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Figure 1: (a) Achievable bounds of Algorithm 1 in the adversarial setting for different choices of
window length W . (b) Excess overall utility of the shifting benchmark sequence with respect to the
static benchmark for different numbers of allowed shifts.

Appendix

Additional plots

Figure 1(a) demonstrates the achievable adversarial static regret and total constraint violation by
Algorithm 1 for different choices of the window length W . The black curves indicate the Pareto
frontier for different values of W and all the points north-east of the frontier are achievable. In
particular, we can observe that for W = T , both the regret and total constraint violation of Algorithm
1 are linear.
In Figure 1(b), we have plotted the excess overall utility of the shifting benchmark sequence [1] with
respect to the static benchmark action for different number of allowed shifts for experiment 2. In
other words, we consider the dynamic benchmark sequence {x∗t }Tt=1 which changes at most m times
(i.e., x∗t 6= x∗t+1 for at most m values of t ∈ {1, . . . , T − 1}) and we plot the excess overall utility
for different choices of m. Note that the adversarial static and dynamic regret defined in the paper
correspond to m = 0 and m = T − 1 respectively. Figure 1(b) verifies that the dynamic benchmark
sequence achieves much higher utility compared to the static benchmark action and therefore, for the
settings where the environment is changing, dynamic regret is a more suitable performance metric.

A Examples of DR-submodular functions

Continuous extension of submodular set functions. A discrete function f : {0, 1}V → R over
the ground set V is submodular if for all j ∈ V and A ⊆ B ⊆ V \ {j}, the following holds:

f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B).

DR-submodularity is the continuous counterpart of the submodularity property of set functions [2].
Indeed, the multilinear extension [3] and the softmax extension [4] of submodular set functions are
DR-submodular.

Indefinite quadratic functions. Let f(x) = 1
2x

THx+ hTx+ c. If the matrix H is element-wise
non-positive, f is a DR-submodular function.

Concave functions with negative dependence. If hi : R → R is concave for all i ∈ [n] and
θij ≤ 0 ∀i 6= j, the following function f : Rn+ → R is DR-submodular:

f(x) =

n∑
i=1

hi(xi) +
∑
i,j:i 6=j

θijxixj .

Note that indefinite quadratic functions are a special example of the above where all the concave
functions hi are quadratic with negative coefficients.
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Log-determinant function. Let the function f : [0, 1]n → R be defined as

f(x) = log det
(
diag(x)(L− I) + I

)
,

where L � 0 is a positive semidefinite matrix and diag(x) denotes a diagonal matrix with vector x on
its diagonal. This function is extensively used as the utility function in Determinantal Point Processes
(DPPs). It was proved in [4] that f is a DR-submodular function. In fact, f is the softmax extension
of the submodular set function log det(LS) over the ground set V where LS is the submatrix of L
whose rows and columns are characterized by the set S ⊆ V .

B Proof of Lemma 1

Denote r(k)t = V∇ft−1(x
(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1). We have:

v
(k)
t = arg max

x∈X

(
〈r(k)t , x〉 − α‖x− v(k)t−1‖2

)
= arg min

x∈X

(
− 〈r(k)t , x〉+ α‖x− v(k)t−1‖2

)
= arg min

x∈X

(
− 〈r

(k)
t

α
, x〉+ ‖x− v(k)t−1‖2

)
(a)
= arg min

x∈X

(
− 〈r

(k)
t

α
, x− v(k)t−1〉+ ‖x− v(k)t−1‖2 + ‖r

(k)
t

2α
‖2
)

= arg min
x∈X

‖x− v(k)t−1 −
r
(k)
t

2α
‖2

= PX
(
v
(k)
t−1 +

r
(k)
t

2α

)
,

where in (a), we have added the constant term 〈 r
(k)
t

α , v
(k)
t−1〉+ ‖ r

(k)
t

2α ‖
2 to complete the square norm

which does not affect the minimizer.

C Proof of Lemma 2

Using the update rule of the algorithm for λ(k)t+1, we can write:

λ
(k)
t+1 − λ

(k)
t ≥ gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉

≥ gt−1(v
(k)
t−1)− β‖v(k)t − v

(k)
t−1‖

= gt−1(v
(k)
t−1)− β2

4V
− V ‖v(k)t − v

(k)
t−1‖2 + (

β

2
√
V
−
√
V ‖v(k)t − v

(k)
t−1‖)2︸ ︷︷ ︸

≥0

≥ gt−1(v
(k)
t−1)− β2

4V
− V ‖v(k)t − v

(k)
t−1‖2,

where we have used β-Lipschitzness of the constraint function gt−1 and the Cauchy-Schwarz
inequality to obtain the second inequality.
Taking the sum over t ∈ [T ], we obtain:

