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Abstract

Exploration is one of the core challenges in reinforcement learning. A common
formulation of curiosity-driven exploration uses the difference between the real
future and the future predicted by a learned model [1]. However, predicting the
future is an inherently difficult task which can be ill-posed in the face of stochastic-
ity. In this paper, we introduce an alternative form of curiosity that rewards novel
associations between different senses. Our approach exploits multiple modalities
to provide a stronger signal for more efficient exploration. Our method is inspired
by the fact that, for humans, both sight and sound play a critical role in exploration.
We present results on several Atari environments and Habitat (a photorealistic navi-
gation simulator), showing the benefits of using an audio-visual association model
for intrinsically guiding learning agents in the absence of external rewards. For
videos and code, see https://vdean.github.io/audio-curiosity.html.

1 Introduction

Figure 1: See, Hear, Explore: We propose a for-
mulation of curiosity that encourages the agent
to explore novel associations between modalities,
such as audio and vision. In Habitat, shown above,
our method allows for more efficient exploration
than baselines.

Many successes in reinforcement learning (RL)
have come from agents maximizing a provided
extrinsic reward such as a game score. However,
in real-world settings, reward functions are hard
to formulate and require significant human engi-
neering. On the other hand, humans explore the
world driven by intrinsic motivation, such as cu-
riosity, often in the absence of rewards. But what
is curiosity and how would one formulate it?

Recent work in RL [1–3] has focused on curios-
ity using future prediction. In this formulation,
an exploration policy receives rewards for ac-
tions that lead to differences between the real
future and the future predicted by a forward dy-
namics model. In turn, the dynamics model
improves as it learns from novel states. While
the core idea behind this curiosity formulation is
simple, putting it into practice is quite challeng-
ing. Learning and modeling forward dynamics
is still an open research problem; it is unclear how to handle multiple possible futures, whether
to explicitly incorporate physics, or even what the right prediction space is (pixel space or some
latent space).
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The use of multiple modalities in human learning has a long history. Research in psychology has
suggested that humans look for incongruity [4]. A baby might hit an object to hear what it sounds
like. Have you ever found yourself curious to touch a material different from anything you have seen
before? Humans are drawn towards discovering and exploring novel associations between different
modalities. Dember and Earl [5] argued that intrinsic motivation arises with discrepancy between
expected sensory perception and the actual stimulus. More recent work has shown the presence of
multimodal stimulation and exploration in infants [6, 7]. In cognitive development, both sight and
sound guide exploration: babies are drawn towards colorful toys that squeak and rattle [8].

Inspired by human exploration, we introduce See Hear Explore (SHE): a curiosity for novel associa-
tions between sensory modalities (Figure 1). SHE rewards actions that generate novel associations
(shared information) between different sensory modalities (in our case, pixels and sounds). We first
demonstrate that our formulation is useful in several Atari games: SHE allows for more exploration,
is more sample-efficient, and is more robust to noise compared to existing curiosity baselines on these
environments. Finally, we show experiments on area exploration in the realistic Habitat simulator [9].
Our results demonstrate that in this setting our approach significantly outperforms baselines.

To summarize, our contributions in this paper include: 1) SHE, a curiosity formulation that searches
for novel associations in the world. To the best of our knowledge, multimodal associations have not
been investigated in self-supervised exploration; 2) we show our approach outperforms the commonly-
used curiosity approaches on standard Atari benchmark tasks; 3) most importantly, multimodality
is one of the most basic facets of our rich physical world (audio and vision are generated by the
same physical processes [10]). We show experiments on realistic area exploration in which SHE
significantly outperforms baselines. This work builds on efficient exploration, which will be crucial
as we push agents to explore more complex unknown environments.

2 Related Work

Our work uses audio as an additional modality for self-supervised exploration. We divide the prior
work into two categories: exploration (Section 2.1) and multimodal learning (Section 2.2).

2.1 Exploration

Prior work on exploration has used error [11, 12, 1, 13], uncertainty [14, 15, 3], and potential
improvement [16] of a prediction model as intrinsic motivation. Some approaches have used count-
based or pseudo-count-based exploration [17, 18]. Others use auxiliary losses to supplement reward
functions and improve sample efficiency [19, 20].

