, RotatedMNIST, and SplitMNIST. For
PermutedMNIST [23], new tasks are created with a fixed random permutation of the pixels of MNIST.
For RotatedMNIST, images are rotated by 10 degrees to form a new task with 36 tasks in total
(similar to [4]). Finally SplitMNIST partitions MNIST into 5 different 2-way classification tasks,
each containing consecutive classes from the original dataset.

Training We consider two architectures: 1) a fully connected network with two hidden layers of
size 1024 (denoted FC 1024-1024 and used in [4]) 2) the LeNet 300-100 architecture [25] as used
in [8, 6]. For each task we train for 1000 batches of size 128 using the RMSProp optimizer [48]
with learning rate 0.0001 which follows the hyperparameters of [4]. Supermasks are found using
the algorithm of Mallya et al. [31] with threshold value 0. However, we initialize the real valued
“scores” with Kaiming uniform as in [39]. Training the mask is not a focus of this work, we choose
this method as it is fast and we are not concerned about controlling mask sparsity as in Section 4.1.

Evaluation At test time we perform inference of task identity once for each batch. If task is not
inferred correctly then accuracy is 0 for the batch. Unless noted otherwise we showcase results for
the most challenging scenario — when the task identity is inferred using a single image. We use
“Full Batch” to indicate that all 128 images are used to infer task identity. Moreover, we experiment
with both the the entropyH and G (Section 3.6) objectives to perform task identity inference.

Results Figure 4 illustrates that SupSup is able to sequentially learn 2500 permutations of MNIST—
SupSup succeeds in performing 25,000-way classification. This experiment is conducted with the
One-Shot algorithm (requiring one gradient computation) using single images to infer task identity.
The same trends hold in Figure 3, where SupSup outperforms methods which operate in Scenario GG

3https://docs.scipy.org/doc/scipy/reference/sparse.html

7

https://docs.scipy.org/doc/scipy/reference/sparse.html


0 50 100 150 200 250 300 350
Rotation (degrees)

0.90

0.95

1.00

A
cc

ur
ac

y

SupSup (GNu, full batch, H)

BatchE (GG)

PSP (GG)

Upper Bound

Lower Bound

10 50 100 150 200 250
Num Tasks Learned

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

SupSup (GNu, H)

BatchE (GNu, full batch, H)

BatchE (GNu, H)

Upper Bound

Figure 5: (left) Testing the FC 1024-1024 model on RotatedMNIST. SupSup uses Binary to infer
task identity with a full batch as tasks are similar (differing by only 10 degrees). (right) The One-
Shot algorithm can be used to infer task identity for BatchE [51]. Experiment conducted with FC
1024-1024 on PermutedMNIST using an output size of 500, shown as mean and stddev over 3 runs.

10 50 100 150 200 250
Num Tasks Learned

0.90

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

10 50 100 150 200 250
Num Tasks Learned

SupSup (GNu, s = 200, H)

SupSup (GNu, s = 200, G)

SupSup (GNu, s = 100, H)

SupSup (GNu, s = 100, G)

SupSup (GNu, s = 25, H)

SupSup (GNu, s = 25, G)

Lower Bound

Upper Bound

Figure 6: The effect of output size s on SupSup performance using the One-Shot algorithm. Results
shown for PermutedMNIST with LeNet 300-100 (left) and FC 1024-1024 (right).

by using the One-Shot algorithm to infer task identity. In Figure 3, output sizes of 100 and 500 are
respectively used for LeNet 300-100 and FC 1024-1024. The left hand side of Figure 5 illustrates
that SupSup is able to infer task identity even when tasks are similar—SupSup is able to distinguish
between rotations of 10 degrees. Since this is a more challenging problem, we use a full batch and the
Binary algorithm to perform task identity inference. Figure 7 (appendix) shows that for HopSupSup
on SplitMNIST, the new mask m converges to the correct supermask in < 30 gradient steps.

Baselines & Ablations Figure 5 (left) shows that even in Scenario GNu, SupSup is able to outperform
PSP [4] and BatchE [51] in Scenario GG—methods using task identity. We compare SupSup in
GNu with methods in this strictly easier scenario as they are more competitive. For instance, [49]
considers sequential learning problems with only 5-10 tasks. SupSup, after sequentially learning 250
permutations of MNIST, outperforms all non-replay methods from [3] in the GNu scenario after they
have learned only 10 permutations of MNIST with a similar network. In GNu, Online EWC achieves
33.88% & SI achieves 29.31% on 10 permutations of MNIST [49] while SupSup achieves 94.91%
accuracy after 250 permutations (see Table 5 in [49] vs. Table 7).

In Figure 5 (right) we equip BatchE with task inference using our One-Shot algorithm. Instead
of attaching a weight αi to each supermask, we attach a weight αi to each rank-one matrix [51].
Moreover, in Section C of the appendix we augment BatchE to perform task-inference using large
batch sizes. “Upper Bound” and “Lower Bound” are the same as in Section 4.1. Moreover, Figure 6
illustrates the importance of output size. Further investigation of this phenomena is provided by
Section 3.6 and Lemma 1 of Section I.

4.3 Scenario NNs: No Task Identity During Training or Inference

For the NNs Scenario we consider PermutedMNIST and train on each task for 1000 batches (the
model does not have access to this iteration number). Every 100 batches the model must choose to
allocate a new mask or pick an existing mask using the criteria from Section 3.4 (ε = 2−3). Figure 4
illustrates that without access to any task identity (even during training) SupSup is able to learn
thousands of tasks. However, a final dip is observed as a budget of 2500 supermasks total is enforced.

