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Abstract

Feature distillation, a primary method in knowledge distillation, always leads to
significant accuracy improvements. Most existing methods distill features in the
teacher network through a manually designed transformation. In this paper, we
propose a novel distillation method named task-oriented feature distillation (TOFD)
where the transformation is convolutional layers that are trained in a data-driven
manner by task loss. As a result, the task-oriented information in the features
can be captured and distilled to students. Moreover, an orthogonal loss is applied
to the feature resizing layer in TOFD to improve the performance of knowledge
distillation. Experiments show that TOFD outperforms other distillation methods
by a large margin on both image classification and 3D classification tasks. Codes
have been released in Githutl]

1 Introduction

Recently, remarkable achievements have
been attained with deep neural networks in
all kinds of applications such as nature lan-
guage processing [3} [13} 18, 160] and com-
puter vision [54}152,51]]. However, the suc-
cess in neural networks is always accom- |
panied by explosive growth of model pa-
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(KD) [22,153.[70]. Figure 1: Comparison between previous feature distil-
Hinton et al. first propose the concept of dis- 1ation and task-oriented feature distillation.

tillation, where a lightweight student model

is trained to mimic the softmax outputs (i.e.

logit) of an over-parameterized teacher model [22]. Later, abundant feature distillation methods are
proposed to encourage the student models to mimic the features of teacher models [53} 162} 166} 7} 20].
Since the features of teacher models have more information than logit, feature distillation enables
student models to learn richer information and always leads to more accuracy improvements. As
shown in Figure 1] instead of directly learning all the features of the teacher models, most of the
feature distillation methods first apply a transformation function to the features to convert them

*Equal contribution
"Corresponding authors
*https://github.com/ArchipLab-LinfengZhang/Task-0Oriented-Feature-Distillation

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


https://github.com/ArchipLab-LinfengZhang/Task-Oriented-Feature-Distillation

Table 1: A survey of previous feature distillation methods and task-oriented feature distillation.

Method Transformation Lost Information
AT [70] Channelwise Pooling Channel dims
FSP [68]] FSP Matrix Spatial dims
Jacobian [58]] Gradients Channel dims
SVD [26] SVD Decomposition Spatial dims
Heo et al. [20] Margin ReLU Negative Feature
Task-Oriented Convolutional Layers  Non-Task-Oriented
Feature Distillation = Trained by Task Loss features

into an easy-to-distill form and then distill them to students. In this progress, some unimportant
information are filtered, as shown in Table [T} However, what still remains unknown is which form of
information is the best to distill and which kind of transformation function can extract this form of
information.

In this paper, we assume that the task-oriented information is the information which is the most
essential to distillation. Based on this assumption, we propose a novel knowledge distillation method
named task-oriented feature distillation (short as TOFD). Different from previous feature distillation
methods whose transformation functions are manually designed, the transformation function in TOFD
is convolutional layers which are trained in a data-driven manner by both distillation loss and the
task loss. In the training period of TOFD, several auxiliary classifiers are attached at different depths
to the backbone layers. Each auxiliary classifier consists of several convolutional layers, a pooling
layer and a fully connected layer. They are trained to perform the same task as the whole neural
network does. As a result, the auxiliary classifiers help to capture the task-oriented information from
the whole features in the backbone layers, leading to high-efficiency knowledge distillation.

In most situations of knowledge distillation, the features of students and teachers have different
widths, heights and channels. Usually, a convolutional layer or a fully connected layer is applied
to match their sizes. However, this leads to one problem that some useful information of teachers
may be lost in the progress of feature resizing. To address this problem, an orthogonal loss has been
introduced in TOFD to regularize the weights of the feature resizing layer. With the property of
orthogonality, more supervision from teachers can be exploited in students training.

Sufficient experiments demonstrate that the proposed TOFD achieves consistent and significant
accuracy boost in various neural networks and datasets. Experiments in ten kinds of neural networks
on five datasets show that TOFD outperforms the state-of-the-art distillation method by a large
margin on both images classification and 3D classification. On average, 5.46%, 1.71%, 1.18%,
1.25% and 0.82% accuracy boost can be observed on CIFAR100, CIFAR10, ImageNet, ModelNet10,
ModelNet40 datasets, respectively. Besides, ablation study and hyper-parameters sensitivity study
are also conducted to show the effectiveness and stability of TOFD.

