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Abstract

This paper presents new algorithms to solve the feature-sparsity constrained PCA
problem (FSPCA), which performs feature selection and PCA simultaneously.
Existing optimization methods for FSPCA require data distribution assumptions
and lack of global convergence guarantee. Though the general FSPCA problem is
NP-hard, we show that, for a low-rank covariance, FSPCA can be solved globally
(Algorithm 1). Then, we propose another strategy (Algorithm 2) to solve FSPCA for
the general covariance by iteratively building a carefully designed proxy. We prove
(data-dependent) approximation bound and convergence guarantees for the new
algorithms. For the spectrum of covariance with exponential/Zipf’s distribution,
we provide exponential/posynomial approximation bound. Experimental results
show the promising performance and efficiency of the new algorithms compared
with the state-of-the-arts on both synthetic and real-world datasets.

1 Introduction

Consider n data points in Rd. When d� n, PCA has inconsistence issue in estimating the m leading
eigenvectors W ∈ Rd×m of population covariance matrix A ∈ Rd×d [18], which can be addressed
by assuming the sparsity in the principal components. Prior work has been done in methodology
design [51, 38, 11, 41, 36, 47, 34, 33, 22] and theoretical understanding [42, 23, 46, 50].

The principal subspace estimation [6, 20, 28, 16, 45] is directly connected to dimension reduction
and is important when there are more than one principal component of interest. Indeed, typical
applications of PCA use the projection onto the principal subspace to facilitate exploration and
inference of important features of the data. As Vu et al. [42] point out, dimension reduction by PCA
should emphasize subspaces rather than eigenvectors. The sparsity level in sparse principal subspace
estimation is defined as follows [42, 43, 47].
Definition 1.1 (Subspace sparsity, [42]). For the m-dimensional principal subspace span(W) of the
covariance A, the subspace sparsity level k is defined by

k = card(supp[diag(Π)]) = ‖W‖2,0,
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Figure 1: Element-wise Sparse PCA W(a) versus Feature Sparse PCA W(b).

where Π = WW> is the projection matrix onto span(W) and ‖ · ‖2,0 is the row-sparsity norm.

This paper considers the principal subspace estimation problem with the feature subspace sparsity
constraint, termed Feature Sparse PCA (Problem (3.1) ). Some approaches have been proposed to
solve the FSPCA problem [43, 47, 27]. Yet, there are some drawbacks in the existing methods. (1)
Most of the existing analysis only holds in high probability when specific data generation assumptions
hold, e.g., Yang & Xu [47] requires data generated from the spike model, Wang et al. [43] requires
data generated from the sub-Gaussian distribution. Otherwise, they only guarantee convergence when
the initial solution is near the global optimum. (2) In practice, monotonic algorithms are preferred as
they bring improvement in every step. However, existing iterative schemes for FSPCA are not ascent
guaranteed. (3) Some methods make the spike model assumption, in which the population covariance
is instinctively low-rank (up to an additive scaled identity), but existing methods cannot make full use
of the low-rank structure in the covariance.

Compared with prior work which mostly averaging out the worst case by assuming probability model
on the covariance, our work provides algorithms with deterministic analysis from the optimization
aspect which is in a model-free style, thus, can be applied to any model. [21, 9, 36, 1] also consider
the sparse PCA problem from the optimization perspective. But they only compute the leading sparse
eigenvector, which might be suboptimal when multiple eigenvectors are considered.

In this paper, we provide two optimization strategies to compute the leading sparse principal subspace
with provable optimization guarantees. The first one (Algorithm 1) solves the feature sparse PCA
problem globally when the covariance matrix is low-rank, while the second one (Algorithm 2) solves
the feature sparse PCA for general covariance matrix iteratively with guaranteed convergence.

Contributions. More precisely, we make the following contributions:

1. We show that, for a low-rank covariance matrix, the FSPCA problem can be solved globally
with the newly proposed algorithm (Algorithm 1). For the general high-rank case, we report
an iterative algorithm (Algorithm 2) by building a carefully designed proxy.

2. We prove (data-dependent) approximation bound and convergence guarantees for the pro-
posed optimization strategies. Computational complexities of both algorithms are analyzed.

3. We conduct experiments on both synthetic and real-world data to evaluate the new algorithms.
The experimental results demonstrate the promising performance of the newly proposed
algorithms compared with the state-of-the-art methods.

