
Supplementary Material

A Computing the Latent Space Partition
In this section we first introduce notations and demonstrate how to express a region ω of the partition Ω as a polytope defined by a
system of inequalities, and then leverage this formulation to demonstrate how to obtain Ω by recursively exploring neighboring regions
starting from a random point/region.

Regions as Polytopes To represent the regions ω ∈ Ω as a polytope via a system of inequalities we need to recall from (1) that the
input-output mapping is defined on each region by the affine parameters Aω, Bω themselves obtained by composition of MASOs.
Each layer pre-activation (feature map prior application of the nonlinearity) is denoted by h`(z) ∈ RD`

, ` = 1, . . . , L− 1 and given
by h`(x) = A1→`

ω z + b1→`
ω , with up-to-layer ` affine parameters

A1→`
ω ,W `D`−1

ω W `−1 . . .D1
ωW

1, A1→`
ω ∈ RD

`×S , (10)

b1→`−1
ω , v` +

∑̀
i=1

W `D`−1
ω W `−1 . . .Di

ωv
i, b1→`

ω ∈ RD
`

, (11)

which depend on the region ω in the latent space 2. Notice that we have in particularAL
ω = Aω and bLω = bω, the entire DGN affine

parameters from (2) on region ω. The regions depend on the signs of the pre-activations defined as q`(z) = sign(h`(z)) due to the
used activation function behaving linearly as long as the feature maps preserve the same sign. This holds for (leaky-)ReLU or absolute
value, for max-pooling we would need to look at the argmax position of each pooling window, as pooling is rare in DGN we focus
here on DN without max-pooling; let qall(z) , [(qL−1(z))T , . . . , (q1(z))T ]T collect all the per layer sign operators without the last
layer as it does not apply any activation.
Lemma 5. The qall operator is piecewise constant and there is a bijection between Ω and Im(q).
The above demonstrates the equivalence of knowing ω in which an input z belongs to and knowing the sign pattern of the feature maps
associated to z; we will thus use interchangeably qall(z), z ∈ ω and qall(ω). From this, we see that the pre-activation signs and the
regions are tied together. We can now leverage this result and provide the explicit region ω as a polytope via its sytem of inequality, to
do so we need to collect the per-layer slopes and biases into

Aall
ω =

A1→L−1
ω
. . .
A1→1
ω

 , ball
ω =

b1→L−1
ω
. . .
b1→1
ω

 , Aall
ω ∈ R(

∏L−1
`=1 D`)×S , ball

ω ∈ R
∏L−1

`=1 D`

. (12)

Corollary 2. The H-representation of the polyhedral region ω is given by

ω = {z ∈ RS : Aall
ω z < −qall(ω)� ball

ω } =

L−1⋂
`=1

{z ∈ RS : A1→`
ω z < −q`(ω)� b1→`

ω }, (13)

with � the Hadamard product.
From the above, it is clear that the sign locates in which side of each hyperplane the region is located. We now have a direct way
to obtain the polytope ω from its sign pattern qall(ω) or equivalently from an input z ∈ ω; the only task left is to obtain the entire
partition Ω collecting all the DN regions, which we now propose to do via a simple scheme.

Partition Cells Enumeration. The search for all cells in a partition is known as the cell enumeration problem and has been extensively
studied in the context of speicific partitions such as hypreplane arrangements [54–56]. In our case however, the set of inequalitites of
different regions changes. In fact, for any neighbour region, not only the sign pattern qall will change but alsoAall

ω and ball
ω due to the

2looser condition can be put as the up-to-layer ` mapping is a CPA on a coarser partition than Ω but this is sufficient for our goal.
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composition of layers. In fact, changing one activation state say −1 to 1 for a specific unit at layer ` will alter the affine parameters
from (10) and (11) due to the layer composition. As such, we propose to enumerate all the cells ω ∈ Ω with a deterministic algorithm
that starts from an intial region and recursively explores its neighbouring cells untill all have been visited while recomputing the
inequality system at each step. To do so, consider the initial region ω0. First, one finds all the non-redundant inequalities of the
inequality system (13), the remaining inequalities define the faces of the polytope ω. Second, one obtains any of the neighbouring
regions sharing a face with ω0 by switching the sign in the entry of q(ω0) corresponding to the considered face. Repeat this for all
non-redundant inequalities to obtain all the adjacent regions to ω0 sharing a face with it. Each altered code defines an adjacent region
and its sytem of inequality can be obtain as per Lemma 2. Doing so for all the faces of the initial region and then iterating this process
on all the newly discovered regions will enumerate the entire partition Ω. We summarize this in Algo 1 in the appendix and illustrate
this recursive procedure in Fig. 1.

