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Abstract

In this paper, we propose a new accelerated stochastic first-order method called
clipped-SSTM for smooth convex stochastic optimization with heavy-tailed dis-
tributed noise in stochastic gradients and derive the first high-probability complexity
bounds for this method closing the gap in the theory of stochastic optimization
with heavy-tailed noise. Our method is based on a special variant of accelerated
Stochastic Gradient Descent (SGD) and clipping of stochastic gradients. We extend
our method to the strongly convex case and prove new complexity bounds that out-
perform state-of-the-art results in this case. Finally, we extend our proof technique
and derive the first non-trivial high-probability complexity bounds for SGD with
clipping without light-tails assumption on the noise.

1 Introduction

In this paper we focus on the following problem
min
x∈Rn

f(x), f(x) = Eξ [f(x, ξ)] , (1)

where f(x) is a smooth convex function and the mathematical expectation in (1) is taken with respect
to the random variable ξ defined on the probability space (X ,F ,P) with some σ-algebra F and
probability measure P. Such problems appear in various applications of machine learning [21, 61, 64]
and mathematical statistics [66]. Perhaps, the most popular method to solve problems like (1) is
Stochastic Gradient Descent (SGD) [26, 50, 51, 59, 63]. There is a lot of literature on the convergence
in expectation of SGD for (strongly) convex [20, 24, 25, 46, 48, 49, 55] and non-convex [6, 20, 34]
problems under different assumptions on stochastic gradient. When the problem is good enough, i.e.
when the distributions of stochastic gradients are light-tailed, this theory correlates well with the
real behavior of trajectories of SGD in practice. Moreover, the existing high-probability bounds for
SGD [9, 11, 49] coincide with its counterpart from the theory of convergence in expectation up to
logarithmical factors depending on the confidence level.

However, there are a lot of important applications where the noise distribution in the stochastic
gradient is significantly heavy-tailed [65, 71]. For such problems SGD is often less robust and shows
poor performance in practice. Furthermore, existing results for the convergence with high-probability
for SGD are also much worse in the presence of heavy-tailed noise than its “light-tailed counterparts”.
In this case, rates of the convergence in expectation can be insufficient to describe the behavior of the
method.

To illustrate this phenomenon we consider a simple example of stochastic optimization problem
and apply SGD with constant stepsize to solve it. After that, we present a natural and simple way to
resolve the issue of SGD based on the clipping of stochastic gradients. However, we need to introduce
some important notations and definitions before we start to discuss this example.
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1.1 Preliminaries

In this section we introduce the main part of notations, assumption and definitions. The rest is
classical for optimization literature and stated in the appendix (see Section A). Throughout the paper
we assume that at each point x ∈ Rn function f is accessible only via stochastic gradients∇f(x, ξ)
such that

Eξ[∇f(x, ξ)] = ∇f(x), Eξ
[
‖∇f(x, ξ)−∇f(x)‖22

]
≤ σ2, (2)

i.e. we have an access to the unbiased estimator of ∇f(x) with uniformly bounded by σ2 variance
where σ is some non-negative number. These assumptions on the stochastic gradient are standard
in the stochastic optimization literature [18, 20, 31, 38, 49]. Below we introduce one of the most
important definitions in this paper.

Definition 1.1 (light-tailed random vector). We say that random vector η has a light-tailed dis-
tribution, i.e. satisfies “light-tails” assumption, if there exist E[η] and P {‖η − E[η]‖2 > b} ≤
2 exp

(
− b2

2σ2

)
for all b > 0

Such distributions are often called sub-Gaussian ones (see [30] and references therein). One can
show (see Lemma 2 from [30]) that this definition is equivalent to

E
[
exp

(
‖η−E[η]‖22/σ2

)]
≤ exp(1) (3)

up to absolute constant difference in σ. Due to Jensen’s inequality and convexity of exp(·) one
can easily show that inequality (3) implies E[‖η − E[η]‖22] ≤ σ2. However, the reverse implication
does not hold in general. Therefore, in the rest of the paper by stochastic gradient with heavy-tailed
distribution, we mean such a stochastic gradient that satisfies (2) but not necessarily (3).

