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Abstract

An important component of autoencoders is the method by which the information
capacity of the latent representation is minimized or limited. In this work, the rank
of the covariance matrix of the codes is implicitly minimized by relying on the fact
that gradient descent learning in multi-layer linear networks leads to minimum-rank
solutions. By inserting a number of extra linear layers between the encoder and
the decoder, the system spontaneously learns representations with a low effective
dimension. The model, dubbed Implicit Rank-Minimizing Autoencoder (IRMAE),
is simple, deterministic, and learns compact latent spaces. We demonstrate the
validity of the method on several image generation and representation learning
tasks.

1 Introduction

Optimizing a linear multi-layer neural network through gradient descent leads to a low-rank solution.
This phenomenon is known as implicit regularization and has been extensively studied under the
context of matrix factorization [9, 1, 21], linear regression [24, 6], logistic regression [25], and
linear convolutional neural networks [8]. The main goal of these prior works were to understand
the generalization ability of deep neural networks. By contrast, the goal of the present work is to
design an architecture that takes advantage of this phenomenon to improve the quality of learned
representations.

Learning good representations remains a core issue in AI [2]. Representations learned in a self-
supervised (or unsupervised) manner can be used for downstream tasks such as generation and
classification. Autoencoders (AE) are a popular class of method for learning representations without
requiring labeled data. The internal representation of an AE must have a limited information capacity
to prevent the AE from learning a trivial identity function. Variants of AEs differ by how they perform
this limitation. Bottleneck AE (sometimes called "Diabolo networks") simply use low-dimensional
codes [23], noisy AE, such as variational AE add noise to the codes while limiting the variance of their
distribution [4, 14], quantizing AE (such as VQ-VAE) quantize the codes into discrete clusters [27],
sparse AE impose a sparsity penalty on the code [19, 20], contracting and saturating AE minimize
the curvature of the network function in directions outside the data manifold [22, 7], and denoising
AE are trained to produce large reconstruction error for corrupted samples [28].

In this work, we propose a new method to implicitly minimize the rank/dimensionality of the latent
code of an autoencoder. We call this model Implicit Rank-Minimizing Autoencoder (IRMAE). This
method consists in inserting extra linear layers between the encoder and the decoder of a standard
autoencoder. This additional linear network is trained jointly with the rest of the autoencoder through
classical backpropagation. As a result, the system spontaneously learns representations with a low
effective dimensionality. Like other regularization methods, this extra linear neural network does not
appear at inference time as the linear matrices collapse into one. Thus, the encoder and the decoder
architecture of the model is identical to the original model. In practice, we fold the collapsed linear
matrices into the last layer of the encoder at inference time.
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We empirically demonstrate IRMAE’s regularization behavior through a synthetic dataset and show
that it learns good representation with a much smaller latent dimension. Then we demonstrate superior
representation learning performance of our method against a standard deterministic autoencoder
and comparable performance to a variational autoencoder on MNIST dataset and CelebA dataset
through a variety of generative tasks, including interpolation, sample generation from noise, PCA
interpolation in low dimension, and a downstream classification task. We also conducted an ablation
study to verify that the advantage of implicit regularization comes from gradient descent learning
dynamics.

We summarize our contributions as follows:

• We proposed a method of inserting extra linear layers in deep neural networks for rank
regularization;

• We proposed a simple, deterministic rank-minimization autoencoder that learns low-
dimensional representation;

• We demonstrated a superior performance of our method compared to a standard deterministic
autoencoder and a variational autoencoder on a variety of generative and downstream
classification tasks.

2 Related Work

The implicit regularization provided by gradient descent optimization is widely believed to be
one of the keys to deep neural networks’ generalization ability. Many works focusing on linear
cases are trying to study this behavior empirically and theoretically. Soudry et al. [25] show that
implicit bias helps to learn logistic regression. Saxe et al. [24] study a 2-layer linear regression and
theoretically demonstrated that continuous gradient descent could lead to a low-rank solution. Gidel
et al. [6] extend such theory to a discrete case for linear regression problems. In the field of matrix
factorization, Gunasekar et al. [9] theoretically prove that gradient descent can derive minimal nuclear
norm solution. Arora et al. [1] extend this concept to the deep linear network case by theoretically
and empirically demonstrating that a deep linear network can derive low-rank solutions. Gunasekar
et al. [8] prove that gradient descent has a regularization effect in linear convolutional networks.
All these works are trying to understand why gradient descent can help generalization in existing
approaches. On the contrary, we take advantage of this phenomenon to develop better algorithms.
Also, the current implicit regularization study requires a small gradient and vanishing initialization,
while our method is more general and can be used with complicated optimizers such as Adam [13]
and allow combination with more complicated components.