λ
(k)
T+1 − λ

(k)
1︸︷︷︸
=0

≥
T∑
t=1

gt−1(v
(k)
t−1)− β2T

4V
− V

T∑
t=1

‖v(k)t − v
(k)
t−1‖2,

T∑
t=1

gt−1(v
(k)
t−1) ≤ λ(k)T+1 +

β2T

4V
+ V

T∑
t=1

‖v(k)t − v
(k)
t−1‖2.
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Therefore, we have:

CT =

T∑
t=1

gt−1(xt−1)

=

T∑
t=1

gt−1(
1

K

K∑
k=1

v
(k)
t−1)

≤ 1

K

K∑
k=1

T∑
t=1

gt−1(v
(k)
t−1)

≤ 1

K

K∑
k=1

λ
(k)
T+1 +

β2T

4V
+
V

K

K∑
k=1

T∑
t=1

‖v(k)t − v
(k)
t−1‖2,

where the first inequality is due to Jensen’s inequality.

D Proof of Lemma 3

Using the update rule of the algorithm for λ(k)t+1, we have:

(λ
(k)
t+1)2 = [λ

(k)
t + gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉]2+

≤
(
λ
(k)
t + gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉

)2
= (λ

(k)
t )2 + (gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉)2 + 2λ

(k)
t (gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉)

≤ (λ
(k)
t )2 + (G+ βR)2 + 2λ

(k)
t (gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉).

So, we can conclude:

∆
(k)
t =

(λ
(k)
t+1)2

2
− (λ

(k)
t )2

2
≤ (G+ βR)2

2
+ λ

(k)
t (gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉).

E Lemma 4

Lemma 4. The following holds for all t ∈ [T ] and k ∈ [K]:(
ft−1(x)− ft−1(x

(k+1)
t−1 )

)
≤ (1− 1

K
)
(
ft−1(x)− ft−1(x

(k)
t−1)

)
− 1

KV
∆

(k)
t +

V β2

4αK
+

(G+ βR)2

2KV

+
1

KV
λ
(k)
t gt−1(x) +

α

KV
‖x− v(k)t−1‖2 −

α

KV
‖x− v(k)t ‖2 +

LR2

2K2
.

(1)

Proof. Combining the result of Lemma 3 with the update rule for v(k)t , we have:

∆
(k)
t − 〈V∇ft−1(x

(k)
t−1), v

(k)
t − v

(k)
t−1〉+ α‖v(k)t − v

(k)
t−1‖2

≤ (G+ βR)2

2
− 〈V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉+ λ

(k)
t gt−1(v

(k)
t−1) + α‖v(k)t − v

(k)
t−1‖2

≤ (G+ βR)2

2
− 〈V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), x− v(k)t−1〉+ λ

(k)
t gt−1(v

(k)
t−1) + α‖x− v(k)t−1‖2 − α‖x− v

(k)
t ‖2

≤ (G+ βR)2

2
− 〈V∇ft−1(x

(k)
t−1), x− v(k)t−1〉+ λ

(k)
t gt−1(x) + α‖x− v(k)t−1‖2 − α‖x− v

(k)
t ‖2,

(2)
where the second inequality is due to the optimality condition of the optimization problem for
updating v(k)t and the last inequality follows from convexity of the constraint function gt−1.
We have:

−〈V∇ft−1(x
(k)
t−1), v

(k)
t − v

(k)
t−1〉+ α‖v(k)t − v

(k)
t−1‖2 = ‖

√
α(v

(k)
t − v

(k)
t−1)− V

2
√
α
∇ft−1(x

(k)
t−1)‖2 − V 2

4α
‖∇ft−1(x

(k)
t−1)‖2

≥ −V
2β2

4α
.
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Using L-smoothness of the utility functions, we can write:

ft−1(x
(k+1)
t−1 ) ≥ ft−1(x

(k)
t−1) +

1

K
〈v(k)t−1,∇ft−1(x

(k)
t−1)〉 − L

2K2
‖v(k)t−1‖2,

V 〈v(k)t−1,∇ft−1(x
(k)
t−1)〉 ≤ KV

(
ft−1(x

(k+1)
t−1 )− ft−1(x

(k)
t−1)

)
+
LR2V

2K
.

Using the DR-submodularity and monotonocity of the reward functions, we have:

ft−1(x)− ft−1(x
(k)
t−1) ≤ ft−1(x ∨ x(k)t−1)− ft−1(x

(k)
t−1)

≤ 〈∇ft−1(x
(k)
t−1), (x ∨ x(k)t−1)− x(k)t−1〉

= 〈∇ft−1(x
(k)
t−1), (x− x(k)t−1) ∨ 0〉

≤ 〈∇ft−1(x
(k)
t−1), x〉.

Putting the above inequalities together, we have:

∆
(k)
t −

V 2β2

4α
≤ (G+ βR)2

2
− V

(
ft−1(x)− ft−1(x

(k)
t−1)

)
+KV

(
ft−1(x

(k+1)
t−1 )− ft−1(x

(k)
t−1)

)
+ λ

(k)
t gt−1(x) + α‖x− v(k)t−1‖2 − α‖x− v

(k)
t ‖2 +

LR2V

2K
.

