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Abstract

In this paper, we study the problem of fair clustering on the k−center objective. In
fair clustering, the input is N points, each belonging to at least one of l protected
groups, e.g. male, female, Asian, Hispanic. The objective is to cluster the N points
into k clusters to minimize a classical clustering objective function. However,
there is an additional constraint that each cluster needs to be fair, under some
notion of fairness. This ensures that no group is either “over-represented” or
“under-represented” in any cluster. Our work builds on the work of Chierichetti
et al. (NIPS 2017), Bera et al. (NeurIPS 2019), Ahmadian et al. (KDD 2019),
and Bercea et al. (APPROX 2019). We obtain a randomized 3−approximation
algorithm for the k−center objective function, beating the previous state of the
art (4−approximation). We test our algorithm on real datasets, and show that our
algorithm is effective in finding good clusters without over-representation or under-
representation, surpassing the current state of the art in runtime speed, clustering
cost, while achieving similar fairness violations.

1 Introduction and Prior Work

The aim of classical clustering is to group N points into k clusters in order to minimize an objective
function, such as k − {centers, medians, means, ...}. The problem has been studied extensively and
there is a plethora of papers discussing approximation algorithms and PTAS algorithms for different
objective functions. (See [8, 4] for k-median, [13, 15, 16] for k−center, [18, 20] for k-means, and
[1] for a recent survey).

Variants of clustering problems have been proposed to impose additional constraints to attain a desired
demographic in clustering outcome, diversity of a cluster for instance. The constraint of interest in
this paper is fairness, it is motivated by practical scenarios encountered when formulating clustering
problems that require fairness and has received a lot of attention recently [2, 5, 9, 7, 11, 12, 17, 10].
Ahmadian et al. [2] provided some examples such as clustering news articles while requiring that no
one view point or news source over-represents any cluster. They also noted its necessity in online
advertising systems to ensure that no advertiser has the majority market share over certain keyword
clusters. Other examples where a fair clustering is crucial include clustering people to choose who is
awarded loans [19, 21], or predicting recidivism [3] where using classical clustering techniques can
be detrimental to minority groups. We discuss this with more details in the broader impact section.

There are several definitions of fairness in the literature. Dwork. et al. [11] used the Lipschitz
inequality, by defining a clustering M as a map that maps a point in the inputs, to a probability
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distribution over k clusters. The objective was to find a clustering mapping M that minimizes some
utility loss function, with M subject to the Lipschwitz inequality as a notion of fairness. Other papers
[12, 17] tried to impose fairness by either eliminating disparate impact from the resulting clusters, or
using regularization techniques that attempt to remove prejudice, which was shown to be effective
when being used on logistic regression.

In this paper, we focus on fairness, or equivalently the “over/under-representation” constraint, and
restrict ourself to the k−center objective function. Firstly, the classical k−center problem is NP-hard
and permits a 2−approximation [13, 15]. Meanwhile, finding a better approximation ratio than 2
is also NP-hard [16]. Several approximation algorithms for fair clustering have been proposed in
recent years. Chierichetti et al. [9] extended the definition of disparate impact to clustering problems.
Assuming each point in the input has a “color” (representing its group), they defined fair cluster as a
cluster where the distribution of colors in each cluster is the same as the distribution of colors over all
points. They gave the idea of fairlets to provide an approximation algorithm to the problem when
there are only 2 groups (e.g. males or females). This was later generalized for multiple groups (e.g
white, Asian, Hispanic, . . .) by Rösner et al. [24] to a 14−approximation algorithm for the k−center
objective. However, their definition of fairness is quite restrictive, as sometimes there are some input
instances where such a fair cluster by that definition does not exist.