One popular approach to self-supervised exploration is curiosity by self-supervised prediction [1, 2].
In this form of curiosity, an intrinsic reward encourages an agent to explore situations with high
error under a jointly-trained future prediction model. The model’s error is a proxy for novelty:
unpredictable situations are more likely novel and therefore ones the agent should explore. These
future-predicting models can be difficult to train, especially in visual space. Our method also
looks at self-supervised exploration, but our intrinsic reward does not rely on future prediction.
We circumvent the need for predicting the future by leveraging multimodal input. SHE rewards
association classification error (i.e. association novelty) as opposed to higher-dimensional prediction
error. Our key insight is that associative models across modalities are simpler to learn, and their
accuracy is also indicative of novelty.

2.2 Multimodal Learning

Multimodal settings are especially amenable to self-supervision, as information from one modality
can be used to supervise learning for another modality. One prior work learned a joint visual and
language representation using Flickr images and associated descriptors [21]. In computer vision,
audio can provide additional information that complements images [22–24]. Recent work [25, 26]
has looked at audio-visual embodied navigation, in which audio is emitted from a goal point to
aid in supervised learning of navigation. In the same environment, Gao et al. [27] used audio and
visual information for learning visual feature representations. We test on this audio-visual navigation
environment, but for unsupervised exploration in RL; we have no goal states.
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Audio and visual information are closely linked, and since we commonly have access to both in the
form of video, this is a rich area for self-supervision. Aytar et al. [28] used audio from Atari in the
form of YouTube videos of people playing the games. This work uses audio-visual demonstrations
from YouTube to learn a visual embedding. The setup here is learning from demonstrations from
humans. In our case, on the other hand, the audio-visual associations drive intrinsically motivated
exploration. We learn multimodal alignment from active data, which the agent both collects and uses.

In robotics settings, the use of additional modalities such as tactile sensing [29, 30] or audio [31] is
increasingly popular for grasping and manipulation tasks. Lee et al. [32] showed the effectiveness
of self-supervised training of tactile and visual representations by demonstrating its use on a peg
insertion task. While these previous approaches have demonstrated the benefits of using multiple
sensory modalities for learning better representations or accurately solving tasks, in this work we
demonstrate its utility for allowing agents to explore. To the best of our knowledge, using audio to
learn actions for exploration is unique to our work.

3 See, Hear, Explore

We now describe SHE, our exploration method based on associating audio and visual information.
Our goal is to develop a form of curiosity that exploits the multimodal nature of the input data. Our
core idea is that the SHE agent learns a model that captures associations between two modalities.
We use this model to reward actions that lead to unseen associations between the modalities. By
rewarding such actions, we guide the exploration policy towards discovering new combinations of
sight and sound.

More formally, we consider an agent interacting with an environment that contains visual and sound
features, which we call xt = (vt, st) for time t where vt is the visual feature vector and st is the
sound feature vector. The agent explores using a policy at ∼ π(vt; θ) where at corresponds to an
action taken by the agent at time t. To make for easier comparison to visual-only baselines, our
agent is only given access to the visual features vt and not the audio features st. To enable this
agent to explore, we train a discriminator D that tries to determine whether an observed multimodal
pair (vt, st) is novel, and we reward the agent in states where the discriminator is surprised by the
observed multimodal association.

3.1 Why Novel Associations?

The goal of an exploration policy is to perform actions that uncover states that lead to a better
understanding of the world. One commonly used exploration strategy involves rewarding actions that
lead to unseen or novel states [17]. While this strategy seems intuitive, it does not handle the fact that
while some states might not have been seen, we still understand them and hence they do not need to
be explored. In light of this, recent approaches have used a prediction-based formulation. If a model
cannot predict the future, it needs more data points to learn. However, sometimes we may have seen
enough examples, and prediction is still challenging, leading a prediction-based exploration policy to
get stuck. For example, consider the couch-potato issue: the random TV in the Unity environment
(as described in Burda et al. [2]) yields high error for prediction models, so prediction-based curious
agents receive high rewards for staring at the TV, though this is not a desirable type of exploration.