Rearranging the terms, we can write:

KV
(
ft−1(x)− ft−1(x

(k+1)
t−1 )

)
≤ (K − 1)V

(
ft−1(x)− ft−1(x

(k)
t−1)

)
−∆

(k)
t +

V 2β2

4α
+

(G+ βR)2

2

+ λ
(k)
t gt−1(x) + α‖x− v(k)t−1‖2 − α‖x− v

(k)
t ‖2 +

LR2V

2K
.

Dividing both sides by KV , we obtain the desired result.

F Lemma 5

Lemma 5. The static regret of Algorithm 1 against x ∈ X is bounded as follows:
T∑
t=1

(
(1−1

e
)ft−1(x)−ft−1(xt−1)

)
≤ V β2T

4α
+

(G+ βR)2T

2V
+

1

KV

K∑
k=1

T∑
t=1

λ
(k)
t gt−1(x)+

αR2

V
+
LR2T

2K
.

(3)

Proof. Using inequality 1 and taking the sum over t ∈ [T ], we obtain:
T∑
t=1

(
ft−1(x)− ft−1(x

(k+1)
t−1 )

)
≤ (1− 1

K
)

T∑
t=1

(
ft−1(x)− ft−1(x

(k)
t−1)

)
− 1

2KV
(λ

(k)
T+1)2 +

1

2KV
(λ

(k)
1︸︷︷︸
=0

)2 +
V β2T

4αK
+

(G+ βR)2T

2KV

+
1

KV

T∑
t=1

λ
(k)
t gt−1(x) +

α

KV
‖x− v(k)0 ‖2 −

α

KV
‖x− v(k)T ‖

2 +
LR2T

2K2

≤ (1− 1

K
)

T∑
t=1

(
ft−1(x)− ft−1(x

(k)
t−1)

)
+
V β2T

4αK
+

(G+ βR)2T

2KV
+

1

KV

T∑
t=1

λ
(k)
t gt−1(x) +

αR2

KV
+
LR2T

2K2
.

Applying the above inequality recursively for all k ∈ [K], we have:
T∑
t=1

(
ft−1(x)− ft−1(x

(K+1)
t−1︸ ︷︷ ︸
xt−1

)
)
≤ (1− 1

K
)K︸ ︷︷ ︸

≤ 1
e

T∑
t=1

(
ft−1(x)− ft−1(x

(1)
t−1︸︷︷︸
=0

)
)

+
V β2T

4α
+

(G+ βR)2T

2V

+
1

KV

K∑
k=1

T∑
t=1

λ
(k)
t gt−1(x) +

αR2

V
+
LR2T

2K
.

Rearranging the terms, we obtain the desired result.
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G Lemma 6

Lemma 6. For all t ∈ [T ], k ∈ [K], we have λ(k)t ≤ θV where

θ = max{G+ βR,
(G+βR)2

2 + (βR+ V β2

4α )V

V BT /T
+

αR2

V (V + 1)BT /T
+

(G+ βR)(V + 2)

2V
}.

In particular, if we choose α ≤ O(V 2), we have λ(k)t ≤ O(V ).

Proof. Plugging in x = 0 in inequality 2, we obtain:

∆
(k)
t −

V 2β2

4α
≤ (G+ βR)2

2
+ 〈V∇ft−1(x

(k)
t−1), v

(k)
t−1〉︸ ︷︷ ︸

≤βRV

−BT
T
λ
(k)
t + α‖v(k)t−1‖2 − α‖v

(k)
t ‖2,

∆
(k)
t ≤ (G+ βR)2

2
+ (βR+

V β2

4α
)V − BT

T
λ
(k)
t + α‖v(k)t−1‖2 − α‖v

(k)
t ‖2.

Therefore, setting η = −BTT , B = (G+βR)2

2 and R = βR+ V β2

4α in Thoerem 2 of [5], we obtain the
desired result.

This O(V ) bound on the dual variables is crucial in obtaining improved total constraint violation
bounds compared to [6]. Note that [5] requires the extra assumption that there exists an action z ∈ X
such that gt(z) < 0 ∀t ∈ [T ] (Slater condition) to obtain Theorem 2 in their paper. However, in
our framework, since gt(·) = ht(·)− BT

T and ht(0) = 0 for all t ∈ [T ], the Slater condition holds
naturally with z = 0.

H Proof of Theorem 1

First, using the result of Lemma 2, we have:

CT ≤
1

K

K∑
k=1

λ
(k)
T+1 +

β2T

4V
+
V

K

K∑
k=1

T∑
t=1

‖v(k)t − v
(k)
t−1‖2.

Therefore, in order to bound the total constraint violation, we need to bound λ(k)T+1 and ‖v(k)t −v
(k)
t−1‖2

for all k ∈ [K] and t ∈ [T ]. Lemma 6 provides the bound λ(k)T+1 ≤ θV for the dual variables. Thus,

it suffices to obtain upper bounds for the terms ‖v(k)t − v
(k)
t−1‖2 which is done in the following.