1.2 Simple Motivational Example: Convergence in Expectation and Clipping

In this section we consider SGD xk+1 = xk − γ∇f(xk, ξk) applied to solve the problem (1) with
f(x, ξ) = ‖x‖22/2 + 〈ξ, x〉, where ξ is a random vector with zero mean and the variance by σ2 (see
the details in Section H.1). The state-of-the-art theory (e.g. [24, 25]) says that convergence properties
in expectation of SGD in this case depend only on the stepsize γ, condition number of f , initial
suboptimality f(x0)− f(x∗) and the variance σ, but does not depend on distribution of ξ. However,
the trajectory of SGD significantly depends on the distribution of ξ. To illustrate this we consider 3
different distributions of ξ with the same σ, i.e., Gaussian distribution, Weibull distribution [69] and
Burr Type XII distribution [3, 42] with proper shifts and scales to get needed mean and variance for
ξ (see the details in Section H.1). For each distribution, we run SGD several times from the same
starting point, the same stepsize γ, and the same batchsize, see typical runs in Figure 1. This simple
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Figure 1: Typical trajectories of SGD and clipped-SGD applied to solve (130) with ξ having Gaussian, Weibull, and Burr Type XII tails.

example shows that SGD in all 3 cases rapidly reaches a neighborhood of the solution and then starts
to oscillate there. However, these oscillations are significantly larger for the second and the third
cases where stochastic gradients are heavy-tailed. Unfortunately, guarantees for the convergence in
expectation cannot express this phenomenon, since in expectation the convergence guarantees for all
3 cases are identical.

Moreover, in practice, e.g., in training big machine learning models, it is often used only a couple
runs of SGD or another stochastic method. The training process can take hours or even days, so,
it is extremely important to obtain good accuracy of the solution with high probability. However,
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as our simple example shows, SGD fails to converge robustly if the noise in stochastic gradients is
heavy-tailed which was also noticed for several real-world problems like training AlexNet [37] on
CIFAR10 [36] (see [65]) and training an attention model [68] via BERT [8] (see [71]).

Clearly, since the distributions of stochastic gradients in the second and the third cases are heavy
tailed the probability of sampling too large ξ (in terms of the norm) and, as a consequence, too
large ∇f(x, ξ) is high even if we are close to the solution. Once the current point xk is not too
far from the solution and SGD gets a stochastic gradient with too large norm the method jumps far
from the solution. Therefore, we see large oscillations. Since the reason of such oscillations is
large norm of stochastic gradient it is natural to clip it, i.e., update xk+1 according to xk+1 = xk −
γmin{1, λ/‖∇f(xk,ξk)‖2}∇f(xk, ξk). The obtained method is known in literature as clipped-SGD
(see [17, 21, 43, 44, 57, 70, 71] and references therein). Among the good properties of clipped-SGD
we emphasize its robustness to the heavy-tailed noise in stochastic gradients (see also [71]). In our
tests, trajectories of clipped-SGD oscillate not significantly even for heavy-tailed distributions, and
clipping does not spoil the rate of convergence. These two factors make clipped-SGD preferable
than SGD when we deal with heavy-tailed distributed stochastic gradients (see further discussion in
Section B.2).

1.3 Related Work

1.3.1 Smooth Stochastic Optimization: Light-Tailed Noise

In the light-tailed case high-probability complexity bounds and complexity bounds in expectation for
SGD and AC-SA differ only in logarithmical factors of 1/β, see the details in Table 1. Such bounds
were obtained in [9] for SGD in the convex case and then were extended to the µ-strongly convex
case in [11] for modification of SGD called Stochastic Intermediate Gradient Method (SIGM). Finally,
optimal complexities were derived in [18, 19, 38] for the method called AC-SA in the convex case
and for Multi-Staged AC-SA (MS-AC-SA) in the strongly convex case.

1.3.2 Smooth Stochastic Optimization: Heavy-Tailed Noise

Without light tails assumption the most straightforward results lead toO(1/β2) andO(1/β) dependency
on β in the complexity bounds. Such bounds can be obtained from the complexity bounds for the
convergence in expectation via Markov’s inequality. However, for small β these bounds become
unacceptably poor. Classical results [13, 53, 62] reduce these dependence to O(ln(β−1)) but they
have worse dependence on ε than corresponding results relying on light tails assumption.