Trying to avoid these problems has shaped much of the work on intrinsic motivation; Schmidhuber
[16], Oudeyer et al. [33], White et al. [34], and Burda et al. [35] all formulate intrinsic rewards with
the goal of mitigating problems like the couch-potato agent. Our approach, different from this body
of prior work, looks at how multimodal data can mitigate these issues.

Our underlying hypothesis is that discovering new sight and sound associations will help mitigate the
shortcomings of the previously described count-based and prediction-based exploration strategies.
By using an association model, we ask a simpler question: can this image co-occur with this sound?
Consider another example, in which pressing a button randomly produces one among 3 distinct
sounds. Our approach could learn to classify all as associated, while an agent using future prediction
error would always be curious. This focus on association effectively helps ignore stochasticity,
mitigating the couch-potato problem by focusing on non-random structure. Such a model can allow
generalization to unseen states, and it also does not need to predict the future to provide an informative
signal for exploration.
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Figure 2: Our audio-visual association model: The frames (top left) and potentially misaligned
audio waveform (bottom left) are preprocessed into 512-dimensional feature vectors using a random
feature network and FFT, respectively. The discriminator network (right) takes these features as inputs
and is trained to output whether or not they are aligned. 2D conv represents a standard convolutional
layer and FC 512 represents a fully-connected layer with 512 units.

3.2 Association Novelty via Alignment

The core of our method is the ability to determine whether a given pair (vt, st) represents a novel
association. To tackle this problem, we learn a model in an online manner. Given past trajectories,
a model learns whether a certain audio-visual input comes from a seen or new phenomenon. One
way to model this would be to use a generative model such as a VAE [36] or GAN [37], which could
determine if the image-audio combination is within the distribution or out of distribution. However,
generative models are also difficult to train, so we instead propose using a discriminator to predict if
the image-audio pair is novel, which has a much smaller, binary output space.

We train this discriminator to distinguish real audio-visual pairs from ‘fake’ pairs from another
distribution, with the insight that the learned model is more likely to classify novel pairs as fake. Here,
the observed image-audio pairs during exploration act as positive training examples, but a critical
question is how to obtain negative image-audio pairs. To this end, we reformulate the problem as
whether image-audio pairs are aligned or not: we obtain ‘fake’ samples by randomly misaligning
the audio and visual modalities, similar to Owens and Efros [23]. The positive data is then the
aligned image-audio pairs, and the negative data is comprised of misaligned ones. The discriminator
model, as shown in Figure 2, outputs values between 0 and 1, with 1 representing high probability of
audio-visual alignment and 0 representing misalignment. We can then leverage the misalignment
likelihood as an indicator of novelty since the discriminator would be uncertain in such instances.

3.3 Training

Having introduced association novelty via alignment, we now describe how we implement this idea
using function approximators. During training, the agent policy is rolled out in parallel environments.
These yield trajectories which are each chunked into 128 time steps. A trajectory consists of pairs of
preprocessed visual and sound features: (v1, s1), (v2, s2)...(v128, s128). These trajectories are used
for two purposes: 1) updating the discriminator D as described below and 2) updating the exploration
policy based on the intrinsic reward rit (computed using the discriminator), also described below.

Training the Alignment Discriminator The discriminator D is a neural network that takes a visual
and sound feature pair as input and outputs an alignment probability. To train D, we start with positive
examples from the visual and sound feature pairs (vt, st). With 0.5 probability we use the true aligned
pair, and with 0.5 probability we create a false pair consisting of the true visual feature vector vt
and a sound feature vector uniformly sampled from the current trajectory. We call this false sound
s′t. We define a binary variable zt to indicate whether the true audio was used, i.e. when we give the
discriminator the true audio st, we set zt = 1, and when we give the discriminator the false audio s′t,
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zt = 0. We use a cross-entropy loss to train the discriminator, similar to prior work [23, 28]:

Lt(vt, st, zt) =


− log(D(vt, st)), if zt = 1

− ||st − s′t||2
Ebatch||st − s′t||2

log(1−D(vt, s
′
t)), if zt = 0

In the zt = 0 case above, we weight the cross-entropy loss to prevent the discriminator from being
penalized in cases where the true and false audio are similar. We weight by the L2 difference between
the true and false audio feature vectors and normalize by dividing by the mean difference across
samples in the batch of 128 trajectories. This loss is used for updating the discriminator and is not
used in computing the agent’s intrinsic reward.

