
Extended benchmarks and implementations

Content of the supplementary materials. Our library is freely available on the PyPi (pip
install pykeops) and CRAN (install.packages("rkeops")) repositories. Its user interface
and inner workings are fully documented on our website (www.kernel-operations.io), with
source code available under the permissive MIT license (www.github.com/getkeops/keops).

The full codes for our benchmarks have been integrated to our documentation as tutorials. In the
pages below, we present supporting material for the discussion of Section 5: we include all the
relevant equations, code samples and tables of results. The hardware configuration and datasets are
described at the start of Section 5.

A Kernel methods

Kernels, Gaussian process regression. As discussed in Section 5.1, KeOps is ideally suited to the
implementation of kernel methods: LazyTensors can be used to represent arbitrary kernel matrices
with a low memory footprint and high performance. As an example, we show how to interface our
library with the standard solvers of the scipy.sparse.linalg package [66] – a reference toolbox
for e.g. the computation of Laplacian eigenvectors on graphs and meshes.

SciPy interface. If x = (xi) ∈ RN×D is a cloud of N points in RD and if b = (bi) ∈ RN×E is a
signal of dimension E supported by the xi’s, the code below implements a fast conjugate gradient
solver for the resolution of a linear system with respect to a = (ai) ∈ RN×E:

b = (α Id +Kx,x) a i.e. a = (α Id +Kx,x)−1 b , (3)

where Kx,x = (Kxi,xj
) = (exp(−‖xi − xj‖/σ) is a (N,N) symmetric positive definite matrix

associated to an exponential kernel of radius σ > 0 and where α > 0 is the strength of a L2-Tikhonov
regularization. This operation is a the heart of Gaussian process regression [57]: it is usually known
as Kriging in geostatistics, kernel regression in data sciences or spline regression in imaging. We
illustrate some typical use cases in Figure 3.

1 import numpy as np # NumPy arrays on the CPU
2 from scipy.sparse import diags # Sparse diagonal matrices
3 from scipy.sparse.linalg import aslinearoperator, cg # Conjugate gradient
4 from pykeops.numpy import LazyTensor # Symbolic wrapper for NumPy arrays
5

6 # Toy problem in dimension D = 50:
7 N, D, E = 10 ** 6, 50, 1 # samples, features, signals
8 x = np.random.randn(N, D).astype('float32') # float16, float32 and float64
9 b = np.random.randn(N, E).astype('float32') # are all supported by KeOps.

10

11 sigma = .2 # radius of the exponential kernel
12 alpha = .5 # ridge/Tikhonov regularization
13

14 # Build the symbolic (N, N) kernel matrix:
15 x_i = LazyTensor(x.reshape(N, 1, D)) # (N, 1, D) data samples
16 x_j = LazyTensor(x.reshape(1, N, D)) # (1, N, D) data samples
17

18 D_ij = ((x_i - x_j) ** 2).sum(2).sqrt() # (N, N) distances
19 K_ij = (- D_ij / sigma).exp() # (N, N) exponential kernel matrix
20

21 # Turn the LazyTensor into a SciPy object, add Tikhonov regularization:
22 K = aslinearoperator(K_ij) # Transparent duck typing from KeOps to SciPy
23 Ka = K + aslinearoperator(diags(alpha * np.ones(N))) # Standard SciPy syntax
24 Ka.dtype = np.dtype('float32') # Use the correct precision
25

26 # Interface KeOps with all the standard solvers of scipy.sparse.linalg:
27 a = cg(Ka, b) # Conjugate gradient: eigenproblem solvers, etc. are also supported.

17

www.kernel-operations.io
www.github.com/getkeops/keops

(a) Kernel regression in 1D. (b) Kriging in 2D.

Figure 3: Kriging, also known as kernel, spline or Gaussian process regression is a fundamental
tool in data sciences that relies on the resolution of large kernel linear systems (3). Out-of-the-box,
our symbolic tensors can be interfaced with standard libraries for linear algebra such as SciPy [66].
This lets users scale up standard iterative solvers to datasets of N = 10k to 10M samples in seconds
or minutes. (a) As a first example, we work with a Gaussian kernel k(x, y) = exp(−|x− y|2/2σ2)
of deviation σ = 0.1 on the real line. We use N =10k samples in dimension D = 1, with a
scalar-valued signal (E = 1): we represent the data with blue points (xi, bi) in the graph. The red
curve corresponds to the kernel regression x 7→

∑N
i=1 k(x, xi) ai, a smooth curve that does not

overfit to noise thanks to the Tikhonov regularization. (b) The second example is representative of
applications to geostatistics: we work with N =10k samples in dimension D = 2. Thanks to an
exponential kernel of deviation σ = 0.1 and a small amount of Tikhonov regularization, we retrieve
a continuous interpolation of a noisy scalar signal (E = 1) on the whole domain: a plausible terrain
model, displayed as an image in the background while every point corresponds to a sample xi with
color bi. The flexible structure of our library empowers researchers, who can use LazyTensors to
perform fast kernel regressions on arbitrary domains, such as the sphere or the Poincaré plane.

Performance. Providing rigorous and precise benchmarks for iterative linear solvers is an arduous
task: a wide range of methods have been proposed to accelerate the resolution of systems that involve
e.g. smooth kernel functions. Depending on their specific needs, users often have to pick a method
and parameter values that reach a satisfying trade-off between speed and accuracy.

Nevertheless, according to our experiments with default precision settings, N = 1k to 10M points
in dimension D = 1 to 100 and varied kernel functions (Gaussian, exponential, Cauchy, etc.), we
observe that SciPy+KeOps implementations are consistently ×10-50 times faster than their standard
PyTorch counterparts (torch.solve(...)) and ×1,000-5,000 times faster than a vanilla resolution
with SciPy on the CPU. These speed-ups come from our efficient use of CUDA registers and could
be applied to accelerate most large-scale solvers in the field [57]: we believe that our library will be
of interest to many researchers who work with Gaussian processes or kernel matrices.