Using the update rule of the algorithm for v(k)t , we have:

〈V∇ft−1(x
(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), v

(k)
t 〉 − α‖v

(k)
t − v

(k)
t−1‖2 ≥ 〈V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), v

(k)
t−1〉

+ α‖v(k)t − v
(k)
t−1‖2.

Equivalently, we can write:

2α‖v(k)t − v
(k)
t−1‖2 ≤ 〈V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉

≤ ‖V∇ft−1(x
(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1)‖‖v(k)t − v

(k)
t−1‖,

where we have used the Cauchy-Schwarz inequality to obtain the last inequality.
Dividing both sides by 2α‖v(k)t − v

(k)
t−1‖ and using the triangle inequality, we obtain:

‖v(k)t − v
(k)
t−1‖ ≤

1

2α

(
‖V∇ft−1(x

(k)
t−1)‖+ ‖λ(k)t ∇gt−1(v

(k)
t−1)‖

)
≤ β

2α
(V + λ

(k)
t )

≤ β(1 + θ)

2α
V.
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Therefore, the following holds:

‖v(k)t − v
(k)
t−1‖2 ≤

β2(1 + θ)2

4α2
V 2.

Plugging the above inequality in the result of Lemma 2, we obtain the total constraint violation bound
as follows:

CT ≤
1

K

K∑
k=1

θV +
β2T

4V
+
V

K

K∑
k=1

T∑
t=1

‖v(k)t − v
(k)
t−1‖2 ≤ θV +

β2T

4V
+
β2(1 + θ)2V 3T

4α2
.

I Proof of Theorem 2

First, note that in the adversarial setting with window size W = 1, since for all t ∈ [T ] and k ∈ [K],
gt(x

∗) ≤ 0 holds and λ(k)t is non-negative, we have 1
KV

∑K
k=1

∑T
t=1 λ

(k)
t gt−1(x∗) ≤ 0. Thus, in

this setting, the result follows immediately from inequality 3.
For the case where W > 1, plugging in t← t+ τ and x = x∗W in inequality 1, we have:

(
ft+τ−1(x∗W )− ft+τ−1(x

(k+1)
t+τ−1)

)
≤ (1− 1

K
)
(
ft+τ−1(x∗W )− ft+τ−1(x

(k)
t+τ−1)

)
− 1

KV
∆

(k)
t+τ +

V β2

4αK

+
(G+ βR)2

2KV
+
LR2

2K2
+

1

KV
λ
(k)
t+τgt+τ−1(x∗W ) +

α

KV
‖x∗W − v

(k)
t+τ−1‖2 −

α

KV
‖x∗W − v

(k)
t+τ‖2.

Taking the sum over all t ∈ [T −W +1], τ ∈ {0, . . . ,W −1} and applying the inequality recursively
for all k ∈ [K], we obtain:

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ−1(x∗W )− ft+τ−1(x

(K+1)
t+τ−1︸ ︷︷ ︸

=xt+τ−1

)
)
≤ 1

e

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ−1(x∗W )− ft+τ−1(x

(1)
t+τ−1︸ ︷︷ ︸
=0

)
)

− 1

KV

K∑
k=1

W−1∑
τ=0

T−W+1∑
t=1

∆
(k)
t+τ +

V β2W (T −W + 1)

4α
+

(G+ βR)2W (T −W + 1)

2V
+
LR2W (T −W + 1)

2K

+
1

KV

K∑
k=1

T−W+1∑
t=1

W−1∑
τ=0

λ
(k)
t+τgt+τ−1(x∗W ) +

α

KV

K∑
k=1

W−1∑
τ=0

T−W+1∑
t=1

(
‖x∗W − v

(k)
t+τ−1‖2 − ‖x∗W − v

(k)
t+τ‖2

)
.

Equivalently, we can write:

T−W+1∑
t=1

W−1∑
τ=0

(
(1− 1

e
)ft+τ−1(x∗W )− ft+τ−1(xt+τ−1)

)
︸ ︷︷ ︸

(a)

≤ − 1

KV

K∑
k=1

W−1∑
τ=0

T−W+1∑
t=1

∆
(k)
t+τ︸ ︷︷ ︸

(b)

+
V β2W (T −W + 1)

4α
+

(G+ βR)2W (T −W + 1)

2V
+

1

KV

K∑
k=1

T−W+1∑
t=1

W−1∑
τ=0

λ
(k)
t+τgt+τ−1(x∗W )︸ ︷︷ ︸

(c)

+
α

KV

K∑
k=1

W−1∑
τ=0

T−W+1∑
t=1

(
‖x∗W − v

(k)
t+τ−1‖2 − ‖x∗W − v

(k)
t+τ‖2

)
︸ ︷︷ ︸

(d)

+
LR2W (T −W + 1)

2K
. (4)

