
Reviewer #1: We thank the reviewer for his/her review and suggestions. Practicality and claims: In term of practical1

use of the EM training we agree and explicitly acknowledged that it is computationally demanding. However, the2

obtained analytical results hold for any depth/with and nonlinearities (as long as they are piecewise affine); the results3

of the paper are thus general and can be used to gain in depth theoretical understanding of generative networks and4

their learning dynamics (from the explicit M step). The obtained analytical forms allow (i) to better design VAEs (now5

knowing the target posterior that variational inference approximates), (ii) to guide the design of variational distributions6

(for example favoring full covariance and multimodal posterior) as well as (iii) interpreting the learned parameters from7

the M-step. Those insights are gained despite the computational limits of the practical EM learning as they rely on8

the analytical derivations only. We will add further analysis and discussions on this. On that note, we also believe9

that tremendous future work can also be done to derive faster EM learning leveraging the obtained formula either by10

providing principled approximations of the per region Gaussian integrals or by approximation of the partitions; we11

believe that this paper is only the beginning of such research directions. Direct log-likelihood maximization: As in12

any missing variable model (here z is unobserved, only x is observed) one can not directly minimize the negative13

log likelihood and must first infer z. EM is one common strategy to do so based on the posterior p(z|x); once z14

is inferred, one can then do the maximization of the (now estimated) log-likelihood. Adding cost analysis of the15

algorithm: We will add in the appendix exact computation times and further details for each of the experiment and16

different architectures for the EM learning as well as each step involved (partition finding, region triangulation, per17

region integration). Comparison to VAE and figures: In Fig. 4 we compared the negative log-likelihood of both18

models. While a VAE can be trained using the standard variational inference strategy, we evaluate its NLL after training19

and compare with the generative deep network trained with EM. We will explicit this in the caption. We will also make20

the legend and labels clearer in the figures.21

Reviewer #2: We thank the reviewer for their appreciation of the paper. We will correct the typos and explicit the22

pseudo-code as well as providing exact link with the implementation. Computational limitations: Indeed, the current23

analytical EM learning is computationally demanding, we believe that future work can be done on this point by (1)24

providing analytical form of gaussian integration on a convex polytope (this would remove the need of triangulation and25

then inclusion-exclusion formula) or by (2) providing principled approximation of those integrals. Note that our main26

contributions are the analytical derivations of the probability distributions and EM formula, the practical EM learning27

demonstrates the usefulness of those derivations. Gaussian prior and piecewise affine nonlinearities: The review28

is correct; this only applies to Gaussian prior and output distributions and with DN employing spline operators like29

ReLU, leaky-ReLU, abs. value, . . . which includes a large part of current generative network architectures. Also, the30

proposed method (with exact partition and per region derivation) can be employed to different distributions as long31

as they are conjugate priors. We will add this note in the paper. Constant covariance: Indeed, this case covers the32

practical cases of training in current generative models, however more general cases could be considered and even33

different distributions. We believe that the proposed methodology (per region derivation) provides a general framework34

and as long as the prior and output distributions are conjugate priors, analytical forms should be obtainable. We will35

add this discussion in the paper.36

Reviewer #3: we thank the reviewer for their careful review and appreciation of the paper. Previous work: We thank37

the reviewer for this relevant reference (which we denote by ICML2019 thereafter). ICML2019 relates linear VAEs38

to PPCA and propose a mode approximation of the posterior in turn producing a novel type of VAEs (Laplacian39

VAEs). ICML2019 also provides insights into the manifold geometry (piecewise affine) of ReLU VAEs. We will40

add this reference and detailed review in the background section. However we believe that none of our contributions41

is over-shadowed by ICML2019 since: (i) we extend the PPCA link of linear VAES to nonlinear VAEs resulting in42

MPPCA; (ii) we extend their geometrical insights to piecewise affine nonlinearities (not only ReLU) which consequently43

also allow to apply ICML2019 approximation methods to a broader class of VAEs; (iii) in ICML2019, no analytical44

(explicit) form is given for the probability distributions of a nonlinear VAE as the motivation of the paper was to provide45

a mode approximation based on a linearization of the network to tackle large scale tasks. We will also discuss the paper46

approximation method in the future work section as such posterior mode estimation could be employed and potentially47

improved with the proposed distributions. Lemma 2 ReLU assumption: you are correct, Lemma 2 holds for more48

general DGNs (as long as there is no surjectivity), we will add this note and discuss such cases in the paper.49

Reviewer #4: We thank the reviewer for his/her appreciation of the paper and we agree that providing exact methods50

even with demanding computational cost is crucial to exactly measure the impact of current approximation methods51

in VAEs. Computational complexity discussions: indeed, the computational bottleneck comes from the number of52

regions that then need to be triangulated. We will add computational time of each of the involved steps in the appendix:53

(i) computation of the partition, (ii) triangulation of each region (on average) and (iii) integration on a region. We will54

provide those statistics for the few different topologies that were used in the paper. Concerning the rate of growth of the55

number of regions in a real network, we will add citations to the following papers: "Complexity of Linear Regions56

in Deep Networks", "On the Number of Linear Regions of Deep Neural Networks" and "A Spline Theory of Deep57

Networks" with discussions.58