We now have each cell as a polytope and enumerated the partition Ω, we can now turn into the computation of the marginal and
posterior DGN distributions.

B Analytical Moments for truncated Gaussian
To lighten the derivation, we introduce extend the [.] indexing operator such that for example for a matrix, [.]−k,. means that all the
rows but the kth are taken, and all columns are taken. Also, [.](k,l),. means that only the kth and lth rows are taken and all the columns.
Let also introduce the following quantities

[F (a,Σ)]k =φ ([a]k; 0, [Σ]k,k) Φ[[a]−k,∞)

(
µ(k),Σ(k)

)
[G(a,Σ)]k,l =φ

(
[a](k,l); 0, [Σ](k,j),(k,j)

)
Φ[[a]−(k,l),∞)

(
µ
(
(k, l)

)
,Σ
(
(k, l)

))
H(a,Σ) =G(a,Σ) + diag

(
l� F (l,Σ)−

(
Σ�G(l,Σ)

)
1

diag(Σ)

)
with µ(u) = [Σ]−u,u[Σ]−1

u,u[a]u, and Σ(u) = [Σ]−u,−u − [Σ]−u,u[Σ]−1
u,u[Σ]T−u,u. Thanks to the above form, we can now obtain

the integral e0
ω(Σ) , Φω(0,Σ) and the first two moments of a centered truncated gaussian e1

ω(Σ) ,
∫
ω
zφ(z; 0,Σ) and E2

ω(Σ) ,∫
ω
zzTφ(z; 0,Σ)

Corollary 3. The integral and first two moments of a centered truncated gaussian are given by

e0
ω(Σ) =

∑
∆∈T (ω)

∑
(s,C)∈T (∆)

sΦ[l(C),∞)

(
0, RcΣR

T
c

)
dz, (14)

e1
ω(Σ) =Σ

∑
∆∈T (ω)

∑
(s,C)∈T (∆)

sRTCF (lω,c, RcΣR
T
c ), (15)

E2
ω(Σ) =Σ

 ∑
∆∈T (ω)

∑
(s,C)∈T (∆)

sRTC(H(lω,C , RcΣR
T
c ))RC

Σ + e0
ω(Σ)Σ (16)

To simplify notations let consider the following notation of the posterior (6) where are incorporate the terms independent of z into

αω(x) =
φ(x;Bω,Σx +AωΣzA

T
ω )∑

ω φ(x;Bω,Σx +AωΣzATω )Φω(µω(x),Σω)
, (17)

leading to p(z|x) =
∑
ω∈Ω δω(z)αω(x)φ(z;µω(x),Σω).

Theorem 2. The first (per region) moments of the DGN posterior are given by

Ez|x[1z∈ω] = αω(x)e0
ω(Σω),

Ez|x[z1z∈ω] = αω(x)
(
e1
ω−µω(x)(Σω) + e0

ω−µω(x)(Σω)µω(x)
)
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Ez|x[zzT1z∈ω] = αω(x)
(
E2
ω−µω(x)(Σω) + e1

ω−µω(x)(Σω)µω(x)T

+ µω−µω(x)(x)e1
ω−µω(x)(x)T + µω(x)µω(x)T e0

ω(x)
)

which we denote Ez|x[1z∈ω] , e0
ω(x), Ez|x[z1z∈ω] , e1

ω(x) and Ez|x[zzT1z∈ω] , E2
ω(x). (Proof in F.9.)