Notations. Throughout this paper, scalars, vectors and matrices are denoted by lowercase letters,
boldface lowercase letters and boldface uppercase letters, respectively; for a matrix A ∈ Rd×d,
A> denotes the transpose of A, Tr(A) =

∑d
i=1 aii, ‖A‖2F = Tr(A>A); 1{condition} is the (0, 1)-

indicator of the condition; 1n ∈ Rn denotes vector with all ones; ‖x‖0 denotes the number of non-zero
elements;‖W‖2,0 =

∑d
i=1 ‖wi‖02 =

∑d
i=1 1{‖wi‖ 6= 0} measures the row-sparsity of W where

W ∈ Rd×m,wi ∈ R1×m is the ith row of W; In×n ∈ Rn×n denotes the identity matrix; I(1 : k)
is the first k elements in indices I; A† denotes the Moore–Penrose inverse; Am is the best rank-m
approximation of A in Frobenius norm; card(I) is the cardinality of I; [n] := Z ∩ {i : 1 ≤ i ≤ n}.
We assume that the eigenvalues {λi}ni=1 are arranged in descending order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λn.

2 Prior Work

In this section, we review several prior arts that consider related problems.
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Sparse Principal Components. Most existing methods in the literature to solve the sparse PCA
problem only estimate the first leading eigenvector with the element-wise sparsity constraint. To
estimate the m leading eigenvectors, one has to build a new covariance matrix with the deflation
technique [26] and solve the leading eigenvector again. The main drawback of this scheme is that,
for example, the indices of non-zero elements in the first eigenvector might not be the same as that
of the second eigenvector. As shown in Figure 1, the sparsity pattern is inconsistent among the m
leading eigenvectors, which causes difficulties in applications, e.g., feature selection. Moreover, the
deflation has identifiability and orthogonality issues when the top m eigenvalues are not distinct [43].
[1, 36, 21, 9] propose methods and analysis for the leading eigenvector with approximation guarantee
but their guarantee only applies to the first component, not to further deflation iterations.

Sparse Principal Subspace. Vu et al. [42] consider a different setting that the estimated subspace
is subspace sparsity constrained (Definition 1.1), in which the sparsity pattern is forced consistent
among rows. They show this problem has nice statistical properties [42], that is, the optimum is
statistically minimax optimal. But there is a gap between the computational method and statistical
theory. To close this gap, [43, 47, 27, 6, 20, 28, 16, 45] proposed algorithms to solve the subspace
sparsity constrained problem. However, from an optimization viewpoint, existing methods require
data distribution assumptions and lack of global convergence guarantee. Besides, [2] proposed an
algorithm that runs exponential in the rank(A) and m for the disjoint-FSPCA problem that requires
the support of different eigenvectors to be disjoint, which is clearly different from our setting.

Sparse Regression. Another line of research [35, 13, 8, 32] considers solving the sparse regression
problem with the `2,0 constraint or its convex relaxation. The main technical difference between
the `2,0 constrained sparse regression and FSPCA is the semi-orthogonal constraint on W. Without
the semi-orthogonal constraint, the FSPCA problem is not bound from above. Existing techniques
to solve the `2,0 constrained sparse regression problem, e.g., the projected gradient scheme in [35],
cannot be used to solve our problem because, to our knowledge, there is no method to solve the
projection subproblem with the semi-orthogonal constraint. Thus, the FSPCA problem is substantially
more difficult than that of `2,0-constrained sparse regression.

3 Problem Setup

Formally, we propose algorithms to solve the following general problem

max
W∈Rd×m

Tr
(
W>AW

)
s.t. W>W = Im×m, ‖W‖2,0 ≤ k, (3.1)

where m ≤ k ≤ d and matrix A ∈ Rd×d is positive semi-definite. This problem is NP-hard to solve
globally even for m = 1 [30] and sadly NP-hard to solve (1− ε)-approximately for a small µ > 0
if ε < µ [9]. Several techniques have been proposed [43, 47] to solve this challenging problem.
However, they only report high-probability analysis and none of them provides practical algorithm
with deterministic guarantee on both approximation and global convergence.

Remark 3.1. As shown in Vu et al. [42], the optimal W of Problem (3.1) achieves the optimal
minimax error for row sparse subspace estimation. Besides, the FSPCA problem can be viewed as
performing unsupervised feature selection and PCA simultaneously. The key point is the `2,0 norm
constraint forces the sparsity pattern consistence among different eigenvectors, while the vanilla
element-wise sparse PCA model cannot keep this consistence as shown in Figure 1. One might use
only the leading sparse eigenvector for feature selection [25, 31] but this leads to suboptimal solution
when there are more than one principal component of interest (see Figure 2, TPower (G) ).

4 Optimization Strategies

In this section, we provide new optimization strategies to solve the FSPCA model in Problem (3.1).
We first consider the case when rank(A) ≤ m, for which a non-iterative strategy (Algorithm 1) is
provided to solve the problem globally. Then we consider the general case when rank(A) > m, for
which we provide an iterative algorithm (Algorithm 2) by approximating A with a carefully designed
low-rank proxy covariance P and solve the proxy subproblem with the Algorithm 1.

3



4.1 GO: Global Optimum if rank(A) ≤ m

We make the following notion for ease of notations.