Autoencoders are popular for representation learning. It is important to limit the latent capacity as
the data are embedded in a lower-dimensional space. A big family of them are based on variational
autoencoders [14] such as beta-VAE [12]. These methods tend to generate blurry images due to its
intrinsic probabilistic nature. On the other hand, a naive deterministic autoencoder is considered a
failure in generative tasks and has “holes” in its latent space, due to the absence of explicit constraint
on the latent distribution. Many methods with deterministic autoencoder are proposed to solve this
problem, such as RAE [5], WAE [26], VQ-VAE [27].

3 Implicit Rank-Minimizing Autoencoder

We denote by E() and D() the encoder and decoder of a deterministic autoencoder, respectively.
The latent variable z 2 Rd is determined by E(y). Encoder and decoder are classically trained by
jointly minimizing the L2 reconstruction loss LAE = ||y �D(E(y))||22. Without any constraint on
the latent space, a simple deterministic autoencoder will typically learn a non-Gaussian latent space
with “holes” and hence does not generate good samples.

Implicit rank-minimizing autoencoder consists in adding extra linear matrices W1,W2, · · · ,Wl

between the encoder and decoder, where Wi 2 Rd⇥d are randomly initialized. The corresponding
diagram is shown in Figure 1. All Wi matrices are trained jointly with the encoder and the decoder.
Hence, the reconstruction loss is represented as

L = ||y �D(Wl · · ·W2W1E(y))||22 (1)
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Figure 1: Implicit rank-minimizing autoencoder: a deterministic autoencoder with implicit regulariza-
tion. The linear matrices that form a linear neural network between the encoder and the decoder are
all square matrices. The effect of these matrices is to penalize the rank of the code variable. These
matrices are equivalent to a single linear layer at inference time, and thus they do not change the
capacity of the autoencoder. In practice, they are absorbed into the last layer of the encoder.

During training, these matrices encourage latent variables to use a lower number of dimensions and
effectively minimize the rank of the covariance matrix of the latent space. Thus, one can amplify the
regularization effect by adding more Wi matrices between the encoder and the decoder. Also, we do
not use special initialization of each Wi, and it works with more optimizers such as Adam [13].

During inference, all Wi matrices can be “absorbed” into the encoder as all the linear matrices
collapse, as linear matrix multiplication is associative. Therefore, we can directly use this linearly
modified decoder for generative tasks; we can also directly use the encoder for downstream tasks
such as classification.

4 Experiment

In this section, we empirically evaluate the proposed IRMAE model. We first verify the regularization
effect through a synthetic task. We then demonstrate that IRMAE generates higher quality images
compared to a baseline AE. IRMAE shows comparable performance to VAE. Lastly, we demonstrate
IRMAE’s superior performance on downstream classification tasks.

Throughout all the experiments, we demonstrate the latent dimension by plotting the normalized
singular values. Each plot in Figures 2 and 4 depicts singular values (sorted from large to small) of
the covariance matrix of the latent variables z corresponding to examples in the validation set. The
plots are normalized by dividing each singular value by the largest singular value of the covariance
matrix. Therefore, the dimension of latent space can be interpreted as the number of nonzero singular
values.

4.1 Verification with Known Intrinsic Dimension

We verify the regularization behavior of IRMAE via a synthetic shape dataset. Each example is a
32x32 RGB image with a random-color, random-sized square or circle, located at a random position.
Hence, the data has a known intrinsic dimensionality of 7 (3 for color, 2 for coordinate, 1 for size, 1
for shape).

The base architecture we used is a deterministic autoencoder. The architecture and experimental
detail can be found in supplementary material. We use a latent dimension of 32. For IRMAE, we
use l = 2 and l = 4 extra matrices between the encoder and the decoder. We test our method
against non-regularization, L1 regularization, and L2 regularization on the hidden code with the
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same architecture. We demonstrate the learned latent space in Figure 2. The baseline model, L1
regularization, L2 regularization, IRMAE with l = 2 yields excellent reconstructions on validation
set.