C Implementation Details

The Delaunay triangulation needs the V-representation of ω, the vertices which convex hull form the region [57]. Given that we have
the H-representation, finding the vertices is known as the vertex enumeration problem [58]. To compute the triangulation we use the
Python scipy [59] implementation which interfaces the C/C++ Qhull implementation [60]. To compute the H 7→ V representation and
vice-versa we leverage pycddlib 3 which interfaces the C/C++ cddlib library 4 employing the double description method [61].

D Figures

We demonstrate here additional figures for the posterior and marginal distribution of a DGN.

3https://pypi.org/project/pycddlib/
4https://inf.ethz.ch/personal/fukudak/cdd_home/index.html
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Figure 8: Additional random DGNs with their samples, the posterior and the marginal distributions.
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E Algorithms

Algorithm 1: SearchRegion
Data: Starting region ω and q(ω), initial set (Ω)
Result: Updated Ω
if ω 6∈ Ω then

Ω← Ω ∪ {ω};
else

Quit
end
I = reduce(Aall

ω , B
all
ω );

for i ∈ I do
SearchRegion(flip(q(ω), i), Ω);

end

F Proofs
In this section we provide all the proofs for the main paper theoretical claims. In particular we will go through the derivations of the
per region posterior first moments and then the derivation of the expectation and maximization steps.

F.1 Proof of Lemma 1
Proof. The proof consists of expressing the conditional distribution and using the properties of DGN with piecewise affine nonlinearities.
We are able to split the distribution into a mixture model as follows:

p(x|z) =
1

(2π)D/2
√
|det Σx|

e−
1
2 (x−g(z))T Σ−1

x (x−g(z))

=
1

(2π)D/2
√
|det Σx|

e−
1
2 (x−

∑
ω∈Ω 1z∈ω(Aωz+Bω))T Σ−1

x (x−
∑

ω∈Ω 1z∈ω(Aωz+Bω))

=
1

(2π)D/2
√
|det Σx|

e−
1
2

∑
ω∈Ω 1z∈ω(x−(Aωz+Bω))T Σ−1

x (x−(Aωz+Bω))

=
∑
ω∈Ω

1z∈ω
1

(2π)D/2
√
|det Σx|

e−
1
2 (x−(Aωz+Bω))T Σ−1

x (x−(Aωz+Bω))

=
∑
ω∈Ω

1z∈ωφ(x|Aωz +Bω,Σx)

F.2 Proof of Proposition 1
Proof. This result is direct by noticing that the probability to obtain a specific region slope and bias is the probability that the sampled
latent vector lies in the corresponding region. This probability is obtained simply by integrating the latent gaussian distribution on the
region. We obtain the result of the proposition.

F.3 Proof of Theorem 1
Proof. For the first part, we simply leverage the known result from linear Gaussian models [62] stating that

p(z|x) =
p(x|z)p(z)

p(x)
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=
1

p(x)

e−
1
2 (x−g(z))T Σ−1

x (x−g(z))

(2π)D/2
√
|det(Σx)|

e−
1
2 (z−µ)T Σ−1

z (z−µ)

(2π)S/2
√
|det(Σz)|

=
1

p(x)

(∑
ω∈Ω

1z∈ω
e−

1
2 (x−Aωz−Bω)T Σ−1

x (x−Aωz−Bω)

(2π)D/2
√
|det(Σx)|

)e− 1
2 (z−µ)T Σ−1

z (z−µ)

(2π)S/2
√
|det(Σz)|

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 (x−Aωz−Bω)T Σ−1

x (x−Aωz−Bω)− 1
2z

T Σ−1
z z

(2π)(S+D)/2
√
|det(Σx)|| det(Σz)|

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((x−Bω)−Aωz)T Σ−1

x ((x−Bω)−Aωz)− 1
2z

T Σ−1
z z

(2π)(S+D)/2
√
|det(Σx)||det(Σz)|

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)T (AT
ωΣ−1

x Aω+Σ−1
z )((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)

(2π)(S+D)/2
√
|det(Σx)||det(Σz)|

× e− 1
2 ((x−Bω)T Σ−1

x (x−Bω))+ 1
2 ((x−Bω)T Σ−1

x Aω(AT
ωΣ−1

x Aω+Σ−1
z )−1AT

ωΣ−1
x (x−Bω))