Finally, the closest work to ours are the papers by Ahmadian. et al. (KDD 2019) [2], Bera. et al.
(NeurIPS 2019) [5], and Bercea et al. (APPROX 2019) [6]. Their idea of fairness stems from the
classical k−center problem. Given a user defined parameter α, [2] defined a fair cluster as a cluster
where the fraction of points with a given color in any cluster is at most α (known as the restricted
dominance constraint). This ensures that no group “dominates” any cluster. However, we note that
[2] and [6] did not allow overlapping between groups, e.g. an input point cannot belong to both
“male” and “Asian” groups. [5] generalized this by allowing groups to overlap. They also allowed
each group g to have its own αg , as well as a βg that ensures that the fraction of points belonging to g
in any cluster is at least βg (known as the minority protection constraint) and at most αg. Note that
[2] formulation is a special case of [5] formulation. [6] also gave an elegant, yet computationally
expensive, approximation framework for fair clustering with various objectives including k−center.

Currently, the state-of-the-art generalized formulation by [5] is a 5−approximation linear pro-
gram (or 4-approximation for the case when the centers and clients are the same). [2] provided a
3−approximation for the restricted version of their formulation. In this paper, we provide a new 5−
approximation algorithm for the generalized formulation (or 3− approximation for the same special
case as [5], and thus beating the previous 4−approximation state of the art). We show theoretically
and practically that our algorithm is orders of magnitude faster than the state of the art, more cost
effective, and has a very small additive violation that is comparable to the state of the art.

2 Preliminaries

Let C be a set ofN points embedded in a metric space (X , d), and F ⊂ X be a set of potential cluster
centers (i.e “facilities”). Note that in our analysis, we show that we can strengthen our algorithm’s
approximation ratio for the special case F = C, but the general case does not require F = C. We
also use d(x, S) to denote miny∈S d(x, y), [n] to denote the set {1, 2, . . . , n}, and lastly [0, 1] to
denote the set {x ∈ Q|0 ≤ x ≤ 1}.
The idea of fair k−center clustering originates from the definition of the classical k−center clustering.
Problem 1. The classical k−center problem asks to find a set of k centers S ⊂ F, |S| = k and a
mapping φ : C → S such as to minimize the following objective function

min
S⊂F,|S|=k,Φ

maxv∈C d(v, φ(v)).

In the classical k−center problem, it is trivial to show that for a set of centers S, the function φ
mapping a point v ∈ C to its nearest neighbor in S minimizes the k−center objective.

The fair k−center requires that no group is over-represented or under-represented within any cluster
in addition to the classical k−center requirement, its definition is as following:
Problem 2. Definition 1 in [5]. In the fair k−center clustering problem, we are given a set of l
protected groups, C1, . . . , Cl (not necessarily disjoint). Each point c ∈ C belongs to at least one
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group Ci. We are also given a set of vectors α, β ∈ Rl, αi ≥ βi. The problem requires finding a set
S ⊂ F, |S| = k, and a mapping φ : C → S such as to minimize the following objective function

min
S⊂F,|S|=k,φ

maxv∈C d(v, φ(v))

s.t |{v ∈ Ci|φ(v) = f}| ≤ αi |{v ∈ C|φ(v) = f}| ∀f ∈ S, ∀i ∈ [l] (RD),
|{v ∈ Ci|φ(v) = f}| ≥ βi |{v ∈ C|φ(v) = f}| ∀f ∈ S, ∀i ∈ [l] (MP ),

where the RD is the restricted dominance constraint, and MP is the minority protection constraint.