B Clustering

B.1 K-Means: Lloyd’s algorithm

Fast clustering with K-means. We now discuss the applications of symbolic tensors to clustering.
We first consider the problem of partitioning a dataset (xi) ∈ RN×D of N points in RD in K distinct
clusters. The K-means method or (discrete) “Lloyd’s algorithm” is probably the most common
approach to the question: we work with a collection (ck) ∈ RK×D of K cluster “centroids” in RD,
class labels (li) ∈ [[1,K]]N for every point xi and update both parameters alternatively to minimize

18

the within-cluster sum of squared distances:

SSD(ck, li) =

K∑
k=1

∑
li=k

‖xi − ck‖2. (4)

At every iteration of the K-means loop, we first assign each point xi to the closest centroid ck (i.e.
minimize SSD with respect to the li’s) before updating ck as the mean of all points xi such that
li = k. Using KeOps for the assignment step, we can write a fast and simple implementation of this
algorithm as follows:

1 def KMeans(x, K, niter, verbose=True):
2 """
3 points -> labels, centroids
4 (N, D) -> (N,), (K, D)
5 """
6 N, D = x.shape # Number of samples, dimension of the ambient space
7

8 c = x[:K, :].clone() # Simple initialization for the centroids
9 # Encoding as symbolic tensors:

10 x_i = LazyTensor(x.view(N, 1, D)) # (N, 1, D) symbolic tensor
11 c_j = LazyTensor(c.view(1, K, D)) # (1, K, D) symbolic tensor
12

13 for _ in range(niter): # K-means loop
14 # Assignment step:
15 D_ij = ((x_i - c_j) ** 2).sum(-1) # (N, K) squared distances
16 l = D_ij.argmin(dim=1).long().view(-1) # Points -> Nearest cluster
17

18 # Compute the cluster mean values:
19 weights = torch.bincount(l).type_as(x)
20 for d in range(D): # In-place update of the centroids:
21 c[:, d] = torch.bincount(l, weights=x[:, d]) / weights
22

23 return l, c # Labels, centroids

Note that we use a weighted torch.bincount method for the update step, which avoids looping
over the class index in [[1,K]]. In practice, this second step relies on scattered memory accesses and
is the bottleneck of the K-means loop for small-scale problems. On our system, with N =1M, K =1k
and D = 100, this implementation performs 10 iterations in less than a second (0.81s on average).

Manhattan distance. Our library is versatile, and lets users prototype arbitrary generalizations
of standard algorithms. For instance, we can easily implement an L1-Manhattan variant of Lloyd’s
algorithm to minimize the robust cost function:

SDL1(ck, li) =

K∑
k=1

∑
li=k

‖xi − ck‖1 =

K∑
k=1

∑
li=k

D∑
d=1

|xi[d]− ck[d] | . (5)

In the assignment step, we replace the squared Euclidean norms by Manhattan distances, prior to the
nearest neighbour search:

15 D_ij = ((x_i - c_j).abs()).sum(-1) # (N, K) Manhattan distances

As for the update step, we replace means by medians to compute the new centroids ck:

18 # Update cluster centroids:
19 for k in range(K):
20 c[k,:] = torch.median(x[l==k,:], dim=0)[0]

Note that in this case, there is no simple way of avoiding a loop over K for the update step with
PyTorch. As a consequence, the performance of this implementation drops to an average of 1.85s for
the same test dimensions – N =1M, K =1k, D =100 and 10 iterations.

19

(a) Lloyd’s algorithm. (b) Lloyd’s algorithm, L1 variant.

(c) GMM with diagonal covariances. (d) GMM with full covariances.

Figure 4: Clustering of a synthetic 2D dataset (N = 10k, D = 2), into K = 5 classes with four
different methods. (a) The standard Lloyd’s algorithm for the L2-Euclidean metric. (b) A variant of
Lloyd’s algorithm for the L1-Manhattan metric. (c) The EM algorithm on a Gaussian mixture model
with diagonal covariances. (d) The EM algorithm on a Gaussian mixture model with full covariances.
We display the points xi in the unit square, colored according to the class labels li. For the Gaussian
mixture models (c-d), we also display the model likelihood (6) in the background, with colors that
reflect the dominant cluster at any given location. All the experiments were performed using KeOps,
following the implementations of Section B.

B.2 Gaussian mixture models: the EM algorithm

Notations. We now detail the content of Table 1. We consider a dataset (xi) ∈ RN×D of N points
in RD and fit a Gaussian mixture model GMM(wj , µj ,Σj ; j ∈ [[1,K]]) that is parameterized by a
collection of K:

1. weights wj > 0 that sum up to 1,
2. mean values µj ∈ RD,
3. covariance matrices Σj ∈ RD×D.

The likelihood of the model at any point x ∈ RD is given by:

likelihood(x) =

K∑
j=1

wj

(2π)D/2
√

det(Σj)
exp

(
− 1

2 (x− µj)>Σ−1j (x− µj)
)
. (6)

20

EM iterations. Starting from a random initialization, we fit the model to the data using the standard
Expectation-Maximization algorithm. Its iterations read as follows:

1. E-step: compute membership probabilities. For every point xi and component (wj , µj ,Σj),
we compute the likelihood ratio:

πi,j =
likelihoodj-th component(xi)

likelihoodfull(xi)
(7)

=
wj exp

(
− 1

2 (xi − µj)>Σ−1j (xi − µj)
)
/
√

det(Σj)∑K
k=1 wk exp

(
− 1

2 (xi − µk)>Σ−1k (xi − µk)
)
/
√

det(Σk)
(8)

(πi,j) ∈ RN×K
>0 is encoded as a (N,K) array whose lines sum up to 1.

2. M-step: update the model parameters. We execute sequentially the following equations:

Pj ←
∑N
i=1 πi,j , wj ← Pj/N , (9)

µj ←
1

Pj

∑N
i=1 πi,jxi , Σj ←

1

Pj

∑N
i=1 πi,j(xi − µj)(xi − µj)> . (10)

For the sake of numerical stability, we add a small value ε = 10−7 to the class scores Pj
when they are used as denominators. Alternatively, we could work with their logarithms and
stabilized log-sum-exp reductions: these are fully supported by our library.

Inverting the K covariance matrices Σj to compute the precisions Σ−1j ∈ RD×D for every E-step can
be costly. In Table 1, we also benchmark an alternative version of the algorithm where the covariances
are assumed to be diagonal matrices and encoded as positive vectors σj ∈ RD.