The main challenge in obtaining regret bounds for the W > 1 case is to bound terms (a), (b), (c) and
(d) in the above inequality. We exploit ideas from the analysis in [6, 7] to obtain these bounds.
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We bound term (a) in the following:

(a) = WRT −
W−1∑
i=1

(W − i)
(
[(1− 1

e
)fi−1(x∗W )− fi−1(xi)]

+ [(1− 1

e
)fT−i(x

∗
W )− fT−i(xT−i)]

)
≥WRT − 2F

W−1∑
i=1

(W − i)

= WRT − FW (W − 1). (5)
For the term (b), we have:

(b) = − 1

2KV

K∑
k=1

W−1∑
τ=0

T−W+1∑
t=1

(
(λ

(k)
t+τ+1)2 − (λ

(k)
t+τ )2

)
= − 1

2KV

K∑
k=1

W−1∑
τ=0

(
(λ

(k)
T−W+τ+2)2 − (λ

(k)
τ+1)2

)
≤ 1

2KV

K∑
k=1

W−1∑
τ=0

(λ
(k)
τ+1)2

≤ 1

2KV

K∑
k=1

W−1∑
τ=0

min{θ2V 2, τ2(G+ βR)2}

=
1

2KV
min{θ2V 2KW, (G+ βR)2K

W−1∑
τ=0

τ2}

=
1

2KV
min{θ2V 2KW, (G+ βR)2K

W (W − 1)(2W − 1)

6
}

=
1

2V
min{θ2V 2W, (G+ βR)2

W (W − 1)(2W − 1)

6
}, (6)

where we have used the dual variable bounds in Lemma 6 and the fact that λ(k)t changes by at most
G+ βR over one slot to obtain the second inequality.
In order to bound (c), we use Lemma 8 of [7] to obtain:

(c) ≤ 1

KV

K∑
k=1

T−W+1∑
t=1

(
λ
(k)
t

W−1∑
τ=0

gt+τ−1(x∗W )︸ ︷︷ ︸
≤0

+
(G+ βR)2

2
W (W − 1))

)

≤ 1

KV

K∑
k=1

T−W+1∑
t=1

(G+ βR)2

2
W (W − 1)

=
(G+ βR)2W (W − 1)(T −W + 1)

2V
. (7)

Finally, for the term (d), we can write:

(d) =
α

KV

K∑
k=1

W−1∑
τ=0

(
‖x∗W − v(k)τ ‖2 − ‖x∗W − v

(k)
T−W+τ+1‖

2
)

≤ α

KV

K∑
k=1

W−1∑
τ=0

‖x∗W − v(k)τ ‖2

≤ α

KV

K∑
k=1

W−1∑
τ=0

R2

=
αR2W

V
. (8)
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Combining inequalities 4, 5, 6, 7 and 8, dividing both sides by W and rearranging the terms, we
obtain the regret bound as stated.

J Proof of Theorem 3

Set x∗0 = 0. Plugging in x = x∗t−1 in inequality 1, we have:(
ft−1(x∗t−1)− ft−1(x

(k+1)
t−1 )

)
≤ (1− 1

K
)
(
ft−1(x∗t−1)− ft−1(x

(k)
t−1)

)
− 1

KV
∆

(k)
t +

V β2

4αK
+

(G+ βR)2

2KV

+
1

KV
λ
(k)
t gt−1(x∗t−1) +

α

KV
‖x∗t−1 − v

(k)
t−1‖2 −

α

KV
‖x∗t−1 − v

(k)
t ‖2 +

LR2

2K2
.

Taking the sum over all t ∈ [T ] and applying the inequality recursively for all k ∈ [K], we obtain:
T∑
t=1

(
ft−1(x∗t−1)− ft−1(x

(K+1)
t−1︸ ︷︷ ︸
=xt−1

)
)
≤ 1

e

T∑
t=1

(
ft−1(x∗t−1)− ft−1(x

(1)
t−1︸︷︷︸
=0

)
)

+
V β2T

4α
+

(G+ βR)2T

2V

+
1

KV

K∑
k=1

T∑
t=1

λ
(k)
t gt−1(x∗t−1) +

α

KV

K∑
k=1

T−1∑
t=1

(
‖x∗t − v

(k)
t ‖2 − ‖x∗t−1 − v

(k)
t ‖2

)
+

α

KV

K∑
k=1

‖x∗0 − v
(k)
0 ‖2︸ ︷︷ ︸

=0

− α

KV

K∑
k=1

‖x∗T−1 − v
(k)
t ‖2 +

LR2T

2K
.