While mapping a point to its nearest center minimizes the cost, it does not guarantee that the resulting
clusters would satisfy the RD and MP constraints. Let ∆ denote the maximum number of groups
a single client v ∈ C can belong to. We note that in the Ahmadian et al.[2] paper, they studied the
variant with the set of restriction V = {β = 0,∆ = 1, αi = α∀i ∈ [l]}. Bera et al. [5] noted that
Problem 2 is NP-Hard via a reduction from the 3D matching problem, while [2] showed that their
restricted problem is also NP hard to approximate with a ratio better than 2 for α ∈ (0, 0.5]. Hence,
it is natural to consider a relaxation of the fair k−center formulation:
Problem 3. The E−relaxed fair k−center clustering problem is the same as Problem 2, but it relaxes
the RD and MP constraints to allow an E additive violation to the fairness constraint

min
S⊂F,|S|=k,φ

maxv∈C d(v, φ(v))

s.t |{v ∈ Ci|φ(v) = f}| ≤ αi |{v ∈ C|φ(v) = f}|+ E ∀f ∈ S, ∀i ∈ [l] (RD),
|{v ∈ Ci|φ(v) = f}| ≥ βi |{v ∈ C|φ(v) = f}| − E ∀f ∈ S, ∀i ∈ [l] (MP ),

for some additive violation E .

Let λ∗, λ∗α, λ
∗
α,E be the optimal k−center distance for Problem 1, 2, 3 respectively for the same input

set (C,F, k). Then it is clear that
λ∗ ≤ λ∗α,E ≤ λ∗α.

Ahmadian et al. [2] provided a 3−approximation algorithm using linear programming and rounding
for Problem 2 under the restrictions V , with the caveat that the resulting solution is feasible in
Problem 3 with E = 2. In other words, their algorithm admits a clustering that violates the constraints
additively by at most 2 points, and has k−center cost at most 3λ∗α. However, the linear program
described in [2] has Θ(N2) variables and Θ(N2) constraints for the linear program which make it
not scalable for large inputs. They also provided an alternative practical variation of their algorithm
that has Θ(Nk) variables and constraints, but the 3−approximation analysis does not hold for this
variation.

On the other hand, Bera et al. [5] provided a general framework to solve Problem 2 for multiple
clustering costs (k − {center, means, median, ...}), which corresponds to a 5−approximation to
Problem 2 with the caveat that the additive violation is at most 4∆ + 3. Their approximation ratio
improves to 4 if F = C.

Lastly, Bercea et al. [6] provided a 3−approximation algorithm when F = C and 5−approximation
when F 6= C for Problem 2. However, the LP uses Θ(N2) LP variables and constraints, and does not
allow a point to belong to multiple groups, i.e ∆ = 1. While the algorithm is elegant, it involves a
mixture of advanced and computation heavy techniques such as a large LP, and then using a max-flow
min cost setup to round the LP variables which makes it impractical for large input sizes.

In this paper, we present a new scalable randomized 5−approximation algorithm to Problem 2,
which improves to a 3−approximation if F = C. Although the clustering returns by our algorithm
might also not be feasible for Problem 2, we prove that it satisfies E(E) = 0 so it should satisfy the
constraints on average. We also sketch how to alter our algorithm to enforce a maximum additive
violation of 4∆+3, as opposed to just E(E) = 0, using the LP iterative rounding technique developed
by Bera. et al. [5]. We show experimentally on real datasets that our algorithm beats the state of the
art algorithms in terms of runtime (by orders of magnitude) and clustering cost, while achieving very
similar additive violations E close to 0 in the resulting clusters.

3 Definitions and Algorithm

Our algorithm for Problem 2 is outlined in Algorithm 1. In essence, we first run the greedy k−center
algorithm for Problem 1 to get k centers S ⊂ F . Using the fact that λ∗α ∈ [0, 2 maxx,y(d(x, y))], we
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Figure 1: A λ−Venn diagram for the three centers {3, 7, 13}, where point 6 belongs to
J{2}, point 12 belongs to J{1,3}, point 11 belongs to J{1,2,3}. In total, the joiners are
J{1}, J{2}, J{3}, J{1,2}, J{1,3}, J{2,3}, J{1,2,3}. All joiners are not empty except J{1,2}

do binary search on the optimal radius λ∗α. In each step, we consider a guess for the optimal radius λ,
and formulate a frequency-distributor linear program (to be explained later) of a small size. Then
we update the binary search interval based on whether the LP has a feasible solution or not. In what
follows, we fix a λ and assume d(x, S) ≤ λ, ∀x ∈ C. For the ease of our analysis, let us define a
λ−Venn diagram:
Definition 1. Given a set of k centers S, a λ−Venn diagram region is the region R defined as

R ,
⋃
x∈S

B(x, λ),

where B(x, λ) is the closed ball with center x and radius λ.