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)T (AT
ωΣ−1

x Aω+Σ−1
z )((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)

(2π)(S+D)/2
√
|det(Σx)||det(Σz)|

× e− 1
2 ((x−Bω)T (Σ−1

x −Σ−1
x Aω(AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x )(x−Bω))

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)T (AT
ωΣ−1

x Aω+Σ−1
z )((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)

(2π)(S+D)/2
√
|det(Σx)||det(Σz)|

× e− 1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 (µω(x)−z)T Σ−1

ω (µω(x)−z)

(2π)(S+D)/2
√
|det(Σx)||det(Σz)|

e−
1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

with µω(x) = ΣωA
T
ωΣ−1

x (x−Bω) and Σω = (ATωΣ−1
x Aω + Σ−1

z )−1 as a result it corresponds to a mixture of truncated gaussian,
each living on ω. Now we determine the renormalization constant:

p(x) =

∫
p(x|z)p(z)dz

=
∑
ω∈Ω

∫
ω

1z∈ω
e−

1
2 (µω(x)−z)T Σ−1

ω (µω(x)−z)

(2π)(S+D)/2
√
|det(Σx)||det(Σz)|

e−
1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))dz

=
∑
ω∈Ω

1z∈ω
e−

1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

(2π)D/2
√
|det(Σx)||det(Σz)|

√
det(Σω)

∫
ω

φ(z;µω(x),Σω)dz

=
∑
ω∈Ω

1z∈ω
e−

1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

(2π)D/2
√
|det(Σx)||det(Σz)|

√
det(Σω)Φω(µω(x),Σω)

=
∑
ω∈Ω

1z∈ω

√
det(Σx +AωΣzATω ) det(Σω)√
|det(Σx)||det(Σz)|

φ(x;Bω,Σx +AωΣzA
T
ω )Φω(µω(x),Σω),

now using the Matrix determinant lemma [63] we have that det(Σx+AωΣzA
T
ω ) = det(Σ−1

z +ATωΣ−1
x Aω) det(Σx) det(Σz) leading

to
p(x) =

∑
ω

φ(x;Bω,Σx +AωΣzA
T
ω )Φω(µω(x),Σω),
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p(z|x) =
∑
ω

δω(z)
φ(x;Bω,Σx +AωΣzA

T
ω )φ(z;µω(x),Σω)∑

ω φ(x;Bω,Σx +AωΣzATω )Φω(µω(x),Σω)
.

F.4 Proof of Lemma 2
The proof will consist of observing that the posterior (prior rewriting) can be expressed as a softmax of a quantity rescaled by the
standard deviation.

Proof.

log(φ(z;µω(x),Σω)) =− 1

2
(x− µω)TΣ−1

ω (x− µω(x)))− 1

2
log(det(Σω)) + cst

=− 1

2
(z − ΣωA

T
ωΣ−1

x (A0z0 +B0 −Bω))TΣ−1
ω (z − ΣωA

T
ωΣ−1

x (A0z0 +B0 −Bω))T )

− 1

2
log(det(Σω)) + cst

= −1

2
(z − (ATωΣ−1

x Aω)−1ATωΣ−1
x (A0z0 +B0 −Bω))TΣ−1

ω (z − (ATωΣ−1
x Aω)−1ATωΣ−1

x (A0z0 +B0 −Bω))T )

− 1

2
log(det(Σω)) + cst

where we used the following result to develop µω(x)

Σω = (ATωΣ−1
x Aω + Σ−1

z )−1 =(ATωΣ−1
x Aω + (ATωΣ−1

x Aω)(ATωΣ−1
x Aω)−1Σ−1

z )−1

=(ATωΣ−1
x Aω)−1(I + (ATωΣ−1

x Aω)−1Σ−1
z )−1

=(ATωΣ−1
x Aω)−1 as (ΣzA

T
ωΣ−1

x Aω)−1 → 0.

if we are in the same region ω than z0 then the above becomes

arg max
z∈ω0

log(φ(z;µω(x),Σω)) = arg max
z∈ω0

−1

2
(z − z0)TΣ−1

ω (z − z0) = z0,

and since we know that we are in the same region, the argmax z = z0 lies in this region and thus is the maximum of the posterior.