To sum up, the contribution of this paper can be summarized as follows:
e A novel knowledge distillation method named TOFD is proposed to distill the task-oriented

information from teachers to students. Auxiliary classifiers are utilized to capture the
task-oriented information from all features of teachers and students.

e An orthogonal loss is proposed to avoid the information loss of teacher’s supervision in the
feature resizing layers.

e Sufficient experiments on ten neural networks and five datasets are conducted to show the
effectiveness of TOFD. Five kinds of knowledge distillation methods are utilized as the
comparison experiments.

2 Related Work

2.1 Knowledge Distillation

Knowledge distillation is one of the most effective methods for model compression and acceleration.
Bucila et al. first propose the idea of employing the large ensemble models to train a neural



network [6]. Hinton ef al. further propose the concept of knowledge distillation and introduce a
hyper-parameter “temperature” to control the training of student models. FitNet is proposed to train
the student models with the feature map of teacher models instead of the logit[[53]]. Zagoruyko et al.
apply feature distillation on the attention map of neural networks at different layers [[70]. Furlanello et
al sequentially train multiple student models and finally ensemble these models to achieve higher
accuracy [14]. Shen et al. apply adversarial learning to knowledge distillation to minimize the
difference between features of students and teachers [57]. Zhang et al. propose self-distillation,
which distills the knowledge from deep layers to the shallow layers [71]]. Besides image classification,
knowledge distillation has also been applied in other domains, such as object detection [63]], image
segmentation [37], nature language processing [8| 59} 28], distributed training [2]], semi-supervised
learning [32]. Recently, more and more attention has been paid to study how to choose the best teacher
model for distillation. Seyed-Iman ef al. find that the teacher model with the highest accuracy is not
the best teacher for distillation and the overlarge gap between the accuracy of students and teachers
may harm the efficiency of knowledge distillation. They propose TAKD, which trains multiple
teacher assistant models to facilitate knowledge distillation [45]]. Based on the same observation,
Jin et al. propose RKD, where the student models in different epochs are taught by teacher models in
different epoches [29]. Cho et al. find that the teacher models trained with early-stopping always
lead to accuracy boost on student models [10]. Moreover, Kang et al. and Liu et al. have applied
neural network searching to find the student models for a given teacher model [31} 38].

2.2 Orthogonal Loss

As a desirable property in both convolutional neural networks and recurrent neural networks, the
orthogonality of weights can solve the vanishing and exploding gradients problem by stabilizing
the norm of gradients [61, 4, [19]. Therefore, sufficient methods have been proposed to obtain
orthogonality in neural networks. Le et al. and Poole et al. apply the orthogonal loss to the
autoencoder to encourage the neural networks to learn orthogonal representations of the inputs [47,134].
Domain separation networks introduce the orthogonal loss to enable the shared and the private
encoders to learn different aspects of the inputs [5]. Mhammedi ef al. improve the efficiency of
training the RNN model while ensuring its orthogonality through a new parameterization of the
transition matrix [44]. Jing et al. propose the gated orthogonal recurrent units, which has the ability
of capturing long term dependencies by orthogonal matrices [30]. Qi et al. apply the orthogonal loss
to the transition matrix in PointNet to avoid the information loss [48]]. Harandi et al. propose the
generalized backpropagation which can be utilized to train neural layers with orthogonal weights [[16].
Bansal er al. develop novel orthogonality regularization on the training of convolutional neural
networks with mutual coherence and restricted isometry property [4]. Chernodub et al. propose the
orthogonal permutation layer as a novel activation function to perform non-linear mappling [9].

3 Methodology

The details of the proposed task-oriented feature distillation are shown in Figure[2] It is observed
that several auxiliary classifiers are attached at different depths of the convolutional neural networks.
Each auxiliary classifier is composed of several convolutional layers, a pooling layer and a fully
connected layer. They are trained to perform the same task as the whole neural network does. As a
result, the convolutional layers in the auxiliary classifiers can capture the task-oriented information
from the whole features. Then, these task-oriented information is distilled to the student models by
L+ loss. Moreover, to facilitate the training of auxiliary classifiers, a logit distillation loss is also
applied to each pair of auxiliary classifiers between teacher models and student models. Note that
these auxiliary classifiers are only utilized in the training period for knowledge distillation. They are
not involved in the inference period, so there is no additional computation and parameters.

