A Proof of Lemma 2

This section provides a proof of Lemma 2.

Proof. The optimal relabeling distribution can be viewed as an information projection of the joint
distribution ¢, (¢ | 7)g,(7) onto the target distribution p(r, v) (Eq. 5):

¢ (Y | 7)g- (1) = qfréi& Dx(g- (¥ | T)ar (7,%) || p(7, %)),

where Q = {q(7,¢) s.t. [q(7,¥)dyy = q-(7)} is the set of all joint distributions with marginal
q- (7). Note that this set Q is closed and convex. We then apply Theorem 11.6.1 from Cover and
Thomas [8]:

Dxr(q(r,9) || p(7;4)) = Dxwla-(7,9) [| p(7:9) + Dxr(a(m, %) || ¢-(7,4)). (10)
The second KL divergence on the RHS can be simplified:

Dxr(q(1,9) || ¢ (7,%)) = Dxr(q(¥ | 7)g-(7) | ¢- (¥ | T)g- (7))

= Dy (golH T T) + By, [Dre(a(| 7) || - (6 | 7))

Substituting this simplification into Eq. 10 and rearranging terms, we obtain the desired result. [J

B Inverse RL on Transitions

For simplicity, our derivation of relabeling in Section 4 assumed that entire trajectories were provided.
This section outlines how to do relabeling with inverse RL when we are only provided with (s, a, s)
transitions, rather than entire trajectories. This derivation will motivate the use of the soft Q-function
in Eq. 8. In this case, policy distribution ¢ in the MaxEnt RL objective (Eq. 6) is conditioned on the
current state and action (s, a;) in addition to the task :

max —Dki(q(7, v | s¢,ae) || p(7,9)). (In

q(T,9|se,az)

Following the derivation in Section 4, we expand this objective, using q(% | s, a;) as our relabeling
distribution:

E yrq(plse,ac) [Z Ty (Str5 apr) +W— log q(ay | s¢,v) —W

Troq(T|,se,ae) Lpr—y

#0) = Toga(w | s1,00) ~ Tog Z() (1)
The expected value of the two summations is the soft Q-function for the policy ¢(a | s,v):
qu(sta ag, 1/}) =E Prg(t|se,ar) |:Z T’LP(St’7 at') - IOg q(at’ | St/ w):l . (13)
Trq(T|Y,se,a) Lpr—y

Substituting Eq. 13 into Eq. 12 and ignoring terms that do not depend on 1, we can solve the optimal
relabeling distribution:

a(0 | 51, 1) o plu)e? Croee) s 20, (14)

Learning Dynamics In practice, we estimate the partition function Z(v) from previously-observed
experience. If we have not seen any high-reward trajectories for a particular task v, then our
approximate inverse RL method will underestimate the partition function Z (1), causing mediocre
trajectories to appear near-optimal for task 1. We conjecture that this makes learning easier, providing
allowing the agent to effectively learn before having observed optimal trajectories. We leave further
investigation of this effect as future work.

14

(a) Original gridworld. (b) Modified gridworld where agent cannot move left.

Figure 8: Visualizing inverse RL: We visualize the goals inferred by inverse RL on two gridworld
domains. Each subplot corresponds to a different transition, indicated by the orange arrow. More
likely goals are colored dark blue, while unlikely goals are colored white.

C Prior Methods are Special Cases of HIPI

Prior work on both goal-conditioned supervised learning, self-imitation learning, and reward-weighted
regression can all be understood as special cases of HIPI-BC. Goal-conditioned supervised learn-
ing [15, 32, 45] learns a goal-conditioned policy using a dataset of past experience. For a given state,
the action that was actually taken is treated as the correct action (i.e., label) for states reached in
the future, and a policy is learned via supervised learning. As discussed in Section 4.1, relabeling
with the goal actually achieved is a special case of our framework. We refer the reader to those
papers for additional evidence that combining inverse RL (albeit a trivial special case) with behavior
cloning can effectively learn complex control policies. Self-imitation learning [33] and iterative
maximum likelihood training [31] augment RL with supervised learning on a handful of the best
previously-seen trajectories, an approach that can be viewed in the inverse RL followed by supervised
learning framework. However, because the connection to inverse RL is not made precise, these
methods omit the partition function, which may prove problematic when extending these methods
to multi-task settings. Finally, single-task RL. methods based on variational policy search [28] and
reward-weighted regression [35, 36] can also be viewed in this framework. Noting that the optimal
relabeling distribution is given as ¢(¢ | 7) « exp(Ry(7) — log Z (%)), relabeling by sampling
from the inverse RL posterior and then performing behavior cloning can be written concisely as the
following objective:

/ B (T)—log Z(1) Z log 7(ay | s¢,)ddr.
t

The key difference between this objective and prior work is the partition function. The observation
that these prior methods are special cases of inverse RL allows us to apply similar ideas to arbitrary
classes of reward functions, a capability we showcase in our experiments.

D Additional Experiments

In this section we describe two additional experiments.