F.5 Proof of Lemma 3
Proof. The sign vectors represent the sign of each pre-activation feature maps. The key here is that when changing the sign, the input
passes through the knot of the corresponding activation function of that layer. This implies a change in the region in the DGN input
space. In fact, without degenerate weights and with nonzero activation functions, a change in any dimension of the sign vector (used to
form the per region slope and bias) impact a change in the affine mapping used to map inputs z to outputs x. As such, whenever a
sign changes, the affine mapping changes, leading to a change of region in the DGN input space. As the sign vector is formed from
the DGN input space, and we restrict ourselves to the image of this mapping, there does not exist a sign pattern/configuration not
reachable by the DGN (otherwise it would not be in the image of this mapping). Now for the other inclusion, recall that a change in
region and thus in per region affine mapping can only occur with a change of pre-activation sign pattern.

F.6 Proof of Corollary2
Proof. From the above result, it is clear that the preactivation roots define the boundaries of the regions. Obtaining the hyperplane
representation of the region thus simply consists of reexpressing this statement with the explicit pre-activation hyperplanes for all the
layers and units, the intersection between layers coming from the subdivision. For additional details please see [25].
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F.7 Proof of Lemma 4
Proof. The proof consists of rearranging the terms from the inclusion-exclusion formula as in∑

J⊆{1,...,F},J 6=∅

(−1)|J|+1 (∩j∈JAj) = ∪iAi

(−1)F+1S +
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1 (∩j∈JAj) = ∪iAi

(−1)F+1S = ∪iAi −
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1 (∩j∈JAj)

S = (−1)F+1 ∪i Ai − (−1)F+1
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1 (∩j∈JAj)

S = (−1)F+1 ∪i Ai +
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1+F (∩j∈JAj)

then by application of Chasles rule [64], the integral domain can be decomposed into the signed sum of per cone integration. Finally, a
simplex in dimension S has S + 1 faces, making F = S + 1 and leading to the desired result.

F.8 Proof of Moments

Lemma 6. The first moments of Gaussian integration on an open rectangle defined by its lower limits a is given by∫ ∞
a

zφ(0,Σ)dz =ΣF (a), (18)∫ ∞
a

zzTφ(0,Σ)dz =Φ[a,∞)(0,Σ)Σ + Σ

(
G(a) +

a� F (a)−
(
Σ�G(a)

)
1

diag(Σ)

)
Σ. (19)

where the division is performed elementwise.

Proof. First moment:∫
ω

zφ(x; 0,Σ)dz =

∫
ω

z
e−

1
2z

T Σ−1z

(2π)K/2|det(Σ)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
C

z
e−

1
2 (RCz)T (RT

C)−1Σ−1
ω R−1

C RCz

(2π)K/2|det(Σω)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
l(C)

R−1u
e−

1
2u

T (RCΣωR
T
C)−1u

(2π)K/2|det(RC)|| det(Σω)|1/2
du

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sR−1
C

∫
l(C)

uφ(u; 0, RCΣωR
T
C)du

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sR−1
C (RCΣωR

T
CF (l(C))

=Σω
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sRTCF (l(C))
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Second moment∫
ω

zzTφ(x; 0,Σ)dz =

∫
ω

zzT
e−

1
2z

T Σ−1z

(2π)K/2|det(Σ)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
C

zzT
e−

1
2 (RCy)T (RT

C)−1Σ−1
ω R−1

C RCy

(2π)K/2|det(Σω)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
l(C)

R−1
C uuT (R−1

C )T
e−

1
2u

T (RCΣωR
T
C)−1u

(2π)K/2|det(RC)||det(Σω)|1/2
du

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sR−1
C

∫
l(C)

uuTφ(u; 0, RCΣωR
T
C)du(R−1

C )T

=
∑

∆∈S(ω−µω(x))