Definition 4.1 (Row selection matrix map). We use (d, k)-row selection matrix map Sd,k(I) to
build row selection matrix S ∈ Rd×k according to given indices I such that Sd,k(I) = S, i.e.,
sij = 1i=I(j). One can left multiply the selection matrix S to select specific k rows from d inputs.

The algorithm to solve Problem (3.1) is summarized in the following Algorithm 1.

Algorithm 1 Go for rank(A) ≤ m
1: procedure GO(A,m, k, d)
2: I ← indices of the k largest elements of diag(A) . prefer smaller indices if tied.
3: S← Sd,k(I);
4: V←m first eigenvectors of AI,I
5: return W← SV;
6: end procedure

The following theorem justifies the global optimality of the output of Algorithm 1:

Theorem 4.2. Suppose A < 0 and rank(A) ≤ m. Let W = GO(A,m, k, d) with m ≤ k ≤ d.
Then, W is a globally optimal solution of Problem (3.1).

Remark 4.3. Theorem 4.2 guarantees the global optimality of Algorithm 1 for a low-rank A. It is
interesting to see that, though the Problem (3.1) is NP-hard to solve in general, it is globally solvable
for a low-rank covariance A. A natural idea then comes out that we can try to solve the general
Problem (3.1) by running Algorithm 1 with the best rank-m approximation Am. In Theorem 5.1 and
Section 6, we will justify this idea theoretically and empirically.

Remark 4.4. It is notable that, for any B ∈ {A + σId×d : A < 0, rank(A) ≤ m,σ ≥ 0}, which
is the population covariance in the spike model, the Algorithm 1 still outputs a globally optimal
solution with B − σId×d as the input, since Tr

(
W>BW

)
= Tr

(
W>(B− σId×d)W

)
+ σm =

Tr
(
W>AW

)
+ σm. Sufficient condition rank(A) ≤ m is a special case that σ = 0.

4.2 IPU: Iteratively Proxy Update for rank(A) > m

In this subsection, we consider the general case, that is, rank(A) > m. The main idea is that we try
to build a proxy covariance, say P, of original A such that rank(P) ≤ m,P < 0. Then we can run
Algorithm 1 with the low-rank proxy P to solve the original problem iteratively. Besides, we note
here the proxy covariance P introduced below, by design, makes the iterative procedure an MM-type
one, which directly suggests its convergence by construction (see Section 5.2 for details).

Proxy Construction. With careful design, given the estimate Wt from the tth iterative step, we
define the matrix

Pt = AWt(W
>
t AWt)

†W>
t A

as the low-rank proxy matrix of original A. Then, we solve Problem 3.1 with the proxy Pt rather
than A. Following claim verifies the sufficient conditions for Pt to be solvable with Algorithm 1.

Claim 4.5. For each t ≥ 1, W>
t Wt = Im×m, it holds rank(Pt) ≤ m, and Pt < 0.

Indices Selection. With the proxy matrix Pt in hand, a natural idea is to iteratively update W by
solving the following problem with Algorithm 1:

W̃t+1 ← GO(Pt,m, k, d). (4.1)

But we can further refine the W̃t+1 by performing eigenvalue decomposition on original A rather
than on the proxy covariance Pt, which will accelerate the convergence.

Eigenvectors Refinement. Note that W̃t+1 can be written as W̃t+1 = St+1Ṽt+1, where St+1 is
the selection matrix and Ṽt+1 is the eigenvectors in the row support of W̃t+1. Then, W̃t+1 can be
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further refined by fixing the selection matrix St+1 and updating the eigenvectors Vt+1 with
Vt+1← arg max

V>V=Im×m

Tr(V>S>t+1ASt+1V). (4.2)

Finally, the refined Wt+1 can be computed by Wt+1 ← St+1Vt+1. Compared with updating with
Problem (4.1), updating with the refinement makes larger progress thus it is more aggressive.

Algorithm 2 IPU for general A

1: procedure IPU(A,m, k, d,W0)
2: t← 0;
3: repeat
4: Pt ← AWt(W

>
t AWt)

†W>
t A;

5: [S, I]← Go(Pt,m, k, d);
6: V←m first eigenvectors of AI,I
7: Wt+1 ← SV; t← t+ 1;
8: until Wt = Wt−1
9: return Wt;

10: end procedure

In summary, we collect the procedure to solve
FSPCA when rank(A) > m in Algorithm 2. The
iterative procedure in Algorithm 2 is simple and
well-motivated by the iteratively updated proxy
idea. However, existing algorithms [43, 47] in the
literature usually follow the orthogonal iteration
scheme [19], which makes it hard to see the dif-
ference between prior arts and IPU. To cope with
this, we provide an orthogonal iteration like refor-
mulation of Algorithm 2 and a detailed discussion
in Appendix due to space limitation, which might
be of interest on its own.