This result shows that IRMAE with l = 2 is able to learn good latent representation with a rank close
to intrinsic dimension, while L1, L2 regularization tends to use a much larger latent space.

Figure 2: Singular values of the latent space of each model on synthetic shape dataset. Each curve
represents singular values of the covariance matrix of the code computed on the validation set.
IRMAE l = 2 is able to approach the minimal theoretical rank of 7.

Baseline

L1

L2

IRMAE l=2

IRMAE l=4

Figure 3: Linear interpolation between two randomly generated samples. From top to bottom are
results from baseline unregularized AE, AE with L1 regularization, AE with L2 regularization,
IRMAE l = 2, IRMAE l = 4.

4.2 Image Generation

Generating high-quality images by sampling the latent space is one of the key indicators of a good
representation. In order to provide a comparison with standard deterministic autoencoders and
variational autoencoders [14], we train our model on the MNIST dataset [15] and the CelebA dataset
[16]. We set the latent dimension to 128/512 for the two datasets, respectively. We use 8/4 extra
linear matrices for regularization in IRMAE, respectively. More experiment detail can be found in
the supplementary material. We evaluate our model on a variety of representation learning tasks:
interpolation between data points, sample generation from random noise, downstream classification
task, PCA interpolation in latent space. We also quantitatively evaluate the sample generation by
using the FID score. Each model uses the same architecture, except that the VAE code is twice as
large to include the means and variances. On all these tasks, our method demonstrates comparable
performances to the VAE.

Latent Dimension We show the latent dimensionality reduction of our method in Figure 4. IRMAE
utilizes significantly lower-dimensional latent space compared to baseline autoencoder. Notice that
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we omit the VAE’s curve because VAE uses the whole latent space and hence all singular values tend
to be large.

Figure 4: Singular value spectra of covariance matrices of codes for MNIST and CelebA datasets by
IRMAE and a baseline AE. Each curve represents the singular values of the covariance matrix of the
hidden code computed on the validation set.

Interpolation between Data Points: We linearly interpolate the latent variable between two images
from the validation set. The generated results are shown in Figure 5. IRMAE significantly outperforms
the baseline AE on MNIST.

MNIST
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A
E

Figure 5: Linear interpolation between data points on the MNIST dataset. From top to bottom are
images generated from an unregularized AE, a VAE, and an IRMAE, respectively. IRMAE produces
higher quality images.

Sampling from Noise: Deterministic autoencoders are not considered to be generative models. It is
essential to have constraints on the latent space to derive such ability [2]. Here, we show that IRMAE
can sample high-quality images from Gaussian noise. Specifically, we sample random latent variables
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from 1) a multivariate Gaussian captured by this covariance matrix, 2) a Gaussian Mixture Model
with 4/10 clusters. The generated results are presented in Figure 6 and Figure 7. We quantitatively
evaluate the performance of each model by using the Frechet Inception Distance (FID) [11] and
report the results on MNIST/CelebA in Table 1.

AE VAE IRMAE
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Figure 6: MNIST/CelebA images samples from Multivariate Gaussian with covariance estimated
from training set. From left to right are images generated from an unregularized AE, a VAE, and an
IRMAE, respectively.

Table 1: FID score (smaller is better) for samples of various models for MNIST/CelebA.

Multivariate Gaussian Gaussian Mixture Model
AE VAE IRMAE

MNIST 55.0 33.9 37.4
CelebA 52.8 51.8 42.5

AE VAE IRMAE

MNIST 38.0 30.8 34.0
CelebA 49.0 48.8 36.4

PCA on Latent Space: We verify that IRMAE learns a compact and continuous latent space by
performing PCA on the latent space. We project all latent variables to a 2-dimensional space. We
randomly sample vectors in this low dimensional space and interpolate them along two principal
vectors. The corresponding images are sampled from inverse PCA followed by the decoder, which is
shown in Figure 8. IRMAE generates higher quality images compared to VAE.