∑
(s,C)∈T (∆)

sR−1
C

[
Φ[l(C),∞)(0, RCΣωR

T
C)RCΣωR

T
C

+RCΣωR
T
C

(
l(C)� F (l(C)) +

(
RCΣωR

T
C �G(l(C))

)
1

diag(RCΣωRTC)

)
(RCΣωR

T
C)T

]
(R−1

C )T

=
∑

∆∈S(ω−µω(x))

∑
(s,C)∈T (∆)

s
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Φ[l(C),∞)(0, RCΣωR

T
C)Σω

+ ΣωR
T
C

(
l(C)� F (l(C)) +

(
RCΣωR

T
C �G(l(C))

)
1

diag(RCΣωRTC)

)
RCΣω

]
= e0

ω−µω(x)Σω + Σω
[ ∑

∆∈S(ω−µω(x))

∑
(s,C)∈T (∆)

sRTC

(
l(C)� F (l(C)) +

(
RCΣωR

T
C �G(l(C))

)
1

diag(RCΣωRTC)

)
RC
]
Σω

F.9 Proof of Theorem 2

Proof. Constant:RC =

(
CT

HTΣ−1
ω

)
∫
ω

p(z|x)dz = αω(x)

∫
ω

φ(z;µω(x),Σω)dz = αω(x)

∫
ω−µω(x)

φ(z; 0,Σω)dz = αω(x)e0
ω−µω(x)

First moment: ∫
ω

zp(z|x)dz =αω(x)

∫
ω

z
e−

1
2 (z−µω(x))T Σ−1

ω (z−µω(x))

(2π)K/2|det(Σω)|1/2
dz

=αω(x)

∫
ω−µω(x)

(y + µω(x))
e−

1
2y

T Σ−1
ω y

(2π)K/2|det(Σω)|1/2
dz

=αω(x)
(
e1
ω−µω(x) + e0

ω−µω(x)µω(x)
)

Second moment:∫
zzT p(z|x)dz =αω(x)

∫
ω

zzTφ(z;µω(x),Σω)dz
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=αω(x)

∫
ω−µω(x)

(y + µω(x))(y + µω(x))Tφ(z; 0,Σω)dz

=αω(x)
(
E2 + µω(x)e1

ω(Σω)T + e1
ω(Σω)µω(x)T + µω(x)µω(x)T e0

ω−µω(x)(Σω)
)

G Proof of EM-step
We now derive the expectation maximization steps for a piecewise affine and continuous DGN.

G.1 E-step derivation

Ez|x[(Aωz +Bω)1ω] = Am1
ω +Be0

ω (20)

Ez|x[zTATωAωz1ω] = Tr(ATωAωm
2) (21)

EZ|X
[
log
(
pX|Z(x|z)pZ(z)

)]
=EZ|X

[
log

(
e−

1
2 (x−g(z))T Σ−1

x (x−g(z))

(2π)D/2
√
|det(Σx)|

e−
1
2z

T Σ−1
z x

(2π)S/2
√
|det(Σz)|

)]

= − log
(

(2π)(S+D)/2
√
|det(Σz)|

√
|det(Σx)|)

)
− 1

2
EZ|X

[
(x− g(z))TΣ−1

x (x− g(z)) + zTΣ−1
z z

]
= − log

(
(2π)(S+D)/2

√
|det(Σz)|

√
|det(Σx)|)

)
− 1

2

(
xTΣ−1

x x+ EZ|X

[
− 2xTΣ−1

x g(z) + g(z)TΣ−1
x g(z) + zTΣ−1

z z

])
= − log

(
(2π)(S+D)/2

√
|det(Σz)|

√
|det(Σx)|)

)
− 1

2

(
xTΣ−1

x x+ Tr(EZ|X [zzTΣ−1
z ])

+ EZ|X

[
− 2xTΣ−1

x g(z) + g(z)TΣ−1
x g(z)

])
= − log

(
(2π)(S+D)/2

√
|det(Σz)|

√
|det(Σx)|)

)
− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x

(∑
ω

Aωe
1
ω(x) + bωe

0
ω(x)

)