Now fix a λ−Venn diagram that includes all the N points, we define a joiner object as follows:
Definition 2. Given a nonempty subset S′ ⊂ S, denote JS′,λ as the joiner of clusters S′ as the
region

JS′,λ ,
⋂
x∈S′

B(x, λ)
⋂

x∈S−S′

B(x, λ),

where B(x, λ) is the compliment of the ball.

We say a point x belongs to a joiner JS,λ if x ∈ JS,λ and that a joiner is empty if no point from C
belongs to it. Figure 1 shows a diagram illustrating these definitions.
Next, we state the following topology lemma. (See Appendix A for proofs.)
Lemma 1. Given a set of k−centers S, and an associated λ−Venn diagram R, denote 2S as the
powerset of S, then the following holds

1. For non-empty A,A′ ⊂ S,A 6= A′, we must have JA,λ ∩ JA′,λ = φ

2. The union of all joiners partitions R: R =
⋃
A∈2S ,A 6=φ JA,λ

3. The number of non empty joiners is at most min(2k − 1, N)

Intuitively, the concept of a joiner is useful because for a point xi ∈ C, and fixed λ, xi ∈ JA,λ if
and only if xi can be assigned to a cluster center f ∈ A and cannot be assigned to a cluster center
f ∈ S −A, with a radius ≤ λ.

Next, we define the signature of a point x ∈ C as a tuple of indices (ordered in increasing order) of
all the groups it belongs to:
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Definition 3. For any point x ∈ C that belongs to the groups Ci1 , . . . , Cir with i1 ≤ . . . ≤ ir, then
the signature of x is defined as Sig(x) = (i1, . . . , ir)

By definition, we must have r ≤ ∆ for any point. We also use I to denote all possible signatures,
with |I| ≤ N as each point only has one signature. We say a group Ci belongs to signature c if i is
inside the signature (i ∈ c)
Now for any fixed signature c ∈ I and S′ ⊂ S, consider the set of points

L(c, S′, λ) = {xi ∈ C|xi ∈ JS′,λ and Sig(xi) = c}.

Given any solution to Problem 2 with radius λ, the points in L(c, S′, λ) are interchangeable. This
means that a solution to Problem 2 assigning aj points of L(c, S′, λ) to cluster j ∈ S′ is a valid
solution only if assigning any aj points of L(c, S′, λ) to cluster j would also be a valid solution.

The next question to answer is, what portion of the |L(c, S′, λ)| points should be assigned to which
cluster center f ∈ S′. To answer this, we define a frequency-distributor linear program.

Algorithm 1 Fair k clustering
1: function FAIR_K_CLUSTER(C,F, k, α, β, ε)
2: S ← greedy_k_center(F, k)
3: d← distance_matrix(C, S)
4: l, r, feasible← 0, 2 max(d), False
5: while r − l > ε or not feasible do
6: λ← l+r

2
7: if ∃x ∈ C with d(x, S) > λ then
8: l, feasible← λ, False
9: continue

10: LP ← Frequency_Distributor_LP (C, S, k, α, β, λ)
11: if LP has a feasible solution then
12: r, feasible← λ, True
13: else
14: l, feasible← λ, False

return λ

Definition 4. For each signature c ∈ I , non-empty S′ ⊂ S, and j ∈ S′ such that |L(c, S′, λ)| > 0,
define an LP variable xc,S′,j denoting the number of points in JS′,λ with signature c that would be
assigned to cluster j ∈ S′. Define the frequency-distributor linear program as follows:

min 1

βa

∑
c∈I,S′∈2S

|j∈S′

xc,S′,j ≤
∑

S′∈2S ,c∈I
|j∈S′,a∈c

xc,S′,j ≤ αa
∑

c∈I,S′∈2S

|j∈S′

xc,S′,j
∀a∈[l]
∀j∈S (1)