1 # Input: points is (N, D)
2 # Params: weights is (K,), means is (K, D), covariances is (K, D, D)
3

4 for _ in range(niter):
5 # Expectation step: compute membership probabilities ------------------
6 # Compute mixture weights:
7 precisions = covariances.inverse() # (K, D, D)
8 w = weights * torch.sqrt(precisions.det()) # (K,)
9

10 # Encoding as symbolic tensors:
11 x_i = LazyTensor(points.view(N, 1, D)) # (N, 1, D)
12 m_j = LazyTensor(means.view(1, K, D)) # (1, K, D)
13 w_j = LazyTensor(w.view(1, K, 1)) # (1, K, 1)
14

15 # Gaussian likelihoods:
16 P_j = LazyTensor(precisions.reshape(1, K, D * D)) # (1, K, D*D)
17 D_ij = ((x_i - m_j) * P_j.matvecmult(x_i - m_j)).sum(dim=2) # (N, K)
18 K_ij = (- D_ij / 2).exp() * w_j # (N, K)
19

20 # Bayes normalization constant:
21 BN = K_ij.sum(dim=1) # (N,)
22 BN_i = LazyTensor(BN.view(N, 1, 1) + eps) # (N, 1)
23

24 # Compute the membership probabilities:
25 P_ij = K_ij / BN_i # (N, K)
26

27 # Maximization step: update the mixture parameters -------------------
28 P = P_ij.sum(dim=0) # (K, 1)
29 weights = P.view(-1) / N # (K,)
30 means = (P_ij * x_i).sum(dim=0) / (P + eps) # (K, D)
31

32 # New means to compute the adjusted covariances:
33 m_j = LazyTensor(means.view(1, K, D)) # (1, K, D)
34

35 # Covariance matrices
36 covariances = (P_ij * (x_i-m_j).tensorprod(x_i-m_j)).sum(0).view(K,D,D)
37 covariances = covariances / (P.view(K, 1, 1) + eps) # (K, D, D)

21

C Dimensionality reduction

As discussed in Section 5.3, we benchmark: the original UMAP implementation on the CPU; the
CuML+FAISS implementation on the GPU; a CUML+KeOps pipeline which relies on symbolic
tensors to build the KNN graph of a dataset before relying on CuML to construct the low-dimensional
embedding. This pipeline allows us to compute UMAP embeddings with arbitrary metrics on the
input datasets: it is indicative of the versatility of KeOps, which can be interfaced with a wide range of
standard libraries. Results are presented in Table 5, with examples of embeddings shown in Figure 5.

Note on the hyperbolic metric. The HyperE-10 and -50 datasets provide reference embeddings of
real world data into hyperbolic spaces of dimensions 10 and 50. In practice, the datasets both rely on
the Poincaré ball model and provide a scaling factor that should be used to recover the hyperbolic
distance between any two vectors. If xi and xj are two samples in the dataset, encoded as vectors of
norms ‖xi‖, ‖xj‖ < 1 in RD, the hyperbolic distance between them is given by:

d(xi, xj) = arccosh

(
1 + 2

‖xi − xj‖2

(1− ‖xi‖2)(1− ‖xj‖2)

)
/ ScalingFactor , (11)

where ‖ · ‖ denotes the standard Euclidean norm in RD. In order to perform a KNN search efficiently,
we remark that x 7→ arccosh(1 + 2x) is an increasing mapping. Since the values of (1− ‖xi‖2) can
be computed ahead of the KNN reduction, we can build our KNN graph with:

1 # x is a (N, D) array with double precision. We first compute the scaling factors:
2 u = 1. / (1. - (x ** 2).sum(dim=1)) # With double = float64 precision.
3 x, u = x.float(), u.float() # We can use float32 precision after this step.
4

5 # And encode our variables as symbolic tensors:
6 x_i = LazyTensor(x.view(N, 1, D))
7 x_j = LazyTensor(x.view(1, N, D))
8 u_i = LazyTensor(u.view(N, 1, 1))
9 u_j = LazyTensor(u.view(1, N, 1))

10

11 # We can then perform the KNN search efficiently:
12 D_ij = ((x_i - x_j) ** 2).sum(dim=2) * u_i * u_j
13 distances, indices = D_ij.Kmin_argKmin(K, dim = 1)
14

15 # And compute the genuine hyperbolic distances to the K-nearest neighbors:
16 acosh = lambda x : torch.log(x + (x ** 2 - 1.) ** 0.5)
17 distances = arccosh(1. + 2 * distances) / scaling_factor

Table 5: Dimension reduction using the UMAP algorithm. We record the time to embed datasets
in the Euclidean plane. When the input metric is Euclidean, the dataset is first pre-processed with a
PCA as advised by the UMAP documentation: we keep 95% of the total variance.

Dataset Metric N D PCA preprocessing Umap CuML CuML+Ours

Digits L2 1.8k 64 4 ms→ D′ = 28 5.8 s 170 ms 32 ms

MNIST L2 60k 784 68 ms→ D′ = 153 38 s 450 ms 670 ms
MNIST L1 60k 784 —- 43 s —- 2.3 s

SIFT L2 1M 128 64 ms→ D′ = 71 1,380 s 28 s 53 s

GloVe-25 〈 , 〉 1.2M 25 —- 1,660 s 31 s 29 s

HyperE-10 HD 105k 10 —- 150 s —- 560 ms
HyperE-50 HD 105k 50 —- 200 s —- 900 ms

22

Figure 5: UMAP embeddings into the Euclidean plane. Top: MNIST dataset with a Manhattan input
metric, colored by label. Bottom: HyperE-50 (WordNet) dataset with a hyperbolic input metric.

23

D Geometric primitives

Weighted average on a neighborhood. We now detail the results of Table 4. As described in
Section 5.3, we consider batches of B point clouds (xi) ∈ RN×D, with N = 2,048 and D = 3.
Depending on the memory footprint of the computations, B is equal to 1, 10 or 100 and ensures
that GPU cores are used efficiently: batches of point clouds are encoded as large (B,N,D) arrays.
Following standard procedure for point cloud processing, we compute local features as:

ai ←
∑M
j=1 w(xi, xj)F (xi, xj)∑M

j=1 w(xi, xj)
, ∀i ∈ [[1,N]] (12)

where w(xi, xj) > 0 is a weight on the interaction (xi, xj) and F is a vector-valued function.