Considering that ‖x∗t − v
(k)
t ‖2 − ‖x∗t−1 − v

(k)
t ‖2 = ‖x∗t ‖2 − ‖x∗t−1‖2 + 2〈v(k)t , x∗t−1 − x∗t 〉 ≤

‖x∗t ‖2 − ‖x∗t−1‖2 + 2R‖x∗t−1 − x∗t ‖ holds, we can write:
T∑
t=1

(
ft−1(x∗t−1)− ft−1(xt−1)

)
≤ 1

e

T∑
t=1

ft−1(x∗t−1) +
V β2T

4α
+

(G+ βR)2T

2V
+

1

KV

K∑
k=1

T∑
t=1

λ
(k)
t gt−1(x∗t−1)

+
α

KV

K∑
k=1

(
‖x∗T−1‖2︸ ︷︷ ︸
≤R2

−‖x∗0‖2︸ ︷︷ ︸
=0

+2R

T−1∑
t=1

‖x∗t−1 − x∗t ‖
)

+
LR2T

2K
.

Denoting the drift of the benchmark sequence P ∗T =
∑T−1
t=1 ‖x∗t−1 − x∗t ‖, we get the dynamic regret

bound as desired.

K Proof of Theorem 4

Taking expectation of both sides of inequality 1, we have:

E
[
ft−1(x∗)− ft−1(x

(k+1)
t−1 )

]
≤ (1− 1

K
)E
[
ft−1(x∗)− ft−1(x

(k)
t−1)

]
− 1

KV
E[∆

(k)
t ] +

V β2

4αK
+

(G+ βR)2

2KV

+
1

KV
E[λ

(k)
t gt−1(x∗)] +

α

KV
E‖x∗ − v(k)t−1‖2 −

α

KV
E‖x∗ − v(k)t ‖2 +

LR2

2K2
.

Let Ft = {gτ}t−1τ=0. Considering that λ(k)t is Ft−1-measurable and gt−1(x∗) is independent of Ft−1,
we can write:

E[λ
(k)
t gt−1(x∗)] = E

[
E[λ

(k)
t gt−1(x∗)|Ft−1]

]
= E

[
λ
(k)
t E[gt−1(x∗)]︸ ︷︷ ︸

≤0

]
≤ 0.

Combining the above inequalities, taking the sum over t ∈ [T ] and applying the inequality recursively
for all k ∈ [K], we obtain:
T∑
t=1

E
[
ft−1(x∗)− ft−1(x

(K+1)
t−1︸ ︷︷ ︸
=xt−1

)
]
≤ (1− 1

K
)K︸ ︷︷ ︸

≤ 1
e

E
[ T∑
t=1

(
ft−1(x∗)− ft−1(x

(1)
t−1︸︷︷︸
=0

)
]
− 1

2KV

K∑
k=1

E[λ
(k)
T+1]2︸ ︷︷ ︸

≤0

+
V β2T

4α
+

(G+ βR)2T

2V
+
αR2

V
+
LR2T

2K
.

Therefore, the expected regret bound is derived as stated.
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L Proof of Theorem 5

Considering the regret bound in inequality 3, in order to obtain a high probability regret bound, we
have to bound 1

KV

∑K
k=1

∑T
t=1 λ

(k)
t gt−1(x∗). Denote Yt = 1

KV

∑K
k=1

∑t
s=1 λ

(k)
s gs−1(x∗) and let

Ft = {gτ}t−1τ=0. Considering that gt−1(x∗) is independent of Ft−1,We have:

E[Yt|Ft−1] = E[Yt−1 +
1

KV

K∑
k=1

λ
(k)
t gt−1(x∗)|Ft−1]

= Yt−1 + E[
1

KV

K∑
k=1

λ
(k)
t gt−1(x∗)|Ft−1]

= Yt−1 +
1

KV

K∑
k=1

λ
(k)
t E[gt−1(x∗)|Ft−1]

= Yt−1 +
1

KV

K∑
k=1

λ
(k)
t E[gt−1(x∗)]︸ ︷︷ ︸

≤0

≤ Yt−1.

Therefore, {Yt,Ft}t≥0 is a supermartingale. Also, note that for all t ∈ [T ], we have:

|Yt − Yt−1| = |
1

KV

K∑
k=1

λ
(k)
t gt−1(x∗)| ≤ 1

KV

K∑
k=1

λ
(k)
t |gt−1(x∗)| ≤ θG.

Thus, using the Azuma-Hoeffding inequality, we can conclude that with probability 1 − δ, the
following holds:

1

KV

K∑
k=1

T∑
t=1

λ
(k)
t gt−1(x∗) ≤ θG

√
2T log(

1

δ
).

Combining the above inequality with the regret bound in inequality 3, with probability 1 − δ, we
have:

R
(S,S)
T ≤ θG

√
2T log(

1

δ
) +

V β2T

4α
+

(G+ βR)2T

2V
+
αR2

V
+
LR2T

2K
.

Algorithm 2

We present our second algorithm for online DR-submodular maximization with adversarial or stochas-

tic constraints in Algorithm 2. Note that in the algorithm, we denote ḡq(x) =
∑K
k=1 gtq,k (x)

K ∀q ∈
[Q], k ∈ [K].