∑
j∈S′

xc,S′,j = |L(c, S′, λ)| ∀c∈I,∀S′∈2S

such that |L(c,S′,λ)|>0
(2)

xc,S′,j ≥ 0 ∀c∈I,S′∈2S ,∀j∈S′

such that |L(c,S′,λ)|>0
(3)

The set of constraints (1) defines the fairness constraint on the assignment. The set of constraints (2)
ensures that all points get assigned to a cluster. To get an idea on how large the frequency-distributor
linear program is, we prove the following lemmas to bound the number of variables and constraints:

Lemma 2. The number of variables is at most min(2k−1k|I|, Nk)

Proof. See Appendix B.

Now, we bound the number of constraints.
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o∗i≤ 3λ∗α

B(o∗i , λ
∗
α)

5λ∗α

f

Figure 2: Visual idea of Theorem 1 proof

Lemma 3. The number of constraints is at most kl + min(2k|I|, Nk) + min(2k−1k|I|, Nk)

Proof. See Appendix B.

Note that compared to the LPs described in [2, 5, 6], our LP uses at most min(2k−1k|I|, Nk)
variables, as opposed to Θ(N2), Θ(Nk),Θ(N2) respectively; and at most kl + min(2k|I|, Nk) +
min(2k−1k|I|, Nk) constraints, as opposed to Θ(N2), Θ(Nk), and Θ(N2) respectively.
In practice, the frequency-distributor linear program tends to be very small, both in number of
variables and constraints, which leads to a quick feasibility check in Algorithm 1.

3.1 Frequency-distributor example for k = 3

See Appendix C for a step-by-step example of formulating a frequency-distributor LP for the example
in Figure 1. We omit it from the main paper due to the page-limit.

3.2 Randomized Assignment

Suppose the frequency-distributor LP has a feasible solution x. For every non-empty S′ ⊂ S,
center j ∈ S′, signature c ∈ I , point xi ∈ L(c, S′, λ), we independently assign xi to cluster
j with probability xc,S′,j

|L(c,S′,λ)| . Thus, on expectation, cluster j would be assigned to xc,S′,j
|L(c,S′,λ)| ×

|L(c, S′, λ)| = xc,S′,j points, for all c, S′, leading to each cluster j receives xc,S′,j points with
signature c from each joiner region JS′ on expectation as well. Since xc,S′,j is a feasible solution
that respects the fairness constraints, the randomized assignment respects the RD and MP constraints
on expectation using linearity of expectation for each cluster j.

Note that we can also restrict the number of violations to 4∆ + 3, as opposed to just E(E) = 0, using
iterative rounding in a similar fashion to Bera. et al. [5]. The proof is deferred to the extended paper.

4 Analysis

In this section, we prove our algorithm is a 5−approximation to Problem 2, and a 3-approximation
for the case F = C. We defer the runtime analysis to Appendix D due to the page limit.

4.1 5−Approximation

Theorem 1. Algorithm 1 is a 5−approximation to Problem 2, and a 3−approximation when F = C.

Proof. Let O∗ = {o1, o2, ..., ok} be the optimal centers for Problem 2, λ∗α be the optimal radius,
and φ∗ be the optimal mapping. This partitions C into k partitions P1, .., Pk where Pi = {v ∈
C|φ∗(v) = oi}. Consider the k clients chosen by the greedy algorithm as U , and the corresponding
k centers as S = {σ(u)|u ∈ U}, where σ : C → F denotes the closest center from F to u.