Training the Agent via Intrinsic Reward We want to reward actions that lead to unseen image-
audio pairs. For a given image-audio pair, if the discriminator predicts 0 (unseen or unaligned), we
want to reward the agent. On the other hand, if the discriminator correctly outputs 1 on a true pair, the
agent receives no reward. Mathematically, the agent’s intrinsic reward is the negative log-likelihood
of the discriminator evaluated on the true pairs: rit := − log(D(vt, st)), where the output of D is
between 0 and 1. Audio-visual pairs that the discriminator knows to be aligned get a reward of 0,
but if the discriminator is uncertain (the association surprised the discriminator) the agent receives a
positive reward. The agent takes an action and receives a new observation vt and intrinsic reward
rit (note that the agent does not have access to the sound st). The agent is trained using PPO [38]
to maximize the expected reward: maxθ Eπ(vt;θ)

[∑
t γ

trit
]
. The agent does not have access to the

extrinsic reward. Extrinsic reward is used only for evaluation. This will enable the use of our method
on future tasks for which we cannot easily obtain a reward function. See Burda et al. [2] for further
discussion on training with no extrinsic reward while using it for evaluation.

4 Experiments

In this section, we will test our method in two exploration settings (Atari and Habitat) and compare it
with commonly-used curiosity formulations.

4.1 Environments

Atari Similar to prior work, we demonstrate the effectiveness of our approach on 12 Atari games.
We chose a subset of the Atari games to represent environments used in prior work and a range of
difficulty levels. We excluded some games due to lack of audio (e.g. Amidar, Pong) or the presence of
background music (e.g. RoadRunner, Super Mario Bros). The action space is different from the one
used in the future prediction curiosity work [2], as we use Gym Retro [39] in order to access game
audio, and Retro environments use a larger action space. The original work reported results using the
minimal action space, Discrete(4), whereas we use Discrete(6). We note that the larger action space
does slow exploration, but it is used for both our method and the baselines for fair comparisons. To
compute audio features, we take an audio clip spanning 4 time steps (1/15th of a second for these
60 frame per second environments) and apply a Fast Fourier Transform (FFT). The FFT output is
downsampled using max pooling to a 512-dimensional feature vector, which is used as input to the
discriminator along with a 512-dimensional visual feature vector.

Habitat Navigation We also test our method in a navigation setting using Habitat [9] (Figure 3).
In this environment, the agent moves around a photorealistic Replica scene [40]. We use the largest
Replica scene, Apartment 0, which has 211 discrete locations. In each location, the agent can face
in 4 directions. At each timestep, the agent takes one of 3 discrete actions: turn left, turn right, or
move forward. As in our Atari experiments, the agent is not given any extrinsic reward; we simply
want to see how well it can explore the area without supervision. We use the audio-visual navigation
extension from Chen et al. [25], which emits a fixed audio clip from a fixed location and allows our
agent to hear the sound after simulating room acoustics. The perceived sound at each time step is
less than 1 second long, and we zero pad this audio to 1 second to make each sound equal length for
feature computation. We apply FFT and downsample to a 512-dimensional feature vector, the same
as done in Atari, described above.
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Figure 3: Habitat visualization: Left: an example agent view. Right: the top-down map for
apartment 0 (not seen by agent). The agent is the blue arrow and the audio source is the green square.
Gray areas are open space, while white areas are obstacles, which make exploration challenging.

4.2 Baselines

We compare to future prediction curiosity [2], which as previously described performs visual future
prediction. We build upon the open-source code from the authors (see the appendix for more details).
We also compare to exploration via disagreement [3] and Random Network Distillation (RND) [35].
We use the same hyperparameters (which were optimized for the future prediction and disagreement
baselines) for policy learning across all approaches. We use random CNN features [2, 35] for the
visual feature representation for our method and the baselines in all experiments.