For a long time the following question was open: is it possible to design stochastic methods having the
same or comparable complexity bounds as in the light-tailed case but without light tails assumption
on stochastic gradients? In [47] and [7] the authors give a positive answer to this question but only
partially. Let us discuss the results from these papers in detail.

In [47] Nazin et al. develop a new algorithm called Robust Stochastic Mirror Descent (RSMD) which
is based on a special truncation of stochastic gradients and derive complexity guarantees similar to
SGD in the convex case but without light assumption, see Table 1. This technique is very similar to
gradient clipping. Moreover, in [47] authors consider also composite problems with non-smooth
composite term. However, in [47] the optimization problem is defined on some compact convex set
X with diameter Θ = max{‖x− y‖2 | x, y ∈ X} <∞ and the analysis depends substantially on
the boundedness of X . Using special restarts technique together with iterative squeezing of the set X
Nazin et al. extend their method to the µ-strongly convex case, see Table 2. Finally, in the discussion
section of [47] authors formulate the following question: is it possible to develop such accelerated
stochastic methods that have the same or comparable complexity bounds as in the light-tailed case
but do not require stochastic gradients to be light-tailed?

In the strongly convex case the positive answer to this question was given by Davis et al. [7] where
authors propose a new method called proxBoost that is based on robust distance estimation [29, 51]
and proximal point method [40, 41, 60], see Table 2. However, this approach requires solving an
auxiliary optimization problem at each iteration that can lead to poor performance in practice.

In our paper we close the gap in theory, i.e., we provide a positive answer to the following question:
Is it possible to develop such an accelerated stochastic method that have the same or comparable
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complexity bound as for AC-SA in the convex case but do not require stochastic gradients to be
light-tailed?

1.4 Our Contributions

• One of the main contributions of our paper is a new method called Clipped Stochastic Similar
Triangles Method (clipped-SSTM). For the case when the objective function f is convex
and L-smooth we derive the following complexity bound without light tails assumption on
the stochastic gradients: O(max{

√
LR2

0/ε, σ
2R2

0/ε2} ln(LR
2
0/εβ)). This bound outperforms

all known bounds for this setting (see Table 1) and up to the difference in logarithmical
factors recovers the complexity bound of AC-SA derived under light tails assumption. That
is, in this paper we close the gap in theory theory of smooth convex stochastic optimization
with heavy-tailed noise. Moreover, unlike in [47], we do not assume boundedness of the
set where the optimization problem is defined, which makes our analysis more complicated.
We also study different batchsize policies for clipped-SSTM.

• Using restarts technique we extend clipped-SSTM to the µ-strongly convex objectives
and obtain a new method called Restarted clipped-SSTM (R-clipped-SSTM). For this
method we prove the following complexity bound (again, without light tails assumption on
the stochastic gradients): O(max{

√
L/µ ln(µR

2
/ε), σ

2
/µε} ln(L/µβ ln(µR

2
/ε))). Our bound

outperforms the state-of-the-art result from [7] in terms of the dependence on ln L
µ , see

Table 2 for the details.

• We prove the first high-probability complexity guarantees for clipped-SGD in convex
and strongly convex cases without light tails assumption on the stochastic gradients, see
Tables 1 and 2. The complexity we prove for clipped-SGD in the convex case is comparable
with corresponding bound for SGD derived under light tails assumption. In the µ-strongly
convex case we derive a new complexity bound for the restarted version of clipped-SGD
(R-clipped-SGD) which is comparable with its “light-tailed counterpart”.

• We conduct several numerical experiments with the proposed methods in order to justify
the theory we develop. In particular, we show that clipped-SSTM can outperform SGD and
clipped-SGD in practice even without using large batchsizes. Moreover, in our experiments
we illustrate how clipping makes the convergence of SGD and SSTM more robust and reduces
their oscillations.