Consider an optimal cluster B(o∗i , λ
∗
α) and the greedy centers S. To prove the LP admits a solution,

it is sufficient to prove that there is a greedy center f ∈ S such that B(o∗i , λ
∗
α) ∩ C ⊂ B(f, 5λ∗α) as

illustrated in figure 2). This together with Claim 4 from Bera et al. [5] gurantees the existence of a
solution.

If for every optimal center oi, there is one client ui ∈ U in the ball B(oi, λ
∗
α), then the ball

B(σ(u), 3λ∗α) contains the entirety of B(oi, λ
∗
α), because for any point x ∈ B(oi, λ

∗
α), d(σ(u), x) ≤

d(σ(u), u) + d(u, oi) + d(oi, x) ≤ 3λ∗α. Thus, the frequency distributor LP admits a feasible
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assignment which all the points in the optimal partition Pi to the greedy cluster are contained in. This
is possible because for every point x ∈ Pi belonging to joiner JS′,λ with sig(x) = c, then the point
can contribute 1 to xc,S′,i. Note that if F = C, the optimal ball B(oi, λ

∗
α) is contained in the ball

B(ui, 2λ
∗
α), because σ(u) = u.

On the other hand, consider if one optimal cluster has more than one client ua, ub ∈ U . Assume
this first happens in optimal cluster with center oi and WLOG assume a ≤ b. We have that
d(σ(ua), ub) ≤ d(σ(ua), ua) + d(ua, oi) + d(oi, ub) ≤ 3λ∗α. But the greedy algorithm chooses ub
because it is the furthest point from any of the chosen centers so far, meaning that every client left is
now within 3λ∗α from some greedy center in S. Let L = {i|∀u ∈ U, u 6∈ B(oi, λ

∗
α)} be the clusters

left without a client from U in them. Let τ : L → C be any function that arbitrarily chooses any
client inside the remaining clusters L. Then the balls B(σ(τ(i)), 5λ∗α) completely encompasses the
remaining clusters W = {B(oi, λ

∗
α)|i ∈ L}. Note that if F = C we can improve the bound. First,

all the remaining points are reachable from ua with distance at most 2λ∗α from the first paragraph.
Thus, all centers (which are also clients) {oi|i ∈ L} are at a distance at most 2λ∗α from σ(ua). So the
ball B(ua, 3λ

∗
α) completely encompasses the remaining clusters. Since the clusters are completely

enclosed in some greedy cluster, the frequency distributor LP admits a valid solution at λ = 5λ∗α, or
λ = 3λ∗α when F = C using the assignment from Claim 4 from Bera et al. [5].

5 Empirical Evaluation

5.1 Experimental Setup

We conduct experiments on 6 real-world datasets: reuters, victorian, 4area from [2], and bank, census,
creditcard from [5].

Dataset reuters victorian 4area bank census creditcard
Sample size 2,500 4,500 35,385 4,512 32,561 30,000

Features (dimension) 10 10 8 3 5 13
Number of Groups 50 45 4 5 7 8
Overlapping groups No No No Yes Yes Yes

Protected group feature(s) author author author marital, race,sex marriage,
default education

Table 1: Statistics of baseline datasets

Baseline Algorithms. We use three baseline algorithms in our experiment. The first one is the greedy
k−center algorithm, note that it does not respect the fairness constraint, and so its cost is likely to be
less than a cost that respects the constraint. The second one is the practical Linear Program from [2]
(Not the 3− approximation). Note that we did not include the algorithm from [6] as it TLE on almost
all input instances as was the case for the 3−approximation from [2]. This is mainly due to them
using Θ(N2) LP variables. Finally, we include the 5−approximation linear program from [5].

Metrics. We evaluate our algorithm and the baselines based on 3 metrics. Cost. Defined as the
k−center cost, or the maximum distance from a point to its nearest center reported by the algorithm.
Runtime. We report the runtime in seconds that the algorithm take to terminate. If any algorithm
takes longer than 30 minutes per run, we report a Time limit exceeded (TLE). Additive Violation
of fairness constraint. We report the maximum additive violation E in any cluster output by all
algorithms. Recall that for our algorithm, E(E) = 0, while the LP from [2], E ≤ 2 and the LP from
[5], E ≤ 4∆ + 3.