Another crucial problem is how to decide the number and the exact position of the auxiliary classifier.
Recent progress in object detection and segmentation [52,140]] demonstrates that features with different
resolutions have different information - low resolution features contain more information of the large
objects while high resolution features contain more information of the small objects. Inspired by the
above conclusion, we choose to perform TOFD before each downsampling layer in neural networks.
As aresult, different auxiliary classifiers can distill features of teacher models with different resolution.
Note that the number of auxiliary classifiers is decided by the number of downsampling layers in the
neural networks.
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Figure 2: The overview of TOFD. Best viewed in color. (i) Several auxiliary classifiers are attached at
different depths of the neural network. Each auxiliary classifier is composed of several conventional
layers, a pooling layer and a fully connected layer. (ii) Each auxiliary classifier is trained by task loss
so that it can capture the task-oriented information from the features. (iii) Feature distillation loss is
applied between the task-oriented information of students and teachers. (iv) Logit distillation loss is
also introduced to facilitate the training of auxiliary classifiers. (v) Auxiliary classifiers are dropped
in the inference period to avoid additional computation and parameters.

3.1 Formulation

Let X = {x;}7™, be a set of training images, Y = {y;}/, be the corresponding labels. Denote
F;(+) to be the feature map of the i, convolution block and ¢;(+) to be the fully connected classifier
in the 745, convolution block. The superscript ¢ and s denote the teacher model and student model
respectively. In a neural network with N convolutional blocks, the logit distillation [22] loss can be
formulated as

S Lk (Fi(). y (Fy (). W

i=1
where L is the KL divergence loss. The loss function of feature distillation can be formulated as

m N
S S Lo (). T (L)) .

i=1 j=1
where L is the Ly-norm loss and 7" indicates the transformation function on the features. In most
previous feature distillation methods, 7" is a non-parametric transformation such as pooling and low
rank decomposition. In contrast, 7" in the proposed TOFD is several convolutional layers whose
parameters are trained by both the task loss and the distillation loss. The proposed task-oriented
feature distillation loss can be formulated as
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where « is a hyper-parameter to balance the two kinds of loss. Besides, we could further introduce

the logit distillation loss to facilitate the training of the conventional transformation function 7" and
the fully connected layer ¢, which can be formulated as
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Table 2: Experiment results on CIFAR100 (Top-1 Accuracy /%). Numbers in bold are the highest.

Model Baseline KD [22] FitNet[53] DML [73] SD|[71] TOFD
ResNet18 77.09 78.34 78.57 78.72 78.64 82.92
ResNet50 77.42 78.58 78.62 79.18 80.56 84.74

PreactResNet18 76.05 77.41 78.79 77.03 78.12 82.06
PreactResNet50 77.74 78.26 79.12 78.48 80.12 83.33
SEResNet18 77.27 78.43 78.49 78.58 79.01 83.06
SEResNet50 77.69 78.89 78.82 79.72 80.56 84.44
ResNeXt50-4 79.49 80.46 79.54 80.39 82.45 84.67
MobileNetV1 67.82 67.55 71.78 67.73 71.39 72.82
MobileNetV2 69.04 70.16 70.21 68.79 71.45 73.57
ShuffleNetV1 72.26 73.54 72.78 72.72 74.30 76.04
ShuffleNetV2 72.38 72.86 74.36 72.66 73.32 76.68

3.2 Orthogonal Loss

In most distillation situations, the features of teachers and students have different sizes so their
distance can not be directly minimized. To solve this problem, a convolutional or fully connected
layer is always introduced to adjust their sizes. However, the information of teachers’ features may
be lost in this progress, which reduces the effectiveness of feature distillation. In this paper, we apply
an orthogonal loss to the weights of the feature resizing layer to alleviate this problem. Denotes
the distilled features of teacher models as the vector x and the weights of feature resizing layer as
‘W, the resized feature can be written as Wx. To keep the feature information during the feature
resizing process and inspired by Bansal er al. [4]], we introduce an orthogonal loss that simultaneously
penalizes the orthogonality of the row space and column space spanned by W in the feature resizing
layer, i.e. the loss is defined as

B (IWITW —1I|| + [WWT —1])), (5)

Lorthogonal

where [ is a hyper-parameter to balance its magnitude and other loss. If a convolutional layer instead
of a fully connected layer is utilized as the feature resizing layer, its weights can be first reshaped
from S x H x C x M to SHC x M where S, H, C, M are width, height, input channel number and
output channel number, respectively. To summarize, the overall loss function can be formulated as

Loverall = Efealure + £logil + Etask + £orlhog0nal~ (6)

The overall loss function includes the feature distillation loss, logit distillation loss, task loss, orthog-
onal loss and two hyper-parameters. Ablation study and sensitivity study are introduced in Section 6
to demonstrate their effectiveness and sensitivity.