Table 1: Comparison of existing high-probability convergence results for stochastic optimization
under assumptions (2) for convex and L-smooth objectives. The second column contains an overall
number of stochastic first-order oracle calls needed to achieve ε-solution with probability at least
1 − β. In the third column “light” means that ∇f(x, ξ) satisfies (3) and “heavy” means that the
result holds even in the case when (3) does not hold. Column “Domain” describes the set where the
optimization problem is defined. For RSMD Θ is a diameter of the set where the optimization problem
is defined. We use red color to emphasize the restrictions we eliminate.

Method Complexity Tails Domain
SGD [9] O

(
max

{
LR0

2

ε , σ
2R0

2

ε2 ln2(β−1)
})

light bounded

AC-SA [18, 38] O

(
max

{√
LR2

0

ε ,
σ2R2

0

ε2 ln(β−1)

})
light arbitrary

RSMD [47] O
(

max
{
LΘ2

ε , σ
2Θ2

ε2

}
ln(β−1)

)
heavy bounded

clipped-SGD [This work] O
(

max
{
LR0

2

ε , σ
2R0

2

ε2

}
ln(β−1)

)
heavy Rn

clipped-SSTM [This work] O

(
max

{√
LR2

0

ε ,
σ2R2

0

ε2

}
ln

LR2
0+σR0

εβ

)
heavy Rn

1.4.1 Relation to [71]

While Zhang et al. [71] consider different setup, [71] is highly relevant to our paper, and, in some
sense, it complements our findings. In particular, it contains the analysis of several versions of
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Table 2: Comparison of existing high-probability convergence results for stochastic optimization
under assumptions (2) for µ-strongly convex and L-smooth objectives. The second column contains
an overall number of stochastic first-order oracle calls needed to achieve ε-solution with probability
at least 1− β. In the third column “light” means that∇f(x, ξ) satisfies (3) and “heavy” means that
the result holds even in the case when (3) does not hold. Column “Domain” describes the set where
the optimization problem is defined. For RSMD Θ is a diameter of the set where the optimization
problem is defined and R =

√
2(f(x0)−f(x∗))/µ, r0 = f(x0)− f(x∗). We use red color to emphasize

the restrictions we eliminate.

Method Complexity Tails Domain
SIGM [11] O

(
max

{
L
µ ln

µR2
0

ε , σ
2

µε ln
(
β−1 ln

µR2
0

ε

)})
light arbitrary

MS-AC-SA [19] O
(

max
{√

L
µ ln

LR2
0

ε , σ
2

µε ln
(
β−1 ln

LR2
0

ε

)})
light arbitrary

restarted-RSMD
[47] O

(
max

{
L
µ ln

(
µΘ2

ε

)
, σ

2

µε

}
ln
(
β−1 ln µΘ2

ε

))
heavy bounded

proxBoost [7]
O

(
max

{√
L
µ ln

(
LR2

0ln L
µ

ε

)
,
σ2ln L

µ

µε

}
· C
)

,

where C = ln
(
L
µ

)
ln

(
ln L

µ

β

) heavy arbitrary

clipped-SGD
[This work]

O
(

max
{
L
µ ,

σ2

µε ·
L
µ

}
ln
(
r0
ε

)
ln
(
L
µβ ln r0

ε

))
heavy Rn

R-clipped-SGD
[This work]

O
(

max
{
L
µ ln µR2

ε , σ
2

µε

}
ln
(
L
µβ ln µR2

ε

))
heavy Rn

R-clipped-SSTM
[This work]

O
(

max
{√

L
µ ln µR2

ε , σ
2

µε

}
ln
(
L
µβ ln µR2

ε

))
heavy Rn

clipped-SGD establishing the rates of convergence in expectation while we focus on the high-
probability complexity guarantees. Secondly, we consider convex and strongly convex cases while
[71] provides an analysis for non-convex and strongly convex problems. Finally, [71] relies on the
following assumption: there exist suchG > 0 and α ∈ (1, 2] that the stochastic gradient g(x) satisfies
E‖g(x)‖α2 ≤ Gα. This assumption implies the boundedness of the gradient of the objective function
f(x) which is quite restrictive and does not hold on the whole space for strongly convex functions. In
our paper, we assume only boundedness of the variance. Moreover, we consider smooth problems that
allows us to accelerate clipped-SGD and obtain clipped-SSTM, while Zhang et al. [71] provide
non-accelerated rates.