In our benchmarks, we consider two types of weight functions w:

1. A KNN window w(xi, xj) which is equal to 1 if xj is one of the K = 40 nearest neighbors
of xi and 0 otherwise. It is implemented using a batched KNN search in dimension D = 3
and advanced indexing operators. Just as in Table 3, we use KeOps to accelerate the
construction of the KNN graph and otherwise rely on standard PyTorch syntax to build up
local neighborhoods as (B,N,K,D) arrays.

2. A Gaussian window of radius σ > 0:
w(xi, xj) = exp

(
− ‖xi − xj‖2 / 2σ2

)
. (13)

It is implemented using symbolic operations, as detailed below.

Local mean. In our first example, we compute the local average:

µi ←
∑M
j=1 w(xi, xj)xj∑M
j=1 w(xi, xj)

∈ RD, ∀i ∈ [[1,N]] . (14)

In the code below, we compute both the numerator and denominator in one pass through the data.
The trick is to append a “1” to the feature vectors xj in order to retrieve both:

wi ←
∑M
j=1 w(xi, xj) · 1 and mi ←

∑M
j=1 w(xi, xj)xj (15)

with a single reduction call.

1 def local_mean(points, radius):
2 """
3 points, radius -> means
4 (B, N, D), 1 -> (B, N, D)
5 """
6 B, N, D = point.shape # Batch-size, number of points, features
7 points = points / radius # Normalize the window size to 1
8

9 # Add a "1" at the start of every vector, retrieve a (B, N, D+1) array:
10 x = torch.cat((torch.ones_like(points[:,:,:1]), points), dim = -1)
11

12 # Encode as symbolic tensors:
13 x_i = LazyTensor(x.view(B, N, 1, D+1)) # (B, N, 1, D+1)
14 x_j = LazyTensor(x.view(B, 1, N, D+1)) # (B, 1, N, D+1)
15

16 # Neighborhood window - a Gaussian function:
17 D_ij = ((x_i - x_j) ** 2).sum(-1) # (B, N, N), squared distances
18 K_ij = (- D_ij / 2).exp() # (B, N, N), Gaussian kernel
19

20 # Local sum:
21 M_ij = K_ij * x_j # (B, N, N, D+1)
22 M_i = M_ij.sum(dim = 2) # (B, N, D+1) : weights and sums
23

24 # Normalize by the sum of the weights:
25 w_i = M_i[:,:,:1] # (B, N, 1)
26 m_i = M_i[:,:,1:] # (B, N, D)
27 return radius * m_i / w_i # (B, N, D)

24

Local covariance. In our second example, we compute the local covariance matrices:

Σi ←
∑M
j=1 w(xi, xj) (xj − µi)(xj − µi)>∑M

j=1 w(xi, xj)
∈ RD×D, ∀i ∈ [[1,N]] , (16)

where µi is defined as in (14). Using standard identities, we can rewrite this local descriptor as:

Σi ←
1

wi

(
ci −

1

wi
mim

>
i

)
, (17)

where:

wi ←
M∑
j=1

w(xi, xj) , (18)

mi ←
M∑
j=1

w(xi, xj)xj , (19)

ci ←
M∑
j=1

w(xi, xj)xjx
>
j . (20)

For optimal performances, we rely on the same trick as in (15) to compute all these quantities in one
pass through the data. We append a “1” at the start of every vector xj and compute: wi mi

m>i ci

 = Ci ←
M∑
j=1

w(xi, xj) [1, xj][1, xj]
> (21)

1 def local_covariance(points, radius):
2 """
3 points, radius -> covariances
4 (B, N, D), 1 -> (B, N, D, D)
5 """
6 B, N, D = point.shape # Batch-size, number of points, features
7 points = points / radius # Normalize the window size to 1
8

9 # Add a "1" at the start of every vector, retrieve a (B, N, D+1) array:
10 x = torch.cat((torch.ones_like(points[:,:,:1]), points), dim=-1) # (B, N, D+1)
11

12 # Encode as symbolic tensors:
13 x_i = LazyTensor(x[:,:,None,:]) # (B, N, 1, D+1)
14 x_j = LazyTensor(x[:,None,:,:]) # (B, 1, N, D+1)
15

16 # Neighborhood window - a Gaussian function:
17 D_ij = ((x_i - x_j) ** 2).sum(-1) # (B, N, N), squared distances
18 K_ij = (- D_ij / 2).exp() # (B, N, N), Gaussian kernel
19

20 # Local sum - compute descriptors of order 0, 1 and 2:
21 C_ij = (K_ij * x_j).tensorprod(x_j) # (B, N, N, (D+1)*(D+1))
22 C_i = C_ij.sum(dim = 2).view(B, N, D+1, D+1) # (B, N, D+1, D+1)
23

24 # Extract local descriptors of order 0, 1 and 2:
25 w_i = C_i[:,:,:1,:1] # (B, N, 1, 1), weights
26 m_i = C_i[:,:,:1,1:] * radius # (B, N, 1, D), sum
27 c_i = C_i[:,:,1:,1:] * (radius**2) # (B, N, D, D), outer products
28

29 # Compute the covariance matrix:
30 cov_i = (c_i - (m_i.transpose(3, 2) * m_i) / w_i) / w_i # (B, N, D, D)
31 return cov_i

25

MLP features. Going further, we show how to use our library to compute neural features. Follow-
ing standard practice in geometric deep learning, we rely on a multi-layer perceptron:

F : x ∈ RD 7→ A2 ReLU(A1x+ b1) + b2 ∈ RO (22)

parameterized by weight matrices A1 ∈ RH×D, A2 ∈ RO×H and bias vectors b1 ∈ RH, b2 ∈ RO.
“ReLU” denotes the rectified linear unit, or positive part, applied coordinate-wise on vectors of RH.
For the sake of simplicity, we compute the MLP correlations:

ai ←
M∑
j=1

w(xi, xj)F (xj − xi) (23)

=

M∑
j=1

w(xi, xj) (A2 ReLU(fj − fi + b1) + b2) , (24)

where the hidden features fi = A1xi are computed ahead of the sum reduction. We stress that the
code below is fully differentiable: gradients can be computed with respect to all parameters.

We note that the matrix-vector product with A2 is a O(OH) operation. In practice, our bruteforce
CUDA engine is most efficient if the product O · H is smaller than 100: beyond this threshold,
performance decrease sharply as in e.g. the fourth line of Table 4. KNN implementations are ideally
suited to the computation of localized but complex features, whereas symbolic matrices let us compute
efficiently simple descriptors at all scales.