M Proof of Theorem 6

Using an analysis similar to Lemma 1, we have:

Q∑
q=1

ḡq−1(v
(k)
q−1) ≤ λ(k)Q+1 +

β2Q

4V
+ V

Q∑
q=1

‖v(k)q − v
(k)
q−1‖2.

9



Algorithm 2
Input: X is the constraint set, T is the horizon, V > 0, α > 0 and K.
Output: {xt : 1 ≤ t ≤ T}.
Initialize λ(k)1 = v

(k)
0 = x

(k)
t0,k

= 0 ∀k ∈ [K].
for q = 1 to Q do
x
(1)
q = 0.

for k = 1 to K do
v
(k)
q = arg maxx∈X

(
〈V∇ftq−1,k

(x
(k)
tq−1,k

)− λ(k)q ∇ḡq−1(v
(k)
q−1), x〉 − α‖x− v(k)q−1‖2

)
,

x
(k+1)
q = x

(k)
q + 1

K v
(k)
q .

end for
Let (tq,1, . . . , tq,K) be a random permutation of {(q − 1)K + 1, . . . , qK}.
for t = (q − 1)K + 1 to qK do

Set xt = x
(K+1)
q and play xt.

end for
for k = 1 to K do
λ
(k)
q+1 = [λ

(k)
q + ḡq−1(v

(k)
q−1) + 〈∇ḡq−1(v

(k)
q−1), v

(k)
q − v(k)q−1〉]+.

end for
end for

The constraint violation bound follows immediately from the result of Lemma 2 and it is provided
below:

E[CT ] = E
[
K

Q∑
q=1

ḡq−1(x
(K+1)
q−1 )

]
= E

[
K

Q∑
q=1

ḡq−1(
1

K

K∑
k=1

v
(k)
q−1)

]
≤

K∑
k=1

Q∑
q=1

E[ḡq−1(v
(k)
q−1)]

≤
K∑
k=1

E[λ
(k)
Q+1] +

β2QK

4V
+ V

K∑
k=1

Q∑
q=1

E‖v(k)q − v
(k)
q−1‖2, (9)

where the first inequality is due to Jensen’s inequality.
Plugging in t← q and using the dual update of Algorithm 2 instead of Algorithm 1 in Lemma 3, we
have:

∆(k)
q :=

(λ
(k)
q+1)2

2
− (λ

(k)
q )2

2
≤ (G+ βR)2

2
+ λ(k)q (ḡq−1(v

(k)
q−1) + 〈∇ḡq−1(v

(k)
q−1), v(k)q − v

(k)
q−1〉).

Combining the above inequality with the update rule for v(k)q , we have:

∆(k)
q −〈V∇ftq−1,k

(x
(k)
tq−1,k

), v(k)q − v
(k)
q−1〉+ α‖v(k)q − v

(k)
q−1‖2︸ ︷︷ ︸

(a)

≤ (G+ βR)2

2
− 〈V∇ftq−1,k

(x
(k)
tq−1,k

)− λ(k)q ∇ḡq−1(v
(k)
q−1), v(k)q − v

(k)
q−1〉+ λ

(k)
t ḡq−1(v

(k)
q−1) + α‖v(k)q − v

(k)
q−1‖2

≤ (G+ βR)2

2
− 〈V∇ftq−1,k

(x
(k)
tq−1,k

)− λ(k)q ∇ḡq−1(v
(k)
q−1), x− v(k)q−1〉+ λ(k)q ḡq−1(v

(k)
q−1) + α‖x− v(k)q−1‖2 − α‖x− v(k)q ‖2

≤ (G+ βR)2

2
− 〈V∇ftq−1,k

(x
(k)
tq−1,k

), x− v(k)q−1〉+ λ(k)q ḡq−1(x) + α‖x− v(k)q−1‖2 − α‖x− v(k)q ‖2,

10



where we have used convexity of ḡq−1 to derive the last inequality.
For the term (a), we have:

(a) = ‖
√
α(v(k)q − v

(k)
q−1)− V

2
√
α
∇ftq−1,k

(x
(k)
q−1)‖2 − V 2

4α
‖∇ftq−1,k

(x
(k)
q−1)‖2

≥ −V
2β2

4α
.

Using L-smoothness of the utility functions, we can write:

ftq−1,k
(x

(k+1)
q−1 ) ≥ ftq−1,k

(x
(k)
q−1) +

1

K
〈v(k)q−1,∇ftq−1,k

(x
(k)
q−1)〉 − L

2K2
‖v(k)q−1‖2

V 〈v(k)q−1,∇ftq−1,k
(x

(k)
q−1)〉 ≤ KV

(
ftq−1,k

(x
(k+1)
q−1 )− ftq−1,k

(x
(k)
q−1)

)
+
LR2V

2K
.

Using the DR-submodularity and monotonocity of the reward functions, we have:

ftq−1,k
(x)− ftq−1,k

(x
(k)
q−1) ≤ ftq−1,k

(x ∨ x(k)q−1)− ftq−1,k
(x

(k)
q−1)

≤ 〈∇ftq−1,k
(x

(k)
q−1), (x ∨ x(k)q−1)− x(k)q−1〉

= 〈∇ftq−1,k
(x

(k)
q−1), (x− x(k)q−1) ∨ 0〉

≤ 〈∇ftq−1,k
(x

(k)
q−1), x〉.