4 Experiment

4.1 Experiment Setting

Image Classification. The experiments of image classification are conducted with nine kinds of
convolutional neural networks, including ResNet [[17], PreActResNet [18], SENet [25], ResNeXt [65],
MobileNetV1 [24], MobileNetV2 [55]], ShuffleNetV1 [42], ShuffleNetV2 [43], WideResNet [[69]
and three datasets, including CIFAR100 and CIFAR10 [33]], ImageNet [12]. In CIFAR experiment,
each model is trained with 300 epochs by SGD optimizer and the batch size is 128. In ImageNet
experiments, each model is trained with 90 epochs by SGD optimizer and the batch size is 256.

3D Classification. The experiments of point cloud classification are conducted with ResGCN [36] of
different depths on two datasets including ModelNet10 and ModelNet40 [64]. Each model is trained
with 100 epochs by Adam with learning rate decay in every 20 epochs.

Comparison Experiments. Four kinds of knowledge distillation methods have been utilized for com-
parison, including KD [22], FitNet [53]], DML [73] and self-distillation [[71]. All these experiments
are repoduced by ourselves.



Table 3: Experiment results on CIFAR10 (Top-1 Accuracy /%). Numbers in bold are the highest.

Model Baseline KD [22] FitNet[53] DML [73] SD|[71] TOFD
ResNet18 94.25 94.67 95.57 95.19 95.87 96.92
ResNet50 94.69 94.56 95.83 95.73 96.01 96.84

PreactResNet18 94.20 93.74 95.22 94.80 95.08 96.49
PreactResNet50 94.39 93.53 94.98 95.87 95.82 96.93
SEResNet18 94.78 94.53 95.64 95.37 95.51 96.80
SEResNet50 94.83 94.80 95.31 94.83 95.45 97.02
ResNeXt50-4 94.49 95.41 95.78 95.41 96.01 97.09
MobileNetV1 90.16 91.70 90.53 91.65 91.98 93.93
MobileNetV2 90.43 92.86 90.49 90.49 91.02 93.34
ShuffleNetV1 91.33 92.57 92.23 91.40 92.47 92.73
ShuffleNetV2 90.88 92.42 91.83 91.87 92.51 93.74

Table 4: Experiment results on ImageNet (Top-1 Accuracy /%).

Model Baseline TOFD MAC(G) Param(M)
ResNetl8 69.76 70.92 1.82 11.69
ResNet50 76.13 77.52 4.11 25.56
ResNet101 77.37 78.64 7.83 44.55
ResNet152 78.31 79.21 11.56 60.19

ResNeXt50-32-4 77.62 78.93 4.26 25.03
WideResNet50-2 78.47 79.52 11.43 68.88

4.2 Results on CIFAR10 and CIFAR100

Table [2 and [3] show the accuracy of student networks on CIFAR100 and CIFARI10. It is observed
that: (a) The proposed TOFD leads to significant accuracy boost compared with the baseline models.
In CIFAR100, 5.46% accuracy boost can be found on the eleven models on average, ranging from
6.75% at SENet50 as the maximum to 3.78% at ShuffleNetV1 as the minimum. In CIFAR10, 2.49%
accuracy boost can be found on the eleven models on average, ranging from 3.77% at MobileNetV1 as
the maximum to 1.40% at ShuffleNetV1 as the minimum. (b) In all the models, the proposed TOFD
outperforms the second best distillation method by a large margin. On average, 3.13% and 1.28%
accuracy boost compared with the second best distillation method can be observed on CIFAR100
and CIFARI10, respectively. (¢) The proposed TOFD not only works on the over-parameters models
such as ResNet and SENet, but also shows significant effectiveness in the lightweight models such as
MobileNet and ShuffleNet. On average, 4.40% and 2.74% accuracy boost of the lightweight models
can be observed on CIFAR100 and CIFAR10 datasets.

4.3 Results on ImageNet

Table ] shows the experiment results of TOFD on ImageNet. ResNet152 model is utilized as the
teacher model across all these experiments. It is observed that (a) On average, TOFD leads to 1.18%
accuracy improvements across the 6 neural networks. (b) The distilled ResNet50 and ResNet101
have higher accuracy than the baselines of ResNet101 and ResNet152 respectively. By replacing the
distilled ResNetS0 and ResNet101 with ResNet101 and ResNet152 respectively, TOFD achieves 1.57
times compression and 1.81 acceleration with no accuracy loss.