1 def MLP_features(points, A_1, B_1, A_2, B_2, radius):
2 """
3 points, weights_1, bias_1, weights_2, bias_2, radius -> features
4 (B, N, D), (H, D), (H,), (O, H), (O,), 1 -> (B, N, O)
5 """
6 B, N, D = points.shape
7 x = points / radius # Normalize the window size to 1
8

9 # Apply the first linear operator on the features:
10 f = points @ A_1.t() # (B, N, H)
11

12 # Encode the variables as symbolic tensors:
13 # Positions:
14 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
15 x_j = LazyTensor(x.view(B, 1, N, D)) # (B, 1, N, D)
16 # Features:
17 f_i = LazyTensor(f.view(B, N, 1, -1)) # (B, N, 1, H)
18 f_j = LazyTensor(f.view(B, 1, N, -1)) # (B, 1, N, H)
19 # MLP parameters:
20 b_1 = LazyTensor(B_1.view(1, 1, 1, -1)) # (1, 1, 1, H)
21 a_2 = LazyTensor(A_2.view(1, 1, 1, -1)) # (1, 1, 1, O * H)
22 b_2 = LazyTensor(B_2.view(1, 1, 1, -1)) # (1, 1, 1, O)
23

24 # Compute the MLP values:
25 M_ij = (f_j - f_i + b_1).relu() # (B, N, N, H)
26 M_ij = a_2.matvecmult(M_ij) + b_2 # (B, N, N, O)
27

28 # Neighborhood window - a Gaussian function:
29 D_ij = ((x_i - x_j) ** 2).sum(-1) # (B, N, N), squared distances
30 K_ij = (- D_ij / 2).exp() # (B, N, N), Gaussian kernel
31

32 # Sum on the neighborhood:
33 C_ij = K_ij * M_ij # (B, N, N, O)
34 features = C_ij.sum(dim = 2) # (B, N, O)
35

36 return features

26

Chamfer loss. Beyond geometric descriptors, symbolic tensors let us work efficiently with global,
geometric loss functions. If (xi) ∈ RN×D and (yj) ∈ RM×D are two clouds of N and M points in
RD, the “chamfer” or “soft-Hausdorff” loss between them reads:

Chamfer(xi, yj) =
1

2N

N∑
i=1

M
min
j=1
‖xi − yj‖ +

1

2M

M∑
j=1

N
min
i=1
‖xi − yj‖ . (25)

Variants of this formula are used, for instance, in the Iterative Closest Point (ICP) algorithm. We
leverage our fast nearest neighbor finder to implement it as follows:

1 def squared_distances(x, y):
2 """
3 source, target -> squared distances
4 (B, N, D), (B, M, D) -> (B, N, M)
5 """
6 B, N, D = x.shape # Batch size, number of source points, features
7 _, M, _ = y.shape # Batch size, number of target points, features
8

9 # Encode as symbolic tensors:
10 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
11 y_j = LazyTensor(y.view(B, 1, M, D)) # (B, 1, M, D)
12

13 # Symbolic matrix of squared distances:
14 D_ij = ((x_i - y_j)**2).sum(-1) # (B, N, M), squared distances
15 return D_ij
16

17

18 def chamfer_loss(x, y):
19 """
20 source, target -> loss values
21 (B, N, D), (B, M, D) -> (B,)
22 """
23 D_ij = squared_distances(x, y) # (B, N, M) symbolic matrix
24 D_xy = D_ij.min(dim=2).sqrt() # (B, N), distances from x to y
25 D_yx = D_ij.min(dim=1).sqrt() # (B, M), distances from y to x
26 return (D_xy.mean(dim=1) + D_yx.mean(dim=1)).view(-1) / 2 # (B,)

Energy distance. Going further, we can combine symbolic tensors and sum reductions to compute
generic kernel norms, which produce smoother gradients for e.g. shape registration. These quantities
are also known as Maximum Mean Discrepancies (MMDs) in statistics or generalized electrostatic
energies in physics. As an example, the code below implements the Energy Distance [99]:

ED(xi, yj) =
1

NM

∑N
i=1

∑M
j=1‖xi − yj‖ (26)

− 1

2N2

∑N
i=1

∑N
j=1‖xi − xj‖ −

1

2M2

∑M
i=1

∑M
j=1‖yi − yj‖ .

1 def energy_distance(x, y):
2 """
3 source, target -> loss values
4 (B, N, D), (B, M, D) -> (B,)
5 """
6 N, M = x.shape[1], y.shape[1] # Numbers of source and target points
7

8 D_xy = squared_distances(x, y).sqrt().sum(dim=2) # (B, N), distances x<->y
9 D_xx = squared_distances(x, x).sqrt().sum(dim=2) # (B, N), distances x<->x

10 D_yy = squared_distances(y, y).sqrt().sum(dim=2) # (B, M), distances y<->y
11

12 return (D_xy.sum(dim=1) / (N*M)
13 - D_xx.sum(dim=1) / (2*N*N)
14 - D_yy.sum(dim=1) / (2*M*M)).view(-1) # (B,)

27

E Optimal transport

The optimal transport problem. As discussed in Section 5.3, optimal transport generalizes sorting
to spaces of dimension D > 1. We now consider two point clouds (xi) ∈ RN×D, (yj) ∈ RM×D

with non-negative weights (αi) ∈ RN
>0 and (βj) ∈ RM

>0 that sum up to 1. These arrays encode two
discrete probability measures α and β on RD, understood as weighted sums of Dirac masses δx:

α =
∑N
i=1 αiδxi

and β =
∑M
j=1 βjδyj . (27)

If C(xi, yj) denotes an arbitrary cost function on RD × RD, the optimal transport cost between the
two discrete measures α and β reads:

OT(αi, xi, βj , yj) = min
(πi,j)∈RN×M

>0

N∑
i=1

M∑
j=1

πi,j C(xi, yj) (28)

subject to ∀ i, j, πi,j > 0, (π1)i =

M∑
j=1

πi,j = αi, (π>1)j =

N∑
i=1

πi,j = βj .

The optimal transport plan (πi,j) is a non-negative (N,M) array whose lines sum up to (αi) and
whose columns sum up to (βj). In the remainder of this section, we use the quadratic cost C(xi, yj) =
1
2‖xi−yj‖

2: up to a factor 1/2, the cost value OT(αi, xi, βj , yj) is the squared Wasserstein-2 distance
between α and β.