+
∑
ω

e0
ωb

T
ωΣ−1

x bω + Tr(AT
ωΣ−1

x AωE
2
ω(x)) + 2(Aωm

1
ω(x))TΣ−1

x bω + Tr(Σ−1
z E

2(x))

)
G.2 Proof of M step
Let first introduce some notations:

AL→i
ω , (AL→i

ω )T (back-propagation matrix to layer i),

r`ω(x) ,

xe0
ω(x)−

Aωe
1
ω(x) +

∑
i 6=`

m0
ω(x)Ai+1→L

ω Di
ωv

i

 (expected residual without v`)

ẑ`ω(x) ,D`−1
ω

(
A1→`−1
ω m1

ω(x) + b1→`−1
ω e0

ω

)
(expected feature map of layer `)

we can now provide the analytical forms of the M step for each of the learnable parameters:

Σ∗x=
1

N

∑
x

(
xxT+

∑
ω

bω
(
bωm

0
ω(x) + 2Aωe

1
ω(x)

)T− 2x(ẑLω (x))T+AωE
2
ω(x)AT

ω

)
, (22)
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v`
∗

=

(∑
x

∑
ω

D`
ωA

L→`+1
ω Σ−1

x A
`+1→L
ω D`

ω

)−1
∑

x

∑
ω∈Ω

D`
ωA

L→`+1
ω Σ−1

x r`ω(x)︸ ︷︷ ︸
residual back-propagated to layer `

 , (23)

vect(W `∗) = U−1
ω vect

(∑
x

∑
ω

D`
ωA

L→`+1Σ−1
x

(
x−

L∑
i=`

Ai+1→L
ω Di

ωv
i

)
︸ ︷︷ ︸

residual back-propagated to layer `

(ẑ`ω(x))T
)
, (24)

we provide detailed derivations below.

G.2.1 Update of the bias parameter
Recall from (2) that bω = vL +

∑L−1
i=1 W

LDL−1
ω WL−1 . . .Di

ωv
i, we can thus rewrite the loss as

L(v`) =− 1

2
log
(

(2π)S+D|det(Σx)||det(Σz)|
)
− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x

(∑
ω

Aωm
1
ω(x) + bωm

0
ω(x)

)

+
∑
ω
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ωb

T
ωΣ−1

x bω + Tr(AT
ωΣ−1

x AωM
2
ω(x)) + 2(Aωm

1
ω(x))TΣ−1

x bω

)
− 1

2
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z M
2(x))

=− 1

2

(
− 2xTΣ−1

x

(∑
ω

bωe
0
ω(x)

)
+
∑
ω

e0
ωb

T
ωΣ−1

x bω + 2
∑
ω

(Aωm
1
ω(x))TΣ−1

x bω

)
+ cst

=− 1

2

∑
ω

(
− 2xTΣ−1

x

(
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ω D`

ωv
`e0
ω(x)

)
+ e0
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ω D`

ωv
`)TΣ−1

x (A`+1→L
ω D`

ωv
`)
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ω(x)(

∑
i 6=`
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ωv
i)TΣ−1
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ω D`
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`) + 2((m1

ω(x))T (Aω)TΣ−1
x A
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ω D`

ωv
`
)

+ cst
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2

∑
ω

(
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ω D`
ωv

`)TΣ−1
x (A`+1→L

ω D`
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`) (A)

+ 2(e0
ω(x)(

∑
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ωv
i − x) +Aωe

1
ω(x))TΣ−1

x (A`+1→L
ω D`

ωv
`)
)

+ cst (B)

=⇒ ∂L(v`) =− 1

2

∑
ω

[
− e0

ω(x)2D`
ωA

L→`+1
ω Σ−1

x A
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ω D`

ωv
`

+ 2
(
A`+1→L
ω D`

ω

)T
Σ−1
x

e0
ω(x)

∑
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Ai+1→L
ω Di

ωv
i − x

+Aωe
1
ω(x)

]

=⇒ v` =

(∑
x

∑
ω

e0
ω(x)D`

ωA
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x A
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ω D`

ω
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∑
x

∑
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x
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(A) =e0
ω(x)(A`+1→L