5.1.1 Implementation Details

The implementation for our algorithm and Ahmadian et al. [2] is available at [14]. As the original
implementation of [2] was not available publicly or upon request, we implement [2] based on their
paper. We use the implementation of Bera et al. [5] available at [23] for the 5−approximation. All
algorithms are written in Python 3. For our algorithm and [2], we use the CPLEX solver to handle the
linear programs in our implementation which drastically improves the solution speed, with the linear
programs defined using the library Pulp [22], while the original implementation from [5] also uses
CPLEX. We modify it to accept α, β as input parameters. All the computations are run independently
on a Macbook Pro with a 2.4 GHz Quad-Core Intel Core i5 processor.
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5.2 Experimental Results

Cost E Runtime(s)
Dataset α KFC G A B KFC G A B KFC G A B
reuters 0.05 1.858 1.593 3.679 1.865 1(2) 18 0(0) 2(2) 77.661 0.173 51.54 61.77

0.20 1.573 1.575 3.278 1.604 1(1) 10 0(0) 0(0) 30.085 0.172 44.68 53.56
0.40 1.540 1.582 3.278 1.604 1(1) 3 0(0) 1(1) 34.922 0.174 47.19 53.26

victorian 0.1 4.698 3.240 6.958 4.602 2(2) 35 0(0) 1(1) 158.2 0.314 89.65 180.3
0.3 3.868 3.108 7.612 4.174 1(2) 21 0(0) 1(1) 81.53 0.309 88.87 165.6
0.5 3.580 3.228 6.958 3.820 1(1) 8 0(0) 0(0) 76.88 0.308 81.16 142.3

4area 0.45 9.421 9.786 19.13 9.768 2(2) 31 0(0) 0(0) 14.51 2.283 393.1 1190
0.60 9.891 9.535 18.90 9.768 0(1) 0 0(0) 0(0) 12.96 2.237 370.4 1276
0.80 9.671 9.762 14.02 9.768 0(1) 0 0(0) 0(0) 12.06 2.224 362.4 1205

bank 0.80 2.914 0.133 N/A 7.450 1(1) 1 N/A 504(504) 2.941 0.292 N/A 117.5
,cost x104 0.90 2.914 0.133 N/A 7.450 1(1) 1 N/A 231(231) 2.940 0.291 N/A 117.9

1.00 0.121 0.127 N/A N/A 0(0) 0 N/A N/A 2.496 0.289 N/A N/A
census 0.86 118.5 58.34 N/A TLE 0(0) 129 N/A TLE 19.83 2.153 N/A TLE

,cost x104 0.90 118.5 57.33 N/A TLE 0(0) 1 N/A TLE 19.63 2.168 N/A TLE
0.94 118.5 59.87 N/A TLE 1(1) 1 N/A TLE 20.11 2.144 N/A TLE

creditcard 0.60 124.5 56.02 N/A TLE 1(5) 15 N/A TLE 26.49 2.472 N/A TLE
,cost x104 0.70 124.5 58.22 N/A TLE 1(6) 1 N/A TLE 26.78 2.456 N/A TLE

0.80 124.5 56.85 N/A TLE 1(8) 1 N/A TLE 26.83 2.485 N/A TLE
Table 2: Comparison of λ, E , and runtime(sec) of our algorithm with 3 baselines with varying α

The first experiment is a comparison with the baselines with respect to the fairness constraint α, where
the parameters are fixed as k = 25, ε = 0.1, β = 0, and α’s with feasible solutions are selected. Note
that we abbreviate greedy as G, Ahmadian et al. algorithm [2] by A, and Bera et al.[5] algorithm by B,
N/A as no solution found, and TLE as time limit exceeded for limit equals to 30 minutes. In addition,
as A does not handle overlapping groups, it is not run on the last three datasets. For each dataset and
α, we run each experiment 5 times and report the average cost, runtime, and median E , where the
maximum E from the 5 runs is enclosed in brackets to show the robustness of our algorithm.

