
A Proofs

We need the following Chernoff Bound for bounded i.i.d. random variables.

Lemma 3 (Chernoff Bound [9]) Consider a set {xi} (i ∈ [1, nr]) of i.i.d. random variables with
mean µ and xi ∈ [0, r], we have

Pr

[∣∣∣∣∣ 1nr
nr∑
i=1

xi − µ

∣∣∣∣∣ ≥ ε
]
≤ exp

(
− nr · ε2

r
(
2
3ε+ 2µ

)) . (6)

A.1 Proof of Lemma 1

Recall that in the Monte-Carlo Propagation phase of Algorithm 1, we first generate nr random walks
of length L for each training/testing node s ∈ Vt to estimate the `-th transition probability matrix
S(`), ` = 0, . . . , L. Since the number of training/testing nodes is |Vt|, the total cost is bounded
by O(L|Vt|nr) . After deriving S(`), we need to compute

∑L
`=0 w`

∑`
t=0 S

(`−t)R(t) (line 14 in
Algorithm 1). Since there are at most O(|Vt| · nr) non-zero entries in each S(`), the total cost can be
bounded by O(L|Vt|nrF) .

On the other hand, in the Reverse Push Propagation phase of Algorithm 1, we push the residue
R(`)(u, k) of node u to its neighbors whenever

∣∣R(`)(u, k)
∣∣ > rmax, k = 0, . . . , F − 1. For random

features, the average cost for this push operation is d, the average degree of the graph. We also
observe that for a given level ` and a given feature dimension k, there are at most 1/rmax nodes with
residues larger than rmax. Consequently, the cost of Reverse Push for a given level ` and a given
feature dimension k is d

rmax
. Summing up ` = 0, . . . , L− 1 and k = 0, . . . , F − 1, and the Lemma

follows.

A.2 Proof of Lemma 2

Let RHS denote the right hand side of equation (5); We prove the Lemma by induction. Recall
that in Algorithm 1, we initialize Q(t) = 0 and R(t) = 0 for t = 0, . . . , `, and R(0) = D−rX .
Consequently, we have

RHS = Dr
(
D−1A

)`
R(0) = Dr

(
D−1A

)`
D−rX =

(
Dr−1AD−r

)`
X = T(`),

which is true by definition. Assuming Equation (5) holds at some stage, we will show that the
invariant still holds after a push operation on node u. More specifically, let Iuk ∈ Rn×F denote the
matrix with entry at (u, k) setting to 1 and the rest setting to zero. Consider a push operation on
u ∈ V and k ∈ 0, . . . , F − 1 with |R(t)(u, k)| > rmax. We have two cases:

(1) If t ≤ ` − 1 , we have R(t) is decremented by R(t)(u, k) · Iuk and R(t+1) is incremented by
R(t)(u,k)

d(v) · Ivk for each v ∈ N(u). Consequently, we have

RHS = T(`) +Dr ·
(
D−1A

)`−t
(−R(t)(u, k) · Iuk) +Dr(D−1A)`−t−1 ·

∑
v∈N (u)

R(t)(u, k)

d(v)
· Ivk

= T(`) +R(t)(u, k) ·Dr(D−1A)`−t−1 ·

 ∑
v∈N (u)

1

d(v)
· Ivk −D−1AIuk


= T(`) +R(t)(u, k) ·Dr(D−1A)`−t−10 = T(`).

For the second last equation, we use the fact that
∑

v∈N (u)
1

d(v) · Ivk = D−1AIuk.

(2) If t = `, we have R(`) is decremented by R(`)(u, k) · Iuk and Q(`) is incremented by R(`)(u, k) ·
Iuk. Consequently, we have

RHS = T(`) +Dr ·
(
−R(`)(u, k) · Iuk

)
+Dr ·

(
R(`)(u, k) · Iuk

)
= T(`) +Dr · 0 = T(`).

Therefore, the induciton holds, and the Lemma follows.

12

A.3 Proof of Theorem 1

To show that Algorithm 1 achieves the desired accuracy, recall that equation (4) is an unbiased
estimator for the `-th propagation matrix T(`). We also observe each entry in residue matrix R(`)

derived by the reserve push propagation is bounded by rmax, and we multiply Dr to the estimator
Q(`) +

∑`−1
t=0 S

(`−t)R(t), it follows the random variable of each random walk from node s ∈ Vt is
bounded by d(s)r · rmax. By Chernoff Bound (Lemma 3), we have

Pr
[∣∣∣T̂(`)(s, k)−T(`)(s, k)

∣∣∣ ≥ d(s)rε] ≤ exp

(
− nr · d(s)r · ε2

rmax

(
2
3ε+ 2µ

)) ≤ exp

(
− nr · ε2

rmax

(
2
3ε+ 2µ

)) .
Where µ = T(`)(s, k). By setting nr = O

(
rmax logn

ε2

)
, we have

Pr
[∣∣∣T̂(`)(s, k)−T(`)(s, k)

∣∣∣ ≥ d(s)rε] ≤ exp

(
− log n

2
3ε+ 2µ

)
= O

(
1

n

)
.

By Lemma 1, the time complexity of the Monte-Carlo Propagation is O(L|Vt|nrF) , and the time
complexity of the Reserve Push Propagation is O(L d

rmax
F). By setting nr = O(rmax logn

ε2) , the
time complexity of Algorithm 1 can be express as

O

(
L|Vt|F + L|Vt|

rmax log n

ε2
F + L

d

rmax
F

)
.

We observe that the above complexity is minimized when L|Vt| rmax logn
ε2 F = L d

rmax
F , which

implies that

rmax =

√
ε2

d

|Vt| log n
= ε

√
d

|Vt| log n
.

Therefore, the number of random walks per node nr can be expressed as

nr =
log n

ε2
· ε

√
d

|Vt| log n
=

1

ε

√
d log n

|Vt|
.

Finally, the total time complexity of Algorithm 1 is bounded

O

(
L|Vt|F + L|Vt|

rmax log n

ε2
F + L

d

rmax
F

)
= O

(
L|Vt|F + L

√
|Vt|d log n

ε
F

)
,

and the Theorem follows.

B Additional experimental results

B.1 Comparison of inference time

Figure 2 shows the inference time of each method. We observe that in terms of the inference time, the
three linear models, SGC, PPRGo and GBP, have a significant advantage over the two sampling-based
models, LADIES and GraphSAINT.

B.2 Additional details in experimental setup

Table 7 summarizes URLs and commit numbers of baseline codes.

13

PPI Yelp Amazon

100

101

102

103

Ti
m

e(
se

co
nd

)

SGC
LADIES
PPRGo
GraphSAINT
GBP

Figure 2: Inference time of 6-layers models on the entire test graph.

Table 7: URLs of baseline codes.

Methods URL Commit

GCN https://github.com/rusty1s/pytorch_geometric 5692a8
GAT https://github.com/rusty1s/pytorch_geometric 5692a8

APPNP https://github.com/rusty1s/pytorch_geometric 5692a8
GDC https://github.com/klicperajo/gdc 14333f
SGC https://github.com/Tiiiger/SGC 6c450f

LADIES https://github.com/acbull/LADIES c7f987
PPRGo https://github.com/TUM-DAML/pprgo_pytorch d9f991

GraphSAINT https://github.com/GraphSAINT/GraphSAINT cd31c3

14

https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
https://github.com/klicperajo/gdc
https://github.com/Tiiiger/SGC
https://github.com/acbull/LADIES
https://github.com/TUM-DAML/pprgo_pytorch
https://github.com/GraphSAINT/GraphSAINT