4.4 Results on ModelNet10 and ModelNet40

Table[5|and [6]show the experiment results of TOFD on ModelNet10 and ModelNet40. It is observed
that (a) In 3D classification tasks, knowledge distillation methods are not as effective as they do
in image classification tasks. In the five distillation methods, only DML and TOFD can achieve
consistent accuracy boost than the baseline. (b) TOFD outperforms other knowledge distillation
methods on all models and datasets. Compared with the baselines, 1.25% and 0.82% accuracy boost
can be found in ModelNet10 and ModelNet40 with TOFD on average.



Table 5: Experiments results of the 3D classification task on ModelNet10 (Top-1 Accuracy /%).
Numbers in bold are the highest.

Model Baseline KD [22] FitNet[53] DML SD [71] TOFD

ResGCN8 92.73 93.50 94.05 93.61 93.17 94.38
ResGCN12 93.50 93.28 93.17 94.05 92.40 94.16
ResGCN16 92.40 92.84 93.39 93.17 92.62 93.83

Table 6: Experiments results of the 3D classification task on ModelNet40 (Top-1 Accuracy /%).
Numbers in bold are the highest.

Model Baseline KD [22] FitNet[53] DML SD [71] TOFD

ResGCN8 90.76 91.29 90.76 91.69 90.60 91.77
ResGCN12 90.32 91.21 90.80 91.41 90.80 91.65
ResGCN16 91.33 91.45 91.45 91.33 91.25 91.45

5 Discussion
5.1 Do Auxiliary Classifiers Really Capture Task-Oriented Information?

The auxiliary classifiers in TOFD are introduced to capture the task-oriented information from the
features of both students and teachers. As shown in Figure 3] we have visualized the features in
the backbone layers and the task-oriented features captured by the auxiliary classifiers with the
Gram-Cam method [56]). It is observed that: (a) Except the features of the last layer (sub-figure d),
the features in the backbone layers have no direct relation with the classification task. The attention of
convolutional layers are paid to the whole figure uniformly, indicating there is much non-task-oriented
information in the features of backbone layers. (b) In the heatmaps of the auxiliary classifier, the
pixels of the dog have much more attention value than the background, indicating that auxiliary
classifiers really capture the task-oriented information from the original features.

5.2 Ablation Study

As shown in Table[7] an ablation study on CIFAR100 with ResNet18 has been conducted to demon-
strate the individual effectiveness of different components in TOFD. It is observed that (a) Compared
with the combination between feature distillation and logit distillation, 3.50% (82.31%-78.81%) accu-
racy boost can be obtained with the auxiliary classifiers, indicating that the task-oriented information
is beneficial to knowledge distillation. (b) With only the auxiliary classifier, 2.90% (77.09%-79.99%)
accuracy boost can be observed compared with the baseline, indicating that the multi-exit training
itself can facilitate model training. (c) The orthogonal loss on feature resizing layer leads to 0.61%
(82.92%-82.31%) accuracy boost.

5.3 Sensitivity Study on Hyper-parameters o and 3

The hyper-parameters « and /3 are introduced in TOFD to control the magnitude of feature distillation
loss and the orthogonal loss. As shown in Figure @] and Figure [5] experiments on CIFAR100 and
ResNet18 have been conducted to study their sensitivity. It is observed that: (a) Even in the worst
situation when oo = 0.01, TOFD still achieves 5.48% accuracy improvements than the baseline and

Features in Backbone Task-Oriented Feature Features in Backbone Task-Oriented Feature Features in Backbone Task-Oriented Feature (d) The Final Conv
(a) ResNet Stage 1 (b) ResNet Stage 2 (c) ResNet Stage 3

Figure 3: Comparison on the Grad-CAM [56] visualization results between the features of the
backbone layers and the task-oriented features captured by auxiliary classifiers.



Table 7: Ablation study with ResNet18 on CIFAR100 (Top-1 Accuracy /%).

Liogit X v X ve X v v
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Liask X X X X v v v
£0rlhogonal X X X X X X v
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Figure 4: Sensitivity study on «. Figure 5: Sensitivity study on . Figure 6: TOFD with different
numbers of auxiliary classifiers.