5 Theoretical Analysis

In this section, we provide the theoretical analysis for Algorithm 1 and 2. In detail, we prove
approximation and convergence guarantees for the new algorithms. Then, we report the computational
complexities and compare them with these of methods in the literature.

5.1 Approximation Guarantee

The intuition guiding us to the approximation ratio bound is that, while we have global optimality if
rank(A) ≤ m, we want to understand the solution accuracy if we have the rank(A) “almost” ≤ m.

To begin, we define constants related to the eigenvalues decay of A. Let r = min{rank(A), 2m},

G1 =
∑r

i=m+1 λi(A)∑m
i=1 λi(A) , G2 =

∑r
i=m+1 λi(A)∑d

i=1 λi(A)
.

The main approximation result can be stated as follows.
Theorem 5.1. Suppose A < 0 with condition number κ, m ≤ k ≤ d. Let Wm = Go(Am,m, k, d),

and W∗ be globally optimal for Problem 3.1. Then, we have (1− ε) ≤ Tr(W>
mAWm)

Tr(W>
∗ AW∗)

≤ 1 with

ε ≤ min

{
dG1

k
,
dG2

m
, 1− κ−1, 1− k

d

}
.

Remark 5.2. Theorem 5.1 says that, for sufficiently large m or k, Go(Am,m, k, d) gives a certified
approximate solution of Problem 3.1. Also note that, when the eigenvalues of the covariance A decay
fast enough, a small m or k is sufficient to guarantee certified approximation. It is notable that,
when rank(A) ≤ m, we have G1 = G2 = 0,A = Am, which implies ε = 0 and the output of the
Algorithm 1 is globally optimal. Using Theorem 4.2, the bound given in Theorem 5.1 is sharp.

If the eigenvalues of A decay sufficiently fast, e.g., exponentially, the bound would be tighter.
Corollary 5.3 (Exponential distribution). Suppose A < 0,m ≤ k ≤ d, and λi(A) = c′e−ci with
c′ > 0, c > 0 for each i = 1, . . . , 2m. Let Wm = Go(Am,m, k, d), and W∗ be an optimal solution

of Problem 3.1. If m ≥ Ω
(
1
c log

(
d
kε

))
, then we have (1− ε) ≤ Tr(W>

mAWm)
Tr(W>

∗ AW∗)
≤ 1.

The difficult case is when the spectrum of A has a heavy-tail distribution, e.g., Zipf’s law, a.k.a.,
Pareto’s distribution. It has been observed by Breslau et al. [7], Faloutsos et al. [14], Mihail &
Papadimitriou [29] that many phenomena approximately follow Zipf-like spectrum, e.g., Web caching,
Internet topology, and city population. The ith eigenvalue of the Zipf-like spectrum is ci−t with
constants c > 0, t > 1. We have following corollary for Zipf-like distributed eigenvalues.
Corollary 5.4 (Zipf’s distribution). Suppose A < 0,m ≤ k ≤ d, and λi(A) = ci−t with t > 1, c >
0 for each i = 1, . . . , 2m. Let Wm = Go(Am,m, k, d), and W∗ be an optimal solution of Problem

3.1. If m ≥ Ω
((

d
kε

) 1
t−1

)
, then we have (1− ε) ≤ Tr(W>

mAWm)
Tr(W>

∗ AW∗)
≤ 1.
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5.2 Convergence Guarantee

In this section, we show the iterative scheme proposed in Algorithm 2 increases the objective function
value in every iterative step, which directly indicates the convergence of the iterative scheme.

Lots of classical algorithms can be framed into the MM framework, e.g., EM Algorithm [12],
Proximal Algorithms [4, 37], Concave-Convex Procedure (CCCP) [49, 24]. Please refer to [39] for
further discussion. It is notable that the newly proposed Algorithm 2 can also be viewed as a special
case of the general MM optimization framework. Unlike conventional MM using Jensen’s/A-G-
M/Cauchy-Schwartz’s inequalities, or quadratic upper bound to build auxiliary function [44, 39], our
auxiliary function for Algorithm 2 is based on the von Neumann’s trace inequality [40], which is
defined by g(W; Wt) = Tr(W>AWt(W

>
t AWt)

†W>
t AW) ≤ Tr(W>AW). Meanwhile, it is

easy to check that g(W; Wt) satisfies g(Wt; Wt) = Tr(W>
t AWt).

Theorem 5.5 (Monotonic increasing). Suppose A < 0,m ≤ k ≤ d. Let Wt+1 be the variable
defined in Algorithm 2. If Wt 6= Wt+1 up to EVD, then, Tr(W>

t AWt) < Tr(W>
t+1AWt+1).

Leveraging the ascent property, we have following the approximation guarantee for Algorithm 2.