Visualizing the inferred goals. Fig. 8 visualize the inferred goals on the gridworld example
(Sec. 5.1). Each subplot corresponds to a different transition, denoted by the orange arrow. Dark
blue cells denote likely goals, while white cells denote unlikely goals. When the dynamics are
modified so the agent cannot move left (Fig. 8b), states to the left of the agent are no longer inferred
as likely goals.

Effect of batch size. 'We ran an additional experi- 0)

ment varying the batch size used by HIPI-RL on the £ — 16 /\NJ"/N\M"
sparse 2D reacher. Fig. 9 (right) shows that increas- 3 -500 — 32

ing the batch size significantly improves performance, g — ‘15‘2‘8

suggesting that better approximate inverse RL results ~1000 , . .

in better performance. We used a batch size of 32 for 0.0 0.5 1.0 15 2.0
the results in the paper, but this experiment suggests Env. Steps 1es

that we could have gotten stronger results by using Figure 9: Varying the batch size on sparse 2D
a larger batch size. reacher '

15

E Experimental Details

E.1 Hyperparameters for Off-Policy RL

Except for the didactic experiment, we used SAC [19] as our RL algorithm, taking the implemen-
tation from Guadarrama et al. [17]. This implementation scales the critic loss by a factor of 0.5.
Following prior work [38], we only relabeled 50% of the samples drawn from the replay buffer,
using the originally-commanded task the remaining 50%. The only hyperparameter that differed
across relabeling strategies was the number of gradient updates per environment step. For each
experiment, we evaluated each method with values in {1, 3,10, 30} and reported the results of the
best hyperparameter in our plots. Perhaps surprisingly, doing random relabeling but simply increasing
the number of gradient updates per environment step was a remarkably competitive baseline.

e Learning Rate: 3e-4 (same for actor, critic, and entropy dual parameter)
e Batch Size: 32

e Network architecture: The input was the concatenation of the state observation and the
task . Both the actor and critic networks were 2 hidden layer ReLu networks. The actor
output was squashed by a tanh activation to lie within the actor space constraints. There
was no activation at the final layer of the critic network, except in the desk environment
(see comment below). The hidden layer dimensions were (32, 32) for the 2D navigation
environments, (256, 256) for the quadruped and desk environments, and (64, 64) for all
other environments.

e Discount v: 0.99

o Initial data collection steps: 1e5
e Target network update period: 1
o Target network 7: 0.005

e Entropy coefficient a:: We used the entropy-constrained version of SAC [20], using —dim(.A)
as the target value, where dim(.A) is the action space dimension.

e Replay buffer capacity: 1e6
e Optimizer: Adam

o Gradient Clipping: We found that clipping the gradients to have unit norm was important to
get RL working on the Sawyer and Jaco tasks.

To implement final state relabeling, we modified transitions as they were being added to the replay
buffer, adding both the original transition and the transition augmented to use the final state as the
goal. To implement future state relabeling, we modified transitions as they were being added to the
replay buffer, adding both the original transition and a transition augmented to use one of the next 4
states in the same trajectory as the goal.

E.2 Hyperparameters for Behavior Cloning Experiments

To account for randomness in the learning process, we collect at least 200 evaluation episodes per
domain; we repeat this experiment for at least 5 random seeds on each domain, and plot the mean and
standard deviation over the random seeds. We used a 2-layer neural network with ReLu activations
for all experiments. The hidden layers had size (256, 256). We optimized the network to minimize
MSE using the Adam optimizer with a learning rate of 3e-4. We used early stopping, halting training
when the validation loss increased for 3 consecutive epochs. Typically training converged in 30 -
50 epochs. We normalized both the states and actions. For the task-conditioned experiments, we
concatenated the task vectors to the state vectors.

16

E.3 Quadruped Environment

The quadruped was a modified version of the environment from Abdolmaleki
et al. [2]. We modified the initial state distribution so the agent always started
upright, and modified the observation space to include the termination signal
as part of the observation. Tasks 1/ € IR? were sampled uniformly from the
unit circle. Let sxy vel and sxy pos indicate the XY velocity and position of
the agent. For the HIPI-RL experiments, we used the following sparse reward
function:
rd,(s,a) =]]-(HSXYpos - d)HQ < 03) - 1'07

and the episode terminated when ||sxy pos — |2 < 0.3. We also reset the
environment after 300 steps if the agent had failed to reach the goal. For the
HIPI-BC experiments, we used the following dense reward function:

r(5,0) = sxy et + 0.1]al3.

Episodes were 300 steps long.

E.4 Finger Environment

The finger environment was taken from Tassa et al. [50]. Tasks) were sampled
using the environment’s default goal sampling function. Let sxy denote the
XY position of the knob that the agent can manipulate. The reward function
was defined as

oy (s,a) = L([lsxy — ¢ll2 < 0.01) — 1.0

and the episode terminated when ||sxy — ¥|]2 < 0.01. We also reset the
environment after 1000 steps if the agent had failed to reach the goal.

E.5 2D Reacher Environment

The 2D reacher environment was taken from Tassa et al. [S0]. Let sxy denote
the XY position of the robot end effector. The reward function was defined as

ry(s,a) = 1([[sxy — [l2 <m) —1.0

and the episode terminated when [|sxy — %]z < m, where m > 0 is a margin

around the goal. We used m = 0.01 and m = 0.003 in our experiments.