ω D`
ωv

`)TΣ−1
x (A`+1→L

ω D`
ωv

`)

=⇒ ∂(A) =e0
ω(x)2D`
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ω Di
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1
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x
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i 6=`
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ω Di

ωv
i − x

+Aωe
1
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
G.2.2 Update of the slope parameter
We can thus rewrite the loss as

L(v`) =− 1

2
log
(

(2π)S+D|det(Σx)||det(Σz)|
)
− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x
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0
ω(x)
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+
∑
ω
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T
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2
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1
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− 1
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∑
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∑
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Notice that we can rewrite bω = A`+1→LD`
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∑L
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ω Di
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∑
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∑
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∑
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∑
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we can group B,D and E together as well as A and C. Now to solve this equal 0 we will need to consider the flatten version ofW `
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H Regularization
We propose in this section a brief discussion on the impact of using a probabilistic prior on the weights of the GDN. In particular,
it is clear that imposing a Gaussian prior with zero mean and isotropic covariance on the weights falls back in the log likelihood to
impose a l2 regularization of the weights with parameter based on the covariance of the prior. If the prior is a Laplace distribution,
the log-likelihood will turn the prior into an l1 regularization of the weights, again with regularization coefficient based on the prior
covariance. Finally, in the case of uniform prior with finite support, the log likelihood will be equivalent to a weight clipping, a
standard technique employed in DNs where the weights can not take values outside of a predefined range.

I Computational Complexity
The computational complexity of the method increases drastically with the latent space dimension, and the number of regions, and
the number of faces per regions. Those last quantities are directly tied into the complexity (depth and width) of the DGNs. This
complexity bottleneck comes from the need to search for all regions, and the need to decompose each region into simplices. As such,
the EM learning is not yet suitable for large scale application, however based on the obtained analytical forms, it is possible to derive
an approximation of the true form that would be more tractable while providing approximation error bounds as opposed to current
methods.

J Additional Experiments
In this section we propose to complement the toy circle experiment from the main paper first we an additional 2d case and then with
the MNIST dataset.
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Figure 10: Depiction of the evolution of the NLL during training for the EM and VAE algorithms, we can see that despite the high
number of training steps, VAEs are not yet able to correctly approximate the data distribution as opposed to EM training which benefits
from much faster convergence. We also see how the VAEs tend to have a large KL divergence between the true posterior and the
variational estimate due to this gap, we depict below samples from those models.

Wave

We propose here a simple example where the read data is as follows:

Figure 9: sample of noise data for the wave dataset

We train on this dataset the EM and VAE based learning with various learning rates and depict below the evolution of the NLL for all
models, we also depict the samples after learning.

MNIST We now employ MNIST which consists of images of digits, and select the 4 class. Note that due to complexity overhead
we maintain a univariate latent space of the GDN and employ a three layer DGN with 8 and 16 hidden units. We provide first the
evolution of the NLL through learning for all the training methods and then sample images from the trained DGNs demonstrating how
for small DGNs EM learning is able to learn a better data distribution and thus generated realistic samples as opposed to VAEs which
need much longer training steps.
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Figure 11: Samples from the various models trained on the wave dataset. We can see on top the result of EM training where each
column represents a different run, the remaining three rows correspond to the VAE training. Again, EM demonstrates much faster
convergence, for VAE to reach the actual data distribution, much more updates are needed.

Figure 12: Evolution of the true data negative log-likelihood (in semilogy-y plot on MNIST (class 4) for EM and VAE training for a
small DGN as described above. The experiments are repeated multiple times, we can see how the learning rate is clearly impacting the
learning significantly despite the use of Adam, and that even with the large learning rate, the EM learning is able to reach lower NLL,
in fact the quality of the generated samples of the EM modes is much higher as shows below.
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Expectation-Maximization training

VAE training (large learning rate)

VAE training (medium learning rate)

VAE training (small learning rate)

Figure 13: Random samples from trained DGNs with EM or VAEs on a MNIST experiment (with digit 4). We see the ability of EM training to
produce realistic and diversified samples despite using a latent space dimension of 1 and a small generative network.
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