Additional experiments are demonstrated in the supplementary material, including comparing IRMAE
to other deterministic AEs, comparing IRMAE against AEs with various latent dimension, effect of
varying linear layer depth in IRMAE.

4.3 Downstream classification

Latent variables are useful for downstream tasks since they capture the main underlying structure of
the data distribution [10, 18, 3]. These self-supervised learning methods have the exciting potential
to outperform purely-supervised models. We train a multilayer perceptron head on the latent variable
generated by the encoder, to classify MNIST images. This MLP head has two linear layers of hidden
dimension 128, with ReLU activation. Thus, all models share the same architecture. Each model is
trained with an Adam optimizer with a learning rate of 0.001. Early stopping is performed based on
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Figure 7: MNIST/CelebA images samples from Gaussian Mixture Model with 4/10 clusters. From
left to right are images generated from an unregularized AE, a VAE, and an IRMAE, respectively.

AE VAE IRMAE

Figure 8: Sampling images from 2-dimensional space, mapped by PCA from latent variables. We
interpolate along two principal components to generate samples. From left to right are images
generated from an unregularized AE, a VAE, and an IRMAE, respectively.

validation set accuracy. The encoder weights are kept fixed. We compare our method against several
baselines as well as the supervised version whose entire network is trained jointly. Representations
learned by IRMAE obtain a significantly lower error rate compared to those from the unregularized
AE in this task. The results are listed in Table 2.

4.4 Ablation Study

We perform several ablation studies to verify that the effect of dimensionality reduction comes from
the extra linear neural network and its optimization dynamics.

Linear matrices fixed: In this ablation experiment, we fix the linear matrices to verify that the
regularization effect comes from the learning dynamics instead of just the architecture. Figure 9
shows that under this condition, the regularization effect is weakened, and the sampled images are
significantly worse.
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Table 2: Downstream classification on MNIST dataset. We add a MLP head on top of the pretrained
encoder by each method. Thus, all models share the same architecture. We do not perform fine
tuning on the pretrained encoder except with the purely supervised version. Representation learned
by IRMAE obtains significantly lower error rate compared to baselines and supervised version in the
low labeled data regime.

total training size 10 100 1000 10000 60000

AE 31.4±0.5 30.2±0.3 10.6±0.2 3.7±0.1 1.9±0.1
VAE 21.8±1.0 21.7±0.4 5.1±0.2 1.7±0.1 1.1±0.1
IRMAE 12.0±0.9 10.2±0.5 3.8±0.3 2.4±0.2 1.9±0.1

supervised 29.1±2.6 25.1±0.6 6.0±0.4 1.7±0.1 0.8±0.1

Figure 9: Ablation study: linear matrices fixed. This proves that the regularization behavior is not an
effect of naive soft bottleneck.

Nonlinearity between matrices: One may suspect that the regularization effect comes from a
deeper architecture. If we add nonlinearity between matrices, the model is equivalent to a standard
autoencoder, with more layers. We show that adding a nonlinearity results in worse generation results,
and the regularization effect is also completely lost. See Figure 10.

Figure 10: Ablation study: adding nonlinearity layers between linear matrices. This proves that the
regularization behavior is not a naive effect of deeper architecture.

Weight Sharing: As our method introduces more parameters for training, it would be desirable to
have all inserted matrices to share weights to reduce memory requirement. We show that forcing all
matrices to share weights results in slightly worse generation results and weakened regularization
effect. See Figure 11.

8



Figure 11: Ablation study: sharing weights in the inserted linear layers.

5 Conclusion

An important component of autoencoder methods is the method by which the information capacity of
the latent representation is minimized or limited. In this work, the rank of the covariance matrix of
the codes is implicitly minimized by relying on the fact that gradient descent learning in multi-layer
linear networks leads to minimum-rank solutions. By inserting a number of extra linear layers
between the encoder and the decoder, the system spontaneously learns representations with a low
effective dimension. The model, dubbed Implicit Rank-Minimizing Autoencoder (IRMAE), is simple,
deterministic, and low-rank latent space. We demonstrate the validity of the method on several image
generation and representation learning tasks.

Broader Impact

This work provides a novel approach to representation learning and self-supervised learning. It has
the potential of boosting general self-supervised learning performances with social benefits including
requiring less human data labeling, reducing power consumption of AI models, improving data
privacy.
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