Corollary 5.6. Suppose A < 0, κ = λ1(A)/λd(A). Let Ŵ = IPU(A,m, k, d,Go(Am,m, k, d)),

and W∗ be an optimal solution of Problem 3.1. Then, we have (1− ε) ≤ Tr(Ŵ>AŴ)
Tr(W>

∗ AW∗)
≤ 1 with

ε ≤ min

{
dG1

k
,
dG2

m
, 1− κ−1, 1− k

d

}
.

Remark 5.7. Theorem 5.5 shows that the newly proposed Algorithm 2 is an ascent method, that
is {Tr(W>

t AWt)}Tt=1 is an increasing sequence, which is important since most of the existing
algorithms for solving Problem (3.1) are not ascent. That is to say, they cannot guarantee the output
is better than the initialization. Combining with the fact that the objective function is bounded from
above by finite Tr(A), the convergence of objective function value can be obtained.

We show the sequence from Algorithm 2 converges to a fixed point in the sense of subspace.
Theorem 5.8 (Convergence). Suppose A < 0,m ≤ k ≤ d, and λm − λm+1 > 0 on the selected
principal submatrix of fixed point. Let {Wt}∞t=1 be any sequence generated by Algorithm 2. Then,
the sequence {Wt}∞t=1 converges to a fixed point, say W̃, of Algorithm 2 in the sense of subspace,
and ‖ sin Θ (span(Wt+1), span(Wt)) ‖2→0,Tr(W>

t AWt)→Tr(W̃>AW̃).

5.3 Computational Complexity

Algorithm 1. It is easy to see the overall complexity is O(d+k3) since O(d) for the largest k indices
selection (use the Θ(d) median of medians [5] to select the largest k-th element, then do a scan to
filter elements that is larger than the k-th element), O(k3) for eigenvalue decomposition, and O(km)
for building the output W.

Algorithm 2. The overall computational complexity2 isO(max{dkm, k3}T ), where T is the number
of iterative steps used to coverage. We did not provide an upper bound on T as characterizing the rate
of convergence for most MM algorithm is very hard [44] (except for some quadratic upper bound type
algorithms). But we empirically observe in Section 6.1 that T ≤ 10 for both synthetic and real-world
data. For proxy covariance construction and indices selection, we need O(d2m) for naively building
Pt and running Algorithm 1. But note that we only need the diagonal elements in Pt for sorting and
selecting. Thus, we only compute the diagonal elements of Pt and sort it for the indices selection3,
that is O(dkm). Then, performing eigenvectors refinement and updating Wt+1 costs O(k3). Also
note that, the computational complexity of SOAP proposed in [43] is O(d2m) for every iterative step.
Ours computational complexity is strictly less than that of SOAP. For SRT in [47], the computational
complexity is O(dmmin{m, k log d}). When k = O(m), our complexity matches that of SRT.

2If we do not insist on the eigenvalue refinement step, we can optimize the overall complexity to O(dkmT )

by using SVD on AW(W>AW)†
1
2 rather than performing partial EVD on AI,I .

3First, compute AW with O(dkm) since W is row-sparse. Then, compute (W>AW)† with O(km2). Let
the ith row of AW be [AW]i. Finally, compute the diagonal elements of P by [AW]i(W

>AW)†[AW]>i
with O(dm2). Overall, O(dkm).
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Table 1: Synthetic Data Description
No. Description Note

A λ(A) = {100, 100, 4, 1, . . . , 1} Setting in [43]
B λ(A) = {300, 180, 60, 1, . . . , 1} Setting in [43]
C λ(A) = {300, 180, 60, 0, . . . , 0} Verify the correctness of Theorem 4.2
D λ(A) = {160, 80, 40, 20, 10, 5, 2, 1, . . . , 1} For all σ, rank(A + σId×d) > m

E X is iid sampled from U [0, 1] and A = XX> Uniform Distribution
F X is iid sampled from N (0, 1) and A = XX> Gaussian Distribution

5.4 On the Invertibility of W>
t AWt

In the definition of the proxy matrix Pt, there is a Moore–Penrose inverse term (W>
t AWt)

†.
In this subsection we provide a condition under which this matrix is always invertible thus the
Moore–Penrose inverse (W>

t AWt)
† can be replaced with the matrix inverse (W>

t AWt)
−1. The

reason why we care about the invertibility is that when W>
t AWt is not invertible, it is rank deficient.

Thus it might not be a good approximation to the high-rank covariance A.

Claim 5.9. If rank(A) ≥ d− k +m, then, for all t, W>
t AWt in Algorithm 2 is always invertible.