1.5 Paper Organization

The remaining part of the paper is organized as follows. In Section 2 we present clipped-SSTM
together with the main complexity result in the convex case that we prove for this method. Then, we
present the first high-probability complexity bounds for clipped-SGD for for the convex problems.
In Section 4 we provide our numerical experiments justifying our theoretical results. Finally, in
Section 5 we provide some concluding remarks and discuss the limitations and possible extensions
of the results developed in the paper. Due to the space limitations, we put the exact formulations
of all theorems, results for the strongly convex problems and the full proofs in the Appendix (see
Sections F and G), together with auxiliary and technical results and additional experiments (see
Section H). Moreover, in Section F.1.2 we present a sketch of the proof of the main convergence
result for clipped-SSTM and explain the intuition behind it.

2 Accelerated SGD with Clipping

In this section we consider the situation when f(x) is convex and L-smooth on Rn. For this problem
we present a new method called Clipped Stochastic Similar Triangles Method (clipped-SSTM, see
Algorithm 1). In our method we use a clipped stochastic gradient that is defined in the following way:

clip(∇f(x, ξ), λ) = min {1, λ/‖∇f(x,ξ)‖2}∇f(x, ξ) (4)
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Algorithm 1 Clipped Stochastic Similar Triangles Method (clipped-SSTM)
Input: starting point x0, number of iterationsN , batchsizes {mk}Nk=1, stepsize parameter a, clipping

parameter B
1: Set A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, . . . , N − 1 do
3: Set αk+1 = k+2

2aL , Ak+1 = Ak + αk+1, λk+1 = B
αk+1

4: xk+1 = (Aky
k+αk+1z

k)/Ak+1

5: Draw fresh i.i.d. samples ξk1 , . . . , ξ
k
mk

and compute ∇f(xk+1, ξk) =
1
mk

∑mk
i=1∇f(xk+1, ξki )

6: Compute ∇̃f(xk+1, ξk) = clip(∇f(xk+1, ξk), λk+1) using (4)
7: zk+1 = zk − αk+1∇̃f(xk+1, ξk)
8: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

9: end for
Output: yN

where ∇f(x, ξ) = 1
m

∑m
i=1∇f(x, ξi) is a mini-batched version of ∇f(x). That is, in order to

compute clip(∇f(x, ξ), λ) one needs to get m i.i.d. samples∇f(x, ξ1), . . . ,∇f(x, ξm), compute its
average and then project the result ∇f(x, ξ) on the Euclidean ball with radius λ and center at the
origin. Next theorem summarizes the main convergence result for clipped-SSTM.

Theorem 2.1. Assume that function f is convex and L-smooth. Then for all β ∈ (0, 1)
and N ≥ 1 such that ln(4N/β) ≥ 2 we have that after N iterations of clipped-SSTM
with mk = Θ

(
max

{
1, σ

2α2
k+1N ln(N/β)/R2

0

})
, B = Θ(R0/ln(N/β)) and a = Θ(ln2(N/β)) that

f(yN ) − f(x∗) = O(aLR
2
0/N2) holds with probability at least 1 − β where R0 = ‖x0 − x∗‖2.

In other words, if we choose a to be equal to the maximum from (27), then the method achieves
f(yN ) − f(x∗) ≤ ε with probability at least 1 − β after O(

√
LR2

0/ε ln(LR
2
0/εβ)) iterations and

requires O(max{
√
LR2

0/ε, σ
2R2

0/ε2} ln(LR
2
0/εβ)) oracle calls.

The theorem says that for any β ∈ (0, 1) clipped-SSTM converges to ε-solution with probability
at least 1− β and requires exactly the same number of stochastic first-order oracle calls (up to the
difference in constant and logarithmical factors) as optimal stochastic methods like AC-SA [18, 38] or
Stochastic Similar Triangles Method [16, 22]. However, our method achieves this rate under less
restrictive assumption. Indeed, Theorem 2.1 holds even in the case when the stochastic gradient
∇f(x, ξ) satisfies only (2) and can have heavy-tailed distribution. In contrast, all existing results that
establish (30) and that are known in the literature hold only in the light-tails case, see Section 1.3.1.