Dual problem. A fundamental remark was made by Kantorovitch in [68]: the linear optimization
problem (28) is equivalent to a simpler dual problem on variables of size N and M:

OT(αi, xi, βj , yj) = max
(fi)∈RN

(gj)∈RM

N∑
i=1

αifi +

M∑
j=1

βjgj s.t. ∀ i, j, fi + gj 6 C(xi, yj) . (29)

The dual vectors (fi) and (gj) are unique up to an additional constant. They are often understood as
the sampled values fi = f(xi), gj = g(yj) of continuous dual potentials on the input point clouds.

Entropic regularization. Optimal transport solvers compute the optimal dual vectors (fi) and (gj)
associated to any discrete input configuration (αi, xi, βj , yj). To this end, a common strategy is to
add a small entropic barrier to the primal problem (28). If ε > 0 is a positive temperature, we can
apply the Fenchel-Rockafellar theorem and write the regularized primal and dual problems as:

OTε(αi, xi, βj , yj) = min
(πi,j)∈RN×M

>0

N∑
i=1

M∑
j=1

πi,j C(xi, yj) (30)

+ ε

N∑
i=1

M∑
j=1

πi,j log
πi,j

αiβj
− πi,j + αiβj

subject to ∀ i, j, πi,j > 0, (π1)i =

M∑
j=1

πi,j = αi, (π>1)j =

N∑
i=1

πi,j = βj

= max
(fi)∈RN

(gj)∈RM

N∑
i=1

αifi +

M∑
j=1

βjgj + ε

N∑
i=1

M∑
j=1

αiβj

(
1− exp 1

ε

[
fi + gj − C(xi, yj)

])
. (31)

Up to a small perturbation, the optimal transport problem can thus be reduced to the resolution of (31),
a concave maximization problem on the dual vectors (fi) ∈ RN, (gj) ∈ RM that is smooth and
without constraints. The optimal dual potentials encode, implicitly, an optimal transport plan:

πi,j = αiβj exp 1
ε

[
fi + gj − C(xi, yj)

]
(32)

that satisfies the marginal constraints of (30), with an optimal transport cost that reads:

OTε(αi, xi, βj , yj) =

N∑
i=1

αifi +

M∑
j=1

βjgj . (33)

28

The Sinkhorn algorithm. The standard Sinkhorn algorithm is equivalent to an alternate maximiza-
tion of (31) with respect to the dual vectors (fi) and (gj). Starting from null potentials fi = 0 and
gj = 0, its updates read:

fi ← −ε log

M∑
j=1

βj exp 1
ε

[
gj − C(xi, yj)

]
, ∀i ∈ [[1,N]] , (34)

gj ← −ε log

N∑
i=1

αi exp 1
ε

[
fi − C(xi, yj)

]
, ∀j ∈ [[1,M]] . (35)

This method has been (re-)discovered in many applied fields since the 1960’s [27, 29, 34, 41, 44,
94, 98, 112, 117], with minor variations on the exact formulation of the regularized problem. Most
authors work with the exponentiated variables:

ui = exp(fi/ε) and vj = exp(gj/ε) . (36)

The dual variables u = (ui) ∈ RN
>0 and v = (vj) ∈ RM

>0 are then initialized as uniform vectors of 1,
with updates that read:

u ← 1

K(βv)
and v ← 1

K>(αu)
. (37)

In the equations above, the inversions and multiplications βv, αu are applied coordinate-wise.
The (N,M) matrix K = (Ki,j) is the Gibbs kernel associated to C(xi, yj) at temperature ε with
coefficients:

Ki,j = exp
(
− C(xi, yj)/ε

)
. (38)

When C(xi, yj) = 1
2‖xi − yj‖

2, K is a Gaussian kernel matrix of deviation σ =
√
ε: this quantity is

best understood as the blur scale of the Gaussian smoothing that we apply on the transport plan πi,j
to lower the complexity of the optimization problem.

Stabilization. As detailed in the sinkhorn_loop_simple routine below, our library can be used
to implement efficiently the exponentiated Sinkhorn updates of (37). In practice though, these
iterations may induce numerical overflows and are notoriously unstable when

√
ε is too small.

Following [23, 37, 70], we rely instead on symmetrized updates performed in the logarithmic domain:

f̃i ← −ε log
∑M
j=1 βj exp 1

ε

[
gj − C(xi, yj)

]
, ∀i ∈ [[1,N]] , (39)

g̃j ← −ε log
∑N
i=1 αi exp 1

ε

[
fi − C(xi, yj)

]
, ∀j ∈ [[1,M]] , (40)

fi ← 1
2 (fi + f̃i) , ∀ i ∈ [[1,N]] , (41)

gj ← 1
2 (gj + g̃j) , ∀j ∈ [[1,M]] . (42)

This robust algorithm is implemented in the sinkhorn_loop_stable routine detailed below. Our
CUDA engine performs the .logsumexp() reduction using an online version of the Log-Sum-Exp
trick – with a running maximum – that guarantees numerical stability with a negligible computational
overhead.

Annealing. In practice, the Sinkhorn loop converges to a set numerical tolerance in
O(maxi,j C(xi, yj) / ε) iterations. To accelerate convergence, a common heuristic is to let the
temperature ε decrease following an exponential annealing schedule [71]. If ∆ is an estimation of
the diameter maxi,j ‖xi − yj‖, ε is a target temperature and nits is a prescribed number of iterations,
we use decreasing values of the temperature:

εn = ∆2 qn with q = (ε/∆2)1/nits (43)
at every iteration n ∈ [[1, nits]] of the Sinkhorn loop. For faster convergence, the dual potentials are
initialized using a closed-form solution of (31) when ε = +∞:

fi =

M∑
j=1

βj C(xi, yj) and gj =

N∑
i=1

αi C(xi, yj) . (44)

Overall, this method usually lets the Sinkhorn loop converge to a satisfying tolerance in 5 to 20
iterations, even for small values of ε.