3.93% accuracy improvement than the second best knowledge distillation method (SD [71]). (b)
When j ranges from 0.2 to 0.8, the accuracy of TOFD ranges from 82.51% to 82.92%. Even in the
worst situation when 8 = 0.2, TOFD still achieves 5.42% accuracy improvements than the baseline
and 3.87% accuracy improvement than the second best knowledge distillation method (SD [71])).
These experiment results demonstrate that TOFD is not sensitive to the value of hyper-parameters.

5.4 How does the Number of Auxiliary Classifiers Influence TOFD?

In TOFD, several auxiliary classifiers are introduced in the training period to capture the task-oriented
information from all the features. In this section, a series of experiments are conducted on CIFAR100
with ResNetl8 to show how the number of auxiliary classifiers in TOFD influences the model
accuracy. As shown in Figure[6] when there are less than 4 auxiliary classifiers in the neural network,
each auxiliary classifier leads to a significant accuracy boost. In contrast, not only can the fourth
auxiliary classifier hardly improve model accuracy, it even leads to a small amount of accuracy drop
which indicates that too many auxiliary classifiers may result in the over-regularization problem.

6 Conclusion

In this paper, we propose a novel knowledge distillation method named task-oriented feature distil-
lation (TOFD). Based on the assumption that the task-oriented feature in neural networks is more
essential for distillation, we attach several auxiliary classifiers at different depths of models. Since
the auxiliary classifiers are trained to perform the same task as the whole neural network does, they
are able to capture the task-oriented information of teacher models. As a result, TOFD enables
teachers to distill only the task-oriented information to the students, which leads to significant and
consistent accuracy improvements on various neural networks and datasets. Besides, we have applied
an orthogonal loss to the feature resizing layer in TOFD to further boost the performance of student
models. Experiments on 10 kinds of neural networks and 5 datasets demonstrate that TOFD has
consistent and significant effectiveness. Abundant ablation study and hyper-parameters sensitivity
study are also conducted to demonstrate the stability of TOFD. The Grad-CAM visualization results
show that auxiliary classifies do capture the task-oriented information.

The excellent performance of TOFD indicates that the task-oriented features are more essential in the
knowledge transfer from teachers to students. This idea may be extended to the other domains in
deep learning, such as domain adaptation.



7 Appendix

In this section, we show the additional comparison experiments which are required by reviewers.
Table [§]shows the comparison experiments with the other 6 kinds of knowledge distillation methods.
It is observed that our method outperforms the second-best knowledge distillation methods by 3.71%),
5.02%, 2.55% on ResNet18, ResNet50 and MobileNetV2 on CIFAR100, respectively. Table E] shows
the comparison experiments on ImageNet. It is observed that our method leads to 1.16%, 1.29% and
1.38% accuracy improvements on ResNet18, MobileNetV2 and ShuffleNetV2, respectively.

Table 8: Comparison with more KD methods on CIFAR100.

Model VID [1] AT [70] FSP [68] Jacob [58] SVD[26] Heo [21] Ours

ResNet18 78.93 78.45 78.75 78.45 78.53 79.21 82.92
ResNet50 79.21 78.73 79.02 79.03 78.82 79.72 84.74
MobileNetV2  70.62 70.34 70.48 70.26 69.35 71.02 73.57

Table 9: Comparison with other KD methods on ImageNet.

Model Baseline KD [22] FitNet [53] SD [71] DML [73] Ours

ResNet18 69.76 70.45 70.26 70.51 70.39 70.92
MobileNetV2 71.52 72.23 71.95 72.37 72.29 72.81
ShuffleNetV2 69.36 70.14 69.86 70.26 70.21 70.74
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9 Broader Impact

The proposed TOFD is a novel knowledge distillation method, which can be utilized in the training
of all kinds of neural networks. Since TOFD is not designed for a specific application, it’s impact on
the society may not be very obvious. Its potential impact can be summarized as follows.

Positive. TOFD can be utilized to compress and accelerate the neural networks or improve their
accuracy. As a result, it can facilitate the computer vision application in resource-limited edge
devices,

such as mobile phones, self-driving cars and embedding devices and so on. Moreover, by reducing
the size of neural networks, TOFD can reduce the energy consumption of neural networks, making
them more environment-friendly.

Negative. Unfortunately, computer vision techniques, if used improperly, or without permission, may
have the potential for violation of image rights. This should be regularized by law.
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