Finally, when σ2 is big then Theorem 2.1 says that at iteration k clipped-SGD requires large
batchsizes mk ∼ k2N (see (26)) which is proportional to ε−3/2 for last iterates. It can make the cost
of one iteration extremely high, therefore, we also consider different stepsize policies that remove
this drawback in Section F.1.1. In particular, the following result shows that clipped-SSTM achieves
the same oracle complexity even with constant batchsizes mk when stepsize parameter a is chosen
properly.

Corollary 2.2. Let the assumptions of Theorem F.1 hold and a =

Θ
(

max{1, ln2(N/β),
√

lnN/βσN
3/2
/LR0}

)
. Then mk = O(1) and clipped-SSTM

achieves f(yN ) − f(x∗) ≤ ε with probability at least 1 − β after
O(max{

√
LR2

0/ε, σ
2R2

0/ε2} ln((LR2
0+σR0)/εβ)) iterations/oracle calls.

3 SGD with Clipping

In this section we present our complexity results for clipped-SGD (see Algorithm 2) in the convex
case. Next theorem summarizes the main convergence result for clipped-SGD in this case.
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Algorithm 2 Clipped Stochastic Gradient Descent (clipped-SGD)

Input: starting point x0, number of iterations N , batchsizes {mk}N−1
k=0 , stepsize γ > 0, clipping

level λ > 0
1: for k = 0, . . . , N − 1 do
2: Draw fresh i.i.d. samples ξk1 , . . . , ξ

k
mk

and compute∇f(xk, ξk) = 1
mk

∑mk
i=1∇f(xk, ξki )

3: Compute ∇̃f(xk, ξk) = clip(∇f(xk, ξk), λ) using (4)
4: xk+1 = xk − γ∇̃f(xk, ξk)
5: end for

Output: x̄N = 1
N

∑N−1
k=0 xk

Theorem 3.1. Assume that function f is convex and L-smooth. Then for all β ∈ (0, 1) and N ≥ 1
such that ln(4N/β) ≥ 2 we have that after N iterations of clipped-SGD with λ = Θ(LR0) and
mk = m = Θ(max{1,Nσ2

/R2
0L

2 ln(N/β)}) where R0 = ‖x0−x∗‖2 and stepsize γ = 1/80L ln(4N/β)

that f(x̄N )−f(x∗) = O(LR
2
0 ln(4N/β)/N) with probability at least 1−β where x̄N = 1

N

∑N−1
k=0 xk.

In other words, the method achieves f(x̄N ) − f(x∗) ≤ ε with probability at least 1 − β after
O
(
LR2

0/ε ln(LR
2
0/εβ)

)
iterations and requires O(max{LR2

0/ε, σ
2R2

0/ε2} ln(LR
2
0/εβ)) oracle calls.

To the best of our knowledge, it is the first result for clipped-SGD establishing non-trivial complexity
guarantees for the convergence with high probability. Up to the difference in logarithmical factors our
bound recovers the complexity bound for SGD which was obtained under light tails assumption and the
complexity bound for RSMD. However, unlike in [47], we do not assume that the optimization problem
is defined on the bounded set. The proof technique is similar to one we use to prove Theorem F.1.
One can find the full proof in Section G.3.1.

4 Numerical Experiments

We have tested4 clipped-SSTM and clipped-SGD on the logistic regression problem, the datasets
were taken from LIBSVM library [4]. To implement methods we use Python 3.7 and standard
libraries. One can find additional experiments and details in Section H.2.

First of all, using standard solvers from scipy library we find good enough approximation of the
solution of the problem for each dataset. For simplicity, we denote this approximation by x∗. Then,
we numerically study the distribution of ‖∇fi(x∗)‖2 and plot corresponding histograms for each
dataset, see Figure 2. These histograms hint that near the solution for heart dataset tails of stochastic
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Figure 2: Histograms of ‖∇fi(x∗)‖2 for different datasets. Red lines correspond to probability
density functions of normal distributions with empirically estimated means and variances.

gradients are not heavy and the norm of the noise can be well-approximated by Gaussian distribution,
whereas for diabetes and australian we see the presense of outliers that makes the distribution
heavy-tailed.