29

1 def sinkhorn_loop_simple(a, x, b, y, eps, nits):
2 """
3 weights, points, weights', points' -> f(x), g(y)
4 (B, N), (B, N, D), (B, M), (B, M, D), -> (B, N), (B, M)
5 """
6 B, N, D = x.shape # Batch size, source points, features
7 _, M, _ = y.shape # Batch size, target points, features
8

9 # Dual variables, (B, N) and (B, M):
10 a, b = a.view(B, N, 1), b.view(B, M, 1)
11 u_x, v_y = torch.ones_like(a), torch.ones_like(b)
12 # Encoding as symbolic tensors:
13 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
14 y_j = LazyTensor(y.view(B, 1, M, D)) # (B, 1, M, D)
15

16 # Symbolic cost matrix and Gibbs kernel:
17 C_ij = ((x_i - y_j) ** 2).sum(-1) / 2 # (B, N, M)
18 K_ij = (- C_ij / eps).exp() # (B, N, M)
19

20 # Sinkhorn iterations:
21 for _ in range(nits):
22 u_x = 1 / (K_ij @ (b * v_y)) # (B, N, M) @ (B, M, 1) = (B, N, 1)
23 v_y = 1 / (K_ij.t() @ (a * u_x)) # (B, M, N) @ (B, N, 1) = (B, M, 1)
24

25 f_x, g_y = eps * u_x.log(), eps * v_y.log()
26 return f_x.view(B, N), g_y.view(B, M)
27

28

29 def sinkhorn_loop_stable(a, x, b, y, eps, nits):
30 """
31 weights, points, weights', points' -> f(x), g(y)
32 (B, N), (B, N, D), (B, M), (B, M, D), -> (B, N), (B, M)
33 """
34 B, N, D = x.shape # Batch size, source points, features
35 _, M, _ = y.shape # Batch size, target points, features
36

37 # Dual potentials, (B, N) and (B, M):
38 f_x, g_y = torch.zeros_like(a), torch.zeros_like(b)
39 # Log of the weights, (B, N) and (B, M):
40 a_logs, b_logs = a.log(), b.log()
41

42 # Encoding as symbolic tensors:
43 # Points:
44 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
45 y_j = LazyTensor(y.view(B, 1, M, D)) # (B, 1, M, D)
46 # Dual potentials:
47 f_i = LazyTensor(f_x.view(B, N, 1, 1)) # (B, N, 1, 1)
48 g_j = LazyTensor(g_y.view(B, 1, M, 1)) # (B, 1, M, 1)
49 # Log-weights:
50 log_a_i = LazyTensor(a_logs.view(B, N, 1, 1)) # (B, N, 1, 1)
51 log_b_j = LazyTensor(b_logs.view(B, 1, M, 1)) # (B, 1, M, 1)
52

53 # Symbolic cost matrix:
54 C_ij = ((x_i - y_j) ** 2).sum(-1) / 2 # (B, N, M, 1)
55

56 # Symmetric Sinkhorn iterations, written in the log-domain:
57 for _ in range(nits):
58 ft_x = - eps * ((g_j - C_ij) / eps + log_b_j).logsumexp(dim=2).squeeze(-1)
59 gt_y = - eps * ((f_i - C_ij) / eps + log_a_i).logsumexp(dim=1).squeeze(-1)
60 # Use in-place updates to keep a small memory footprint:
61 f_x[:] = (f_x + ft_x) / 2
62 g_y[:] = (g_y + gt_y) / 2
63

64 return f_x, g_y

30

Multiscale solvers. Going further, a recent line of work puts the emphasis on multiscale implemen-
tations of the Sinkhorn loop [10, 37, 96]. Following these papers, we use our library to provide a
two-scale solver for the regularized optimal transport problem (31). Its behaviour can be described in
four steps:

1. We compute coarse approximations of the input measures α and β. In practice, we use a
K-means clustering with Nc =

√
N (resp. Mc =

√
M) clusters on the input point clouds

(xi) ∈ RN×D (resp. (yj) ∈ RM×D): each cluster is represented by its centroid xi with total
weight αi (resp. yj with total weight βj). This corresponds to a quantization of the discrete
measures α and β, as:

Nc∑
i=1

αiδxi
'

N∑
i=1

αiδxi
and

Mc∑
j=1

βjδyj '
M∑
j=1

βjδyj (45)

for the weak-? topology, as measured e.g. by the Wasserstein-2 distance. We sort the (N,D)
and (M,D) arrays (xi) and (yj) to ensure that all the clusters are contiguous in memory.

2. We start the annealing descent on the coarse measures. We use the stabilized iterations
of sinkhorn_loop_stable on the symbolic (Nc,Mc) cost matrix C(xi, yj) and update
coarse dual vectors (f i) ∈ RNc , (gj) ∈ RMc .

3. When the blur scale
√
εn goes below the largest diameter of the K-means clusters, we

perform a coarse-to-fine extrapolation step. We use the optimality equations (34-35) to
extrapolate the f i’s and gj’s, supported by the xi’s and yj’s, onto new values (fi) ∈ RN

and (gj) ∈ RM supported by the xi’s and yj’s. As discussed in Section 4, we also compute
a block-sparsity mask on the symbolic (N,M) cost matrix C(xi, yj): following [96], it
corresponds to pruning out pair-wise interactions between clusters such that:

f i + gj < C(xi, yj) − τεn , (46)

where τ is a cutoff parameter that we set to 5, since 1� exp(−5).

4. We perform the last iterations of the stabilized Sinkhorn loop on the full point clouds (xi)
and (yj): these updates correspond to the values of

√
εn that range between the average

cluster diameter and the target blur value
√
ε. We use the block-sparsity mask computed at

step 3 to prune out negligible interactions from the full (N,M) cost matrix C(xi, yj): this is
a GPU-friendly implementation of the kernel truncation trick of [96].

The resulting code is too technical to fit in these supplementary materials: we package and fully
document this solver on our website (www.kernel-operations.io/geomloss) [37, 40].

Benchmarks. As discussed above, our library is well suited to research in optimal transport
theory: simple algorithms and advanced solvers can all be implemented with symbolic LazyTensors.
To showcase the performances of our implementations, we now benchmark several solvers: a
baseline linear solver for the exact transport problem, implemented in C++ on the CPU [13, 42];
a stabilized Sinkhorn loop with 1/ε iterations, implemented using either PyTorch JIT or KeOps;
a stabilized Sinkhorn loop with annealing and 10 iterations, implemented using either PyTorch
JIT or KeOps; a multiscale solver, implemented with KeOps as discussed above. In practice, the
parameters of our solvers ensure that the relative error made on the regularized Wasserstein-2
“distance”

√
2 · OTε(αi, xi, βj , yj) is always smaller than 1%. This level of accuracy is satisfying

for most practical purposes in shape analysis and machine learning.