4.3 Atari Experimental Results

We trained our approach and baselines for 200 million frames using the intrinsic reward and measure
performance by the extrinsic reward throughout learning. Figure 4 shows these results. Each method
was run with three random seeds, and the plots show the mean and standard error for each method.
Please see the appendix for more experimental details. Across many environments, our method
enables better exploration (as judged by the extrinsic reward) and is more sample efficient than the
baselines. Of the 12 environments, SHE outperforms the disagreement baseline in 9 and the future
prediction baseline in 8. We hypothesize that states leading to novel audio-visual associations, such
as a new sound when killing an enemy, are more indicative of a significant event than ones inducing
high prediction error (which can happen due to inaccurate modeling or stochasticity) and this is why
our approach is more efficient across these environments.

Understanding Failure Cases While our approach generally exceeds the performance of or is
comparable to the curiosity baselines, there are some environments where SHE underperforms. We
have analyzed these games and found common failure cases: 1) Audio-visual association is trivial.
For example in Qbert, the discriminator easily learns the associations: every time the Qbert agent
jumps to any cube the same sound is made, thus making the discriminator’s job easy, leading to a low
agent reward. Visiting states with already learned audio-visual pairs is necessary for achieving a high
score, even though they may not be crucial for exploration. The game Atlantis had similarly high
discriminator performance and low agent rewards. 2) The game has repetitive background sounds.
Games like SpaceInvaders and BeamRider have background sounds at a fixed time interval, but it
is hard to visually associate these sounds. Here the discriminator has trouble learning basic cases,
so the agent is unmotivated to further explore. In Alien, the agent quickly learns that by quickly
passing from one side of the screen to the other, a sound occurs with a slight delay that makes it hard
to align with the frame. The agent learns to repeat this trick continuously, putting the discriminator in
a situation similar to 2).
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Figure 4: Atari training curves: Average extrinsic reward (never seen by the agent) throughout
training for our method, future prediction [2], and exploration via disagreement [3]. Our method
outperforms the baselines in 8 of 12 environments, supporting our hypothesis that audio-visual
association is a useful signal for accelerating exploration.

Figure 5: Case study on Gravitar: Our method is
able to explore this hard environment, while base-
lines have negligible increase in extrinsic rewards.

Hard Exploration Environment Accord-
ing to Taïga et al. [41], Gravitar is a hard ex-
ploration environment. Such environments
are particularly difficult to solve without learn-
ing from demonstrations [28], using extrin-
sic reward [41], or exploiting structure in the
game [42]. Even for humans, it can be unclear
how to play Gravitar upon first introduction,
in contrast with other Atari games that are in-
tuitively simple. Despite Gravitar’s difficulty,
SHE allows the agent to explore well, while
the baselines perform poorly (Figure 5). After
examining the game, we hypothesize that the
game’s visual dynamics are not that interesting
on their own, but the audio-visual associations
are. We also applied our method and the base-
lines to other hard exploration games, but in
these cases, no method was successful in the
training time allotted.

4.4 Habitat Experimental Results

Here we present results from unsupervised area exploration in the biggest scene in Replica [40] with
realistic acoustic responses [25]. Figure 6 shows the quantitative results. SHE (blue) has similar
coverage to RND and reaches full state coverage 3 times faster than future prediction curiosity (Figure
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(a) State coverage, as measured by unique states vis-
ited throughout training. Our method achieves full
state coverage about 3 times faster than future predic-
tion curiosity.

(b) State counts: the number of times each state is
visited in the first 2000 episodes, sorted by frequency
and shown on a log scale. Our method has a wider
tail, visiting rare states one to two orders of magnitude
more frequently than the baselines.

Figure 6: Habitat exploration results for SHE and baselines. Each method is run with three
different seeds and each seed uses a different start location.

6(a)). We can also look at how much each state is visited (Figure 6(b)). A good exploration method
will have higher counts in the rare states. Our method visits these rare states (Figure 6(b) right) about
8 times more frequently than the next-best baseline. It does so by visiting common states (Figure 6(b)
left) less frequently. SHE’s strong performance on this more realistic task holds promise for future
work exploring the real world.