Remark 5.10. Note that the condition shown in Claim 5.9 is easy to be satisfied. Indeed, we can
solve Problem (3.1) with Aε = A+ε · Id×d. Thus, rank(Aε) = d ≥ d−k+m. Note that this small ε
perturbation on A does not change the optimal W because Tr

(
W>AεW

)
= Tr

(
W>AW

)
+ εm,

which is only a constant εm added to the original objective function. Thus, the optimal W remains
unchanged. In practice, we recommend using Aε with a small ε > 0 to keep safe.

6 Experiments

In this section, we provide experimental results to validate the effectiveness of the proposed Go and
IPU on both synthetic and real-world data. In our experiments, we always use Aε with ε = 0.1 to
keep safe (Remark 5.10), except in the No. C synthetic data where we require rank(A) ≤ m.

6.1 Synthetic Data

To show the effectiveness of the proposed method, we build a series of small-scale synthetic datasets,
whose global optimum can be obtained by brute-force searching. Then we compare our methods with
several state-of-the-art methods with the optimal indices and objective value in hand.

Experiments Setup. We compare the newly proposed Go (Algorithm 1) and IPU (Algorithm 2)
with SOAP [43], SRT [47], and CSSP [27]. For the synthetic data, we fix m = 3, k = 7,and d = 20.
We cannot afford large-scale setting since the brute-force searching space grows exponentially. We
consider three different initialization methods: Random Subspace; Convex Relaxation proposed
in [41] and used in [43]; Low Rank Approx. with GO(Am,m, k, d). We consider 6 different
synthetic data in our experiments. The descriptions of these schemes are summarized in Table 1. For
Scheme A and B, they are the synthetic data used in [43]. But we trim them to fit our setting, that is
m = 3, k = 7, d = 20. For Scheme C, we validate the correctness that Algorithm 1 globally solves
Problem (3.1). For Scheme D, we use it to see the performance comparison when the rank(A) is
strictly larger than m. For Scheme E and F, we compare the performance when data are generated
from known distribution rather than using the eigenvalues fixed covariance. For A–D, we fix the
eigenvalues and generate the eigenspace randomly following [43]. Every scheme is independently
run for 100 times and we report the mean and standard error. For the Random Subspace setting,
every realization A is repeated run 20 times with different random initialization. Thus, in the random
initialization setting, we run all algorithms 20× 100 = 2000 times. To compute std. err. of HF, we
run algorithms as we do for random initialization. The overall mean and standard error are reported.

Performance Measures. (1) Intersection Ratio (IR): card({estimated indices}∩{optimal indices})/# sparsity k.
The reason we use Intersection Ratio is that FSPCA performs feature selection and PCA simultane-
ously. The Intersection Ratio can measure the intersection between the indices returned by algorithm
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Table 2: Synthetic Data Results. [mean (std. err.); ↑: larger is better; ↓: smaller is better]
Random Subspace Convex Relaxation Low Rank Approx.

IR ↑ RE ↓ HF ↑ IR ↑ RE ↓ HF ↑ IR ↑ RE ↓ HF ↑

A

SOAP 0.73 (0.09) 0.03 (0.02) 0.18 (0.15) 0.71 (0.12) 0.08 (0.04) 0.01 (0.01) 0.84 (0.12) 0.03 (0.03) 0.22 (0.17)
SRT 0.77 (0.19) 0.01 (0.02) 0.70 (0.21) 0.92 (0.12) 0.01 (0.02) 0.62 (0.24) 0.88 (0.16) 0.02 (0.04) 0.50 (0.25)

CSSP 0.63 (0.13) 0.88 (0.05) 0.00 (0.00) 0.62 (0.12) 0.87 (0.06) 0.00 (0.00) 0.62 (0.12) 0.87 (0.06) 0.00 (0.00)
Go 0.92 (0.12) 0.01 (0.03) 0.74 (0.19) 0.93 (0.12) 0.01 (0.03) 0.67 (0.22) 0.93 (0.12) 0.01 (0.03) 0.66 (0.22)
IPU 0.97 (0.04) 0.00 (0.00) 1.00 (0.00) 0.99 (0.04) 0.00 (0.00) 0.97 (0.03) 0.98 (0.05) 0.00 (0.00) 0.91 (0.08)

B

SOAP 0.76 (0.12) 0.03 (0.03) 0.14 (0.12) 0.78 (0.11) 0.04 (0.03) 0.09 (0.08) 0.77 (0.12) 0.04 (0.03) 0.05 (0.05)
SRT 0.59 (0.08) 0.03 (0.03) 0.28 (0.20) 0.79 (0.14) 0.04 (0.04) 0.15 (0.13) 0.80 (0.16) 0.04 (0.05) 0.30 (0.21)