Next, let us consider numerical results for SGD and SSTM with and without clipping applied to
solve logistic regression problem on these 3 datasets, see Figures 3- 5. For all methods we used
constant batchsizes m, stepsizes and clipping levels were tuned, see Section H.2 for the details.
In our experiments we also consider clipped-SGD with periodically decreasing clipping level λ

4One can find the code here: https://github.com/eduardgorbunov/accelerated_clipping.
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Figure 3: Trajectories of SGD, clipped-SGD, SSTM and clipped-SSTM applied to solve logistic
regression problem on heart dataset.

(d-clipped-SGD in Figures), i.e. the method starts with some initial clipping level λ0 and after
every l epochs or, equivalently, after every drl/me iterations the clipping level is multiplied by some
constant α ∈ (0, 1).
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Figure 4: Trajectories of SGD, clipped-SGD, SSTM and clipped-SSTM applied to solve logistic
regression problem on diabetes dataset.
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Figure 5: Trajectories of SGD, clipped-SGD, SSTM and clipped-SSTM applied to solve logistic
regression problem on australian dataset.

Let us discuss the obtained numerical results. First of all, d-clipped-SGD stabilizes the oscillations
of SGD even if the initial clipping level was high. In contrast, clipped-SGD with too large clipping
level λ behaves similarly to SGD. Secondly, we emphasize that due to the fact that we used small
bathcsizes SSTM has very large oscillations in comparison to SGD. Actually, fast error/noise accumula-
tion is a typical drawback of accelerated SGD with small batchsizes [35]. Moreover, deterministic
accelerated and momentum-based methods often have non-monotone behavior (see [5] and references
therein). However, to some extent clipped-SSTM suffers from the first drawback less than SSTM and
has comparable convergence rate with SSTM. Finally, in our experiments on heart and australian
datasets clipped-SSTM converges faster than SGD and clipped-SGD and oscillates little, while
on diabetes dataset it also converges faster than SGD, but oscillates more if parameter B is not
fine-tuned.

We also want to mention that the behavior of SGD on heart and diabetes datasets correlates with
the insights from Section 1.2 and our numerical study of the distribution of ‖∇fi(x∗)‖2. Indeed, for
heart dataset SGD has little oscillations since the distribution of ‖∇fi(xk)−∇f(xk)‖2, where xk is
the last iterate, is well concentrated near its mean and can be approximated by Gaussian distribution
(see the details in Section H.2). In contrast, Figure 4 shows that SGD oscillates more than in the
previous example. One can explain such behavior using Figure 2 showing that the distribution of
‖∇f(x∗)‖2 has heavier tails than for heart dataset.
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However, we do not see any oscillations of SGD for australian dataset despite the fact that according
to Figure 2 the distribution of ‖∇fi(x∗)‖2 in this case has heavier tails than in previous examples.
Actually, there is no contradiction and in this case it simply means that SGD does not get close to the
solution in terms of functional value, despite the fact that we used γ = 1/L. In Section H.2 we present
the results of different tests where we tried to use bigger stepsize γ in order to reach oscillation region
faster and show that in fact in that region SGD oscillates significantly more, but clipping fixes this
issue without spoiling the convergence rate.

5 Discussion

In this paper we close the gap in the theory of high-probability complexity bounds for stochastic
optimization with heavy-tailed noise. In particular, we propose a new accelerated stochastic method —
clipped-SSTM — and prove the first accelerated high-probability complexity bounds for smooth
convex stochastic optimization without light-tails assumption. Moreover, we extend our results
to the strongly convex case and prove new complexity bounds outperforming the state-of-the-art
results. Finally, we derive first high-probability complexity bounds for the popular method called
clipped-SGD in convex and strongly convex cases and conduct a numerical study of the considered
methods.

However, our approach has several limitations. In particular, it significantly relies on the assumption
that the optimization problem is defined on Rn. Moreover, we do not consider regularized or
composite problems like in [47] and [7]. However, in [47] it is significant in the analysis that the set
where the problem is defined is bounded and in [7] the analysis works only for the strongly convex
problems. It would also be interesting to generalize our approach to generally non-smooth problems
using the trick from [52].

Broader Impact

Our contribution is primarily theoretical. Therefore, a broader impact discussion is not applicable.
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