4.5 Ablations

Audio in baseline One hypothesis for why our method outperforms baselines is that SHE has
access to additional information in the form of audio. To test the benefit of including audio without
the use of our association method, we created two additional baselines: an audio-visual prediction
baseline and an audio-visual random network distillation baseline. In the audio-visual prediction
baseline, the prediction space is concatenated audio and visual features: the future prediction model
takes an audio-visual feature vector as input and predicts an audio-visual feature vector. Similarly, in
the audio-visual random network distillation baseline, the audio and visual features are concatenated
and used as inputs to both the random target network and the predictor network. As the results in the
appendix indicate, this does not lead to significant improvement over the visual-only baselines.

Robustness to noise Predicting the future can be especially difficult in the face of inherent uncer-
tainty. To analyze our approach in such a setting, we created a noisy version of the environments,
where Gaussian noise is added to the audio and visual feature vector inputs. Our approach can be
affected by noise in both audio and visual observations, whereas the baseline is only affected by
the visual noise. For these experiments, we chose three environments: one where our method was
better (MsPacman), one where the baseline was better (SpaceInvaders), and one where both methods
performed well (Asterix). Figure 7 depicts results across these three environments both with and
without noise. We observe that future prediction curiosity is not robust to such noise: the performance
degrades significantly in both Asterix and SpaceInvaders. In contrast, as our approach only relies on
associations, it is more robust to such noise.

Multiple Curiosity Modules Curiosity can have multiple forms, e.g. prediction-based and mul-
timodal, and these are complementary to each other. To demonstrate this, we ran a joint method
combining intrinsic rewards: we sum the losses from future prediction and the audio-visual discrim-
inator. The resulting method is better than the visual-only baseline in 10 of 12 games, sometimes
surpassing both (see the appendix for the detailed results).
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Figure 7: Effect of input noise on performance: Our method (blue) maintains similar performance
with the introduction of noisy observations, while the baseline performance (orange) degrades.

5 Conclusion

Multimodality is one of the most basic facets of our rich physical world. Our formulation of curiosity
enables an autonomous agent to efficiently explore a new environment by exploiting relationships
between sensory modalities. With results on Atari games, we demonstrated the benefit of using
audio-visual association to compute the intrinsic reward. Our method showed improved exploration
over baselines in several environments. The most promise lies in our approach’s significant gains
when used on a more realistic task, exploration in the Habitat environment, where audio and visual
are governed by the same physical processes. We anticipate multimodal agents exploring in the real
world and discovering even more interesting associations. Instead of building robots that perform like
adults, we should build robots that can learn the way babies do. These robots will be able to explore
autonomously in real-world, unstructured environments.

Broader Impact

The lasting impact of RL will be from these algorithms working in the real world. As such, our work
is centered around increasing sample efficiency and adaptability. By leveraging self-supervision, we
can avoid cumbersome reward shaping, which becomes exponentially more difficult as tasks grow
more complex. Although our work here uses simulated agents, our longer-term goal is to deploy
multimodal curiosity on physical robots, enabling them to explore in a more sample-efficient manner.
Multimodal learning could have a near-immediate impact in autonomous driving, where different
sensory modalities are used for perception of near, far, small, and large entities.

Autonomous RL agents have many potential positive outcomes, such as home robots aiding elderly
people or those with disabilities. They will save time and money in many sectors of industry. However,
they also have the potential to displace parts of the workforce [43].

There could be privacy concerns if merged multimodal data is hard to anonymize or de-identify.
There could also be privacy concerns with respect to recording audio data in the wild [44]. With
unsupervised RL, it can be hard to predict what behaviors will be learned. For example, a robot using
our algorithm might learn to damage sensors to create novel associations. The inability to predict
agent behavior can make ensuring safety difficult, which would have consequences in safety-critical
settings like autonomous driving or healthcare. Some work has been done on safety in RL [45], and
there is more to be done, especially on analyzing the safety of RL exploration policies during training.
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