We also reset the environment after 1000 steps if the agent had failed to
reach the goal. Tasks were sampled using the environment’s default goal
sampling function.

E.6 Sawyer Reach Environment

The sawyer reach environment was taken from Yu et al. [59]. Let sxyz denote
the XYZ position of the robot end effector. The reward function was defined
as

ry(s,a) = L(|lsxyz — ¢lla <m) — 1.0

and the episode terminated when ||sxy — |2 < m, where m > 0 is a margin

around the goal. We used m = 0.01 and m = 0.003 in our experiments.

We also reset the environment after 150 steps if the agent had failed to reach
the goal. Tasks were sampled using the environment’s default goal sampling
function. For the experiment where the task indicator v also specified the
margin m, the margin was sampled uniformly from the interval [0, 0.1].

17

Quadruped

Finger

N

2D Reacher

Sawyer Reach

E.7 2D Navigation Environment

We used the 2D navigation environment from Eysenbach et al. [13]. The
action space is continuous and indicates the desired change of position. The
dynamics are stochastic, and the initial state and goal are sampled uniformly
at random for each episode. To increase the difficulties of credit assignment
and exploration, the agent is always initialized in the lower left corner, and we
randomly sampled goal states that are at least 15 steps away. The layout of the
obstacles is taken from the classic FourRooms domain, but dilated by a factor
of three.

E.8 Jaco Reach Environment

We implemented a reaching task using a simulated Jaco robot. Goal states
1 were sampled from uniformly from the interval [—0.1,0.1] x [—0.1,0.1] x
[0.02, 0.4]. The agent controlled the velocity of 6 arm joints and 3 finger joints,
so the action space was 9 dimensional. The action observation space was 43
dimensional. Let sxyz denote the XYZ position of the robot end effector. The
reward function was defined as

ry(s,a) = 1(|[sxyz — ¢[la < m) — 1.0

and the episode terminated when ||sxyz —1||2 < m, where m > 0 is a margin
around the goal. We used m = 0.1 and m = 0.01 in our experiments. We also
reset the environment after 250 steps if the agent had failed to reach the goal.

E.9 Walker Environment

The walker environment was a modified version of the environment from Tassa
et al. [50]. We modified the initial state distribution so the agent always started
upright, and modified the observation space to include the termination signal
as part of the observation. For the linear reward function, the features are the
torso height (normalized by subtracting 0.5m), velocity along the forward/aft
axis, the XZ displacement of the two feet relative to the agent’s center of mass
(the agent cannot move along the Y axis), and the squared L2 norm of the
actions. The task coefficients ¢ € R? can take on values in the range [—1, 1]
for all dimensions, except for the control penalty, which takes on values in
[—1,0]. Episodes were 100 steps long.

E.10 Half-Cheetah Environment

The half-cheetah environment was taken from Tassa et al. [S0]. We define
tasks to correspond to goal velocities and use the reward function from Rakelly
et al. [39]:

ry(s,a) = —|sva — ¢ = 0.05]|all3,

where sy is the horizontal root velocity. Tasks were sampled uniformly
¥ € [0, 3], with units of meters per second. Episodes were 100 steps long.

E.11 Desk Environment

The environment provided by Lynch et al. [32] included 19 tasks. We selected
the nine most challenging tasks by looking how often a task was accidentally
solved. In the demonstrations for each task, we recorded the average return
on the remaining 18 tasks. We chose the nine tasks whose average reward
was lowest. The nine tasks were three button pushing tasks and six block
manipulation tasks.

For experiments in this environment, we found that normalizing the action
space was crucial. We computed the coordinate-wise mean and standard
deviation of the actions from the demonstrations, and modified the environment

18

7
e “%

P 78 Y goal
Vel ‘,//// [start

2D Navigation

Jaco Reach

Walker

Half-Cheetah

Desk Manipulation

to implicitly normalize actions by subtracting the mean and dividing by the standard deviation. We
clipped the action space to [—1, +1], so the agent was only allowed to command actions within one
standard deviation (as measured by the expert demos). Another trick that was crucial for RL in this
environment was clipping the critic outputs. Since the reward was in [0, 1] and the episode length
was capped at 128 steps, we squashed the Q-value predictions with a scaled sigmoid to be in the
range [0, 128].

F Failed Experiments

1. 100% Relabeling: When using inverse RL to relabel data for off-policy RL, we initially
relabeled 100% of samples from the replay buffer, but found that learning was often worse
than doing no relabeling at all. We therefore switched to only 50% relabeling in our
experiments. We speculate that retaining some of the originally-commanded goals serves as
a sort of hard-negative mining.

2. Coordinate Ascent on Eq. 6: We attempted to devise an EM-style algorithm that performed
coordinate ascent in Eq. 6, alternating between (1) doing MaxEnt RL and (2) relabeling that
data and acquiring the corresponding policy via behavior cloning. While we were unable to
get this algorithm to outperform standard MaxEnt RL, we conjecture that this procedure
would work with the right choice of inverse RL algorithm.

19