Putting the above inequalities together, we have:

∆(k)
q −

V 2β2

4α
≤ (G+ βR)2

2
− V

(
ftq−1,k

(x)− ftq−1,k
(x

(k)
q−1)

)
+KV

(
ftq−1,k

(x
(k+1)
q−1 )− ftq−1,k

(x
(k)
q−1)

)
+ λ(k)q ḡq−1(x) + α‖x− v(k)q−1‖2 − α‖x− v(k)q ‖2 +

LR2V

2K
.

Equivalently, we can write:

KV
(
ftq−1,k

(x)− ftq−1,k
(x

(k+1)
q−1 )

)
≤ (K − 1)V

(
ftq−1,k

(x)− ftq−1,k
(x

(k)
q−1)

)
−∆(k)

q +
V 2β2

4α
+

(G+ βR)2

2

+ λ(k)q ḡq−1(x) + α‖x− v(k)q−1‖2 − α‖x− v(k)q ‖2 +
LR2V

2K
.

Dividing both sides by KV and taking the sum over q ∈ [Q], we obtain:

Q∑
q=1

(
ftq−1,k

(x)− ftq−1,k
(x

(k+1)
q−1 )

)
≤ (1− 1

K
)

Q∑
q=1

(
ftq−1,k

(x)− ftq−1,k
(x

(k)
q−1)

)
+
V β2Q

4αK
+

(G+ βR)2Q

2KV

+
1

KV

Q∑
q=1

λ(k)q ḡq−1(x) +
α

KV
‖x− v(k)0 ‖2 −

α

KV
‖x− v(k)Q ‖

2 +
LR2Q

2K2
.

Applying the above inequality recursively for all k ∈ [K], we have:

Q∑
q=1

(
ftq−1,k

(x)− ftq−1,k
(x

(K+1)
q−1 )

)
≤ (1− 1

K
)K︸ ︷︷ ︸

≤ 1
e

Q∑
q=1

(
ftq−1,k

(x)− ftq−1,k
(x

(1)
q−1︸︷︷︸
=0

)
)

+
V β2Q

4α
+

(G+ βR)2Q

2V

+
1

KV

K∑
k=1

Q∑
q=1

λ(k)q ḡq−1(x) +
αR2

V
+
LR2Q

2K
.

Therefore, the regret against the benchmark with window length W ∈ [1, T
1
3 ] is derived as stated.
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N Proof of Theorem 7

For all q ∈ [Q], k ∈ [K], using a similar analysis to Lemma 6, we have λ(k)q ≤ θV where

θ = max{G+ βR,
(G+βR)2T

2 + (βR+ V β2

4α )V T

V BT
+

αR2T

V (V + 1)BT
+

(G+ βR)(V + 2)

2V
}.

Using the update rule of the algorithm, we have:

〈V∇ftq−1,k
(x

(k)
q−1)− λ(k)q ∇ḡq−1(v

(k)
q−1), v(k)q 〉 − α‖v(k)q − v

(k)
q−1‖2 ≥ 〈V∇ftq−1,k

(x
(k)
q−1)− λ(k)q ∇ḡq−1(v

(k)
q−1), v

(k)
q−1〉

+ α‖v(k)q − v
(k)
q−1‖2.

Equivalently, we can write:

2α‖v(k)q − v
(k)
q−1‖2 ≤ 〈V∇ftq−1,k

(x
(k)
tq−1,k

)− λ(k)q ∇ḡq−1(v
(k)
q−1), v(k)q − v

(k)
q−1〉

≤ ‖V∇ftq−1,k
(x

(k)
q−1)− λ(k)q ∇ḡq−1(v

(k)
q−1)‖‖v(k)q − v

(k)
q−1‖.

Dividing both sides by 2α‖v(k)t − v
(k)
t−1‖ and using the triangle inequality, we obtain:

‖v(k)q − v
(k)
q−1‖ ≤

1

2α

(
‖V∇ftq−1,k

(x
(k)
q−1)‖+ ‖λ(k)q ∇ḡq−1(v

(k)
q−1)‖

)
≤ β

2α
(V + λ(k)q )

≤ β(1 + θ)

2α
V.

Therefore, the following holds:

‖v(k)q − v
(k)
q−1‖2 ≤

β2(1 + θ)2

4α2
V 2.

Plugging the above inequality in inequality 9, we obtain the constraint violation bound as follows:

E[CT ] ≤
K∑
k=1

θV +
β2QK

4V
+ V

K∑
k=1

Q∑
q=1

E‖v(k)t − v
(k)
t−1‖2 ≤ θKV +

β2T

4V
+
β2(1 + θ)2V 3T

4α2
.
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