To illustrate the two main use cases of optimal transport theory in the field, we tackle two separate
problems:

1. A high-precision matching in dimension D = 3. The input point clouds (xi) and (yj) are
sampled from the Stanford dragon and are deformed using random affine transformations.
They are then centered and normalized: we use an estimate ∆ = 2 of the diameter of the
configuration in the annealing descent. The blur scale

√
ε is set to 0.01: we retrieve a

precise transport plan πi,j with (32) that is essentially accurate up to a < 1% tolerance.

31

www.kernel-operations.io/geomloss

2. A low-precision matching in dimension D = 25. The input point clouds (xi) and (yj) are
sampled from the Glove-25 dataset and are deformed using random affine transformations.
They are then centered and normalized: we use an estimate ∆ = 2 of the diameter of the
configuration in the annealing descent. The blur scale

√
ε is set to 0.3: we retrieve a fuzzy

transport plan πi,j with (32) that captures large-scale deformations while being relatively
robust to statistical noise.

Our results are summarized in Table 6 and discussed at the end of the main paper. In practice KeOps
consistently improves the runtimes of optimal transport solvers on the GPU: researchers can now
scale up their methods to large datasets without memory overflows. As predicted by the theory,
multiscale strategies are most useful for large point clouds in low-dimensional spaces (N >100k,
D 6 3), while annealing strategies provide a good deterministic baseline in all the other settings.

Table 6: Scaling up optimal transport to large datasets.

POT PyTorch → Ours PyTorch → Ours Ours
Exact Sinkhorn→ Sinkhorn annealing→ annealing multiscale

N D
√
ε 1/ε its → 1/ε its 10 its → 10 its 10 its

1k 3 .01 121 ms 2,000 ms→ 241 ms 1,960 µs → 82 µs 25.7 ms
10k 3 .01 12.2 s 203 s → 7.65 s 211 ms → 8 ms 26 ms

100k 3 .01 ∞ mem → 645 s mem → 669 ms 230 ms
1M 3 .01 ∞ mem → ∞ mem → 62 s 2.70 s
1k 25 .3 143 ms 2,200 µs → 375 µs 1,960 µs → 360 µs 36.5 ms

10k 25 .3 12.6 s 227 ms → 35 ms 211 ms → 34 ms 101 ms
100k 25 .3 ∞ mem → 3.48 s mem → 3.37 s 3.40 s

1M 25 .3 ∞ mem → 319 s mem → 338 s 294 s

F Structure of the inner KeOps++ engine

This Section provides an overview of the low-level structure of the KeOps engine: more details and
explanations can be found on our website (www.kernel-operations.io).

The compilation stack. As described in Section 4, effective KeOps computations are triggered by
reductions over one of the “symbolic” axes of a LazyTensor, at positions −2 or −3. Calculations
are performed by custom binaries that are generated as required by the engine, and stored on the hard
drive for later use. Under the hood, the formula F of Eq. (1) is encoded as a string of characters that
is attached to the LazyTensor object: this simple descriptor is sent to the C++/CUDA compiler via a
preprocessor macro through the cmake build engine.

In practie, after the compilation step, two dynamic libraries are generated with extension .so on
Unix, .dll on Windows or .dylib on MacOS. The first one contains the C++/CUDA functions that
perform the actual computation on the GPU, whereas the second one makes the interface between the
C++/CUDA code and Python via the PyBind11 library [61]. We note that this second shared object
(the binder) can be changed to fit the requirements of other scripted languages: for instance, our
gnu/R interface relies on the Rcpp [33] framework. Each binary has a unique name, created using
a standard hash function, that identifies the formula F and several other parameters: the Python
version, GPU Id, etc. . . KeOps binaries are ultimately gathered in a cache directory that is listed in
the PYTHON_PATH: they can be imported from Python using the standard import statement.

Building formulas, automatic differentiation. Internally, KeOps encodes formulas as recursively
templated C++ classes: every single mathematical operation that make up our formulas is defined
as a templated struct that takes a sub-formula as an input. The recursion ends when the compiler
encounters a class that corresponds to a variable or a constant, whose value is known. Every KeOps
struct that encodes a mathematical operator comes with two attributes:

1. a forward function that implements the actual computation in C++/CUDA. This piece of code
will be inlined in the final CUDA kernel.

32

www.kernel-operations.io

2. a backward function that encodes a symbolic expression for the gradient (i.e. the adjoint of
the differential), expressed using KeOps recursive templates.

As an example, the element-wise, vector-valued exponential function is encoded with:

1 template < class F >
2 struct Exp : UnaryOp< Exp, F > {
3 // dimension of the output: Exp(F) has the same dimension as F
4 static const int DIM = F::DIM
5

6 // Forward: actual computation, to be inlined inside the Cuda code
7 static DEVICE INLINE void Operation(TYPE *out, TYPE *in) {
8 # pragma unroll
9 for (int k=0; k<DIM; k++) { out[k] = exp(in[k]); }

10 }
11

12 // Backward: templated expression for the adjoint of the differential
13 // operator of Exp w.r.t. the variable V, and applied to GRADIN input
14 // vector: ∇V (Exp(F)).GRADIN = ∇V (F).(Exp(F)×GRADIN)
15 template < class V, class GRADIN >
16 using DiffT = typename F::template DiffT< V, Mult< Exp< F >, GRADIN > >;
17 };

Using similar definitions for other mathematical operations, we can then express a Gaussian matrix-
vector product:

F (x, y, b) =
∑
j

exp(−‖xi − yj‖2) bj (47)

as a sum reduction over the index “j” of the formula:

1 auto F = Scal< Exp< Minus< SqDist< X, Y> > >, B >
2 auto SF = Sum_Reduction< F, 0 > // the 0 flag specifies a reduction over j

In the code above, X, Y and B are special classes that represent data loaders (i.e. the variables that
are fed to the symbolic formula). LazyTensor objects build such templated formulas on their own,
whenever required: end-users only have to deal with our high-level Python syntax.

The templated structure of our inner engine has two main advantages. First, the code for evaluating
the full formula F is built up at compile time, which allows the C++/CUDAcompiler to optimize the
resulting code. Many checks can be performed during the compilation (e.g. with static_assert
expressions) to avoid overheads at