CSSP 0.77 (0.10) 0.90 (0.05) 0.00 (0.00) 0.76 (0.12) 0.90 (0.05) 0.00 (0.00) 0.76 (0.12) 0.91 (0.05) 0.00 (0.00)
Go 0.99 (0.02) 0.00 (0.00) 1.00 (0.00) 0.99 (0.02) 0.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.00 (0.00) 1.00 (0.00)
IPU 0.97 (0.03) 0.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.00 (0.00) 1.00 (0.00)

C

SOAP 0.77 (0.12) 0.04 (0.03) 0.11 (0.10) 0.77 (0.12) 0.04 (0.03) 0.08 (0.07) 0.76 (0.12) 0.04 (0.03) 0.05 (0.05)
SRT 0.59 (0.08) 0.03 (0.04) 0.20 (0.16) 0.76 (0.16) 0.05 (0.05) 0.12 (0.11) 0.80 (0.17) 0.05 (0.06) 0.26 (0.19)

CSSP 0.77 (0.11) 0.94 (0.03) 0.00 (0.00) 0.76 (0.12) 0.94 (0.03) 0.00 (0.00) 0.76 (0.12) 0.94 (0.03) 0.00 (0.00)
Go 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00)
IPU 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00)

D

SOAP 0.79 (0.08) 0.01 (0.01) 0.43 (0.25) 0.80 (0.13) 0.02 (0.02) 0.15 (0.13) 0.84 (0.11) 0.01 (0.01) 0.22 (0.17)
SRT 0.57 (0.07) 0.02 (0.02) 0.14 (0.12) 0.77 (0.15) 0.04 (0.04) 0.12 (0.11) 0.83 (0.14) 0.02 (0.03) 0.27 (0.20)

CSSP 0.76 (0.12) 0.80 (0.07) 0.00 (0.00) 0.77 (0.12) 0.82 (0.08) 0.00 (0.00) 0.77 (0.12) 0.82 (0.08) 0.00 (0.00)
Go 0.91 (0.10) 0.00 (0.01) 0.52 (0.25) 0.92 (0.10) 0.00 (0.01) 0.59 (0.24) 0.92 (0.09) 0.00 (0.01) 0.56 (0.25)
IPU 0.83 (0.07) 0.00 (0.00) 0.97 (0.03) 0.93 (0.10) 0.00 (0.01) 0.65 (0.23) 0.92 (0.10) 0.00 (0.01) 0.60 (0.24)

E

SOAP 0.43 (0.07) 0.06 (0.03) 0.01 (0.01) 0.46 (0.16) 0.12 (0.05) 0.00 (0.00) 0.73 (0.16) 0.04 (0.04) 0.12 (0.11)
SRT 0.86 (0.07) 0.00 (0.00) 0.72 (0.20) 0.88 (0.11) 0.01 (0.01) 0.40 (0.24) 0.90 (0.09) 0.01 (0.01) 0.52 (0.25)

CSSP 0.43 (0.16) 0.82 (0.06) 0.00 (0.00) 0.43 (0.16) 0.83 (0.06) 0.00 (0.00) 0.44 (0.16) 0.83 (0.06) 0.00 (0.00)
Go 0.89 (0.09) 0.00 (0.01) 0.48 (0.25) 0.90 (0.09) 0.00 (0.01) 0.46 (0.25) 0.88 (0.10) 0.01(0.01) 0.41 (0.24)
IPU 0.83 (0.06) 0.00 (0.00) 0.89 (0.10) 0.87 (0.10) 0.01 (0.01) 0.37 (0.23) 0.88 (0.10) 0.01(0.01) 0.42 (0.24)

F

SOAP 0.61 (0.07) 0.01 (0.01) 0.36 (0.23) 0.79 (0.14) 0.03 (0.03) 0.16 (0.13) 0.81 (0.12) 0.03 (0.02) 0.16 (0.13)
SRT 0.62 (0.08) 0.01 (0.01) 0.37 (0.23) 0.82 (0.12) 0.03 (0.02) 0.20 (0.16) 0.82 (0.12) 0.03 (0.02) 0.17 (0.14)

CSSP 0.79 (0.13) 0.52 (0.08) 0.00 (0.00) 0.77 (0.14) 0.54 (0.08) 0.00 (0.00) 0.77 (0.14) 0.54 (0.08) 0.00 (0.00)
Go 0.83 (0.12) 0.02 (0.03) 0.21 (0.17) 0.81 (0.12) 0.03 (0.03) 0.16 (0.13) 0.81 (0.12) 0.03 (0.03) 0.16 (0.13)
IPU 0.62 (0.07) 0.01 (0.01) 0.44 (0.25) 0.82 (0.12) 0.03 (0.02) 0.18 (0.15) 0.82 (0.12) 0.03 (0.02) 0.17 (0.14)
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Figure 2: Real-world Data Results.

and the optimal indices. (2) Relative Error (RE):
Tr(W>

∗ AW∗)−Tr(W>AW)
Tr(W>

∗ AW∗)
. (3) Hit Frequency (HF):

1
N

∑N
i=1 1{Relative Error ≤ 10−3},where N is the number of repeated runs. This measure shows

the frequency of the algorithm approximately reaches the global optimum.