8



5 Conclusion

Supermasks in Superposition (SupSup) is a flexible and compelling model applicable to a wide
range of scenarios in Continual Learning. SupSup leverages the power of subnetworks [57, 39, 31],
and gradient-based optimization to infer task identity when unknown. SupSup achieves state-of-
the-art performance on SplitImageNet when given task identity, and performs well on thousands of
permutations and almost indiscernible rotations of MNIST without any task information.

We observe limitations in applying SupSup with task identity inference to non-uniform and more
challenging problems. Task inference fails when models are not well calibrated—are overly confident
for the wrong task. As future work, we hope to explore automatic task inference with more calibrated
models [14], as well as circumventing calibration challenges by using optimization objectives such
as self-supervision [16] and energy based models [13]. In doing so, we hope to tackle large-scale
problems in Scenarios GN and NNs.

Broader Impact

A goal of continual learning is to solve many tasks with a single model. However, it is not exactly
clear what qualifies as a single model. Therefore, a concrete objective has become to learn many
tasks as efficiently as possible. We believe that SupSup is a useful step in this direction. However,
there are consequences to more efficient models, both positive and negative.

We begin with the positive consequences:

• Efficient models require less compute, and are therefore less harmful for the environment
then learning one model per task [44]. This is especially true if models are able to leverage
information from past tasks, and training on new tasks is then faster.

• Efficient models may be run on the end device. This helps to preserve privacy as a user’s
data does not have to be sent to the cloud for computation.

• If models are more efficient then large scale research is not limited to wealthier institutions.
These institutions are more likely in privileged parts of the world and may be ignorant
of problems facing developing nations. Moreover, privileged institutions may not be a
representative sample of the research community.

We would also like to highlight and discuss the negative consequences of models which can efficiently
learn many tasks, and efficient models in general. When models are more efficient, they are also more
available and less subject to regularization and study as a result. For instance, when a high-impact
model is released by an institution it will hopefully be accompanied by a Model Card [34] analyzing
the bias and intended use of the model. By contrast, if anyone is able to train a powerful model this
may no longer be the case, resulting in a proliferation of models with harmful biases or intended use.
Taking the United States for instance, bias can be harmful as models show disproportionately more
errors for already marginalized groups [2], furthering existing and deeply rooted structural racism.

Acknowledgments

We thank Gabriel Ilharco Magalhães and Sarah Pratt for helpful comments. For valuable conversations
we also thank Tim Dettmers, Kiana Ehsani, Ana Marasović, Suchin Gururangan, Zoe Steine-Hanson,
Connor Shorten, Samir Yitzhak Gadre, Samuel McKinney and Kishanee Haththotuwegama. This
work is in part supported by NSF IIS 1652052, IIS 17303166, DARPA N66001-19-2-4031, DARPA
W911NF-15-1-0543 and gifts from Allen Institute for Artificial Intelligence. Additional revenues:
co-authors had employment with the Allen Institute for AI.

References

[1] Yoshua Bengio, Nicolas L Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. In Advances in neural information processing systems, pages 123–130,
2006.

9



[2] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
pages 77–91, 2018.

[3] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[4] Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Su-
perposition of many models into one. In Advances in Neural Information Processing Systems,
pages 10867–10876, 2019.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR 2009, 2009.

[6] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

[7] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[9] Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm:
On the expressive power of random features in cnns. arXiv preprint arXiv:2003.00152, 2020.

[10] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[11] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning.
arXiv preprint arXiv:1903.04476, 2019.

[12] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[13] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you should
treat it like one. arXiv preprint arXiv:1912.03263, 2019.

[14] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1321–1330. JMLR. org, 2017.

[15] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[19] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[20] John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

10



[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[25] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[26] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. 2010.
[27] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.

In Advances in Neural Information Processing Systems, pages 6467–6476, 2017.
[28] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2016.
[29] Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Proving the lottery ticket

hypothesis: Pruning is all you need. arXiv preprint arXiv:2002.00585, 2020.
[30] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to

multiple tasks by learning to mask weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 67–82, 2018.

[31] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2018.

[32] Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic forgetting
using context-dependent gating and synaptic stabilization. Proceedings of the National Academy
of Sciences, 115(44):E10467–E10475, 2018.

[33] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[34] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchin-
son, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting.
In Proceedings of the conference on fairness, accountability, and transparency, pages 220–229,
2019.

[35] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature communications, 9(1):1–12, 2018.

[36] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv
preprint arXiv:1301.3584, 2013.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019.

[38] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

[39] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Moham-
mad Rastegari. What’s hidden in a randomly weighted neural network? arXiv preprint
arXiv:1911.13299, 2019.

[40] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[41] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. In Advances in Neural Information Processing Systems,
pages 348–358, 2019.

[42] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[43] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An overview of reservoir
computing: theory, applications and implementations. In Proceedings of the 15th european
symposium on artificial neural networks. p. 471-482 2007, pages 471–482, 2007.

11



[44] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. corr abs/1907.10597
(2019). arXiv preprint arXiv:1907.10597, 2019.

[45] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in Neural Information Processing Systems, pages 2990–2999,
2017.

[46] Amos Storkey. Increasing the capacity of a hopfield network without sacrificing functionality.
In International Conference on Artificial Neural Networks, pages 451–456. Springer, 1997.

[47] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209. Springer,
1998.

[48] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

[49] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[50] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.

[51] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

[52] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information
Processing Systems, pages 899–908, 2018.

[53] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[54] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 3987–3995. JMLR. org, 2017.

[55] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using
online variational bayes. arXiv preprint arXiv:1803.10123, 2018.

[56] Jieyu Zhao and Jurgen Schmidhuber. Incremental self-improvement for life-time multi-agent
reinforcement learning. In From Animals to Animats 4: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, Cambridge, MA, pages 516–525, 1996.

[57] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:
Zeros, signs, and the supermask. In Advances in Neural Information Processing Systems, pages
3592–3602, 2019.

12