As shown in Table 2, our algorithm, A and B achieve a cost close to greedy and E within 2. Our result
is also in sync with the results in [2] and [5] that the E of greedy can be very high for tight α-cap.
Our algorithm also runs significantly faster on datasets with small number of groups shown by 4area.

The second experiment is the effect of k on the cost and runtime. We use α = 0.5, ε = 0.1 on reuters
and victorian with varying k. Aligned with the experimental results in [2], the runtime increases with
k while the cost decreases as k increases. As shown in figure 3, our algorithm and B follow the cost
of greedy tightly until they reach a limit as k grows large, whereas A incurs a cost in double. In terms
of runtime, A is the fastest followed by ours and then B. Overall out algorithm gives the best balance
of run-time speed and cost guarantees.
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Figure 4: Cost and runtime of our algorithm over varying δ for ε = 0.1 on reuters
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Figure 5: Runtime, cost vs. protected group for ε = 0.5, δ = 0.2 on bank dataset. Groups 1-6 are
either binary (2 categories) or tertiary (3 categories). Group 7 has 11 categories.

The third result is the performance of our algorithm with changing δ value, where δ is a parameter
defined by Bera et al. to control αi and βi, with βi = ri(1 − δ) and αi = ri/(1 − δ), and ri as
the ratio of size of group i to the total number of points. Figure 4 shows that there is no trend of
worsening runtime with respect to tighter δ.

Finally, the effect of the number of protected groups on runtime and cost is shown in figure 5. As
expected, the runtime increases with the number of protected groups since the number of unique
joiner-signatures pairs increases. At the same time, the costs remain similar possibly due to correlated
protected groups leading to unchanging clusters even if the number of protected groups increases.

6 Conclusion

In this paper, we present a k-{center, supplier} fair clustering algorithm that imposes fairness
constraints to ensure no group becomes a majority or minority in any cluster. Our algorithm improves
the approximation ratio from 4 to 3, beats the state of the art by several orders of magnitude on
several datasets, scales well for large N , and respects the fairness constraints on expectation. The
LP size used by the algorithm does not necessarily depend on the number of points in the input, but
instead on the number of unique joiner-signature pairs in the input.
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7 Broader Impact

Any clustering algorithm that doesn’t take into consideration the underlying bias in data for some
minority groups risks producing biased results against these groups. For example, In the United
States there are computer programs that predict whether a criminal is likely to re-offend, and is
used by judges to decide on the sentence length. One such program is the Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS) sold by NORTHPOINTE and was used
by judges in Wisconsin. In a report by Pro-Publica, it was shown that COMPAS is racially biased,
where it was twice as likely to falsely flag African American defendants as future criminals as much
as White defendants, holding everything else constant. This was because the features (137 features
representing answers of questions) that were used when clustering potential re-offenders were heavily
biased against African American defendants. Several other examples show the necessity of having
a fair clustering algorithm that protects minority groups, as well as prevents a certain group from
dominating any cluster. This justifies the necessity of studying this problem and proposing new fair
algorithms.

Our algorithm puts an effective boundary ensure all groups are neither dominating nor underrepre-
sented, as guaranteed by the α, β parameters. It could be useful when we want to maintain diversity
in clusters, as pointed out in the marketing and committee selection examples by [2]. However,
putting our algorithm in the wrong hands can lead to intensifying the issue. A malicious adversary
can restrict certain groups (by changing the α, β parameter) to bias the model against having clusters
with a representative percentage of a certain group, and thus care must be taken when setting the α, β
parameters to not pass one’s own bias into the clustering algorithm.
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