Results. Experimental results are reported in Table 2, and we get the following insights: (1) From
No. C, Algorithm 1 gives a globally optimal solution when the covariance A is low-rank. (2) Both
the performance of Go and IPU outperform or match other state-of-the-art methods, especially when
the numerical rank of covariance is small. (3) CSSP does not perform well in HF and RE, which is
consistent with results reported in [27], since the objective of CSSP is a regression-type minimization
rather than variance maximization. (4) When the Low Rank Approx. strategy (with Go) is used as
initialization, all methods have match or even better explained variance than initialization with Convex
Relaxation, while the computational complexity of Low Rank Approx. (with SVD) is seriously
smaller than that of Convex Relaxation (with ADMM or SDP). A small but important detail: IPU is a
local ascent algorithm, thus when initialized with Low Rank Approx., IPU always perform better
or match than Go. Meanwhile, initialization with Random Space has better performance than both
Convex Relaxation and Low Rank Approx., which is not surprising since the reported results for
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Random Subspace are the maximal objective value among 20 random initialization. This strategy is
widely used in practice, e.g., run k-means multiple times with different initialization and pick the one
with the smallest loss.

6.2 Real-world Data

Experiment Setup. We consider real-world datasets, including Lymphoma (biology) [48], NUS-
WIDE (web images) [10], and Numerical Numbers (handwritten numbers) [3]. We compare Go and
IPU with SOAP, SRT, TPower (G) and report the results of TPower (D) as a baseline. TPower (G)
selects the sparsity pattern with the leading eigenvector Greedily and TPower (D) uses the Deflation
scheme, which cannot produce consistent sparsity pattern among rows. We follow [43] to use Convex
Relaxation as the initialization. Following [43, 47], we use the Normalized Explained Variance as the
performance measure. The Normalized Explained Variance is defined as Tr(Ŵ>AŴ)/Tr(Am),

where the Ŵ is the subspace estimation returned by algorithms.
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Results. The experimental results are reported in Fig-
ure 2, from which we get the following insights: (1) For
all three real-world datasets, the new algorithms, Go and
IPU, consistently perform better than other state-of-the-
art methods that solve FSPCA; (2) For NN dataset, the
performance of all methods except SOAP and TPower
(D) are tied. It is of interest to see whether the reason
for this phenomenon is the dataset is too difficult or too
easy. Therefore, we plot the approximation bound in The-
orem 5.1, which reveals that these methods achieve almost
optimal performance; (3) While TPower (D) achieves the
highest NEV, it cannot be used for either feature selection
or sparse subspace estimation (see Definition 1.1), due to
the sparsity inconsistent issue of one-by-one eigenvectors
estimation (see Figure 1). Actually, TPower (D) actually solves a less constrained problem.

Computation Time. We conducted experiments to evaluation computation time on synthetic setting
D with d = 5000,m = 10. Please see Figure 3, which shows the new algorithms scale well for
large-scale covariance. All experiments in this paper were run on MATLAB 2018a with a 2.3 GHz
Quad-Core Intel Core i5 CPU and 16GB memory MBP.
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Figure 4: Convergence.

Convergence. In Theorem 5.5, we prove the monotonic
ascent property of IPU (Algorithm 2) and in Remark 5.7,
we claim that existing iterative schemes are not monotonic
ascent guaranteed. Here we provide numerical evidence
to support this claim. We run Go, IPU, SOAP, SRT on
Lymphoma dataset with m = 10, k = 100, d = 500.
We use the same convex relaxation initialization for all
methods with row truncation. We record the objective
value in every iterative step for all methods. The results
are plotted in Figure 4, from which we can see both SOAP
and SRT are not ascent methods and both Go and IPU
achieve better Explained Variance than SOAP and SRT
with the same initialization. Besides, IPU takes less than
10 steps to converge, which is the case we keep seeing in all our experiments.

7 Conclusion

In this paper, we present algorithms to directly estimate the row sparsity constrained leading m
eigenvectors. We propose Algorithm 1 to solve FSPCA for low-rank covariance globally. For general
high-rank covariance, we propose Algorithm 2 to solve FSPCA by iteratively building a carefully
designed low-rank proxy covariance matrix. We prove theoretical guarantees for both algorithms on
approximation and convergence. Experimental results show the promising performance of the new
algorithms compared with the state-of-the-art methods.
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Broader Impact

This paper provides efficient, effective, and provable algorithms to solve the feature sparse PCA
problem. The researcher who working on feature selection, dimension reduction, and graph analysis
might find the techniques in this paper interesting and highly usable for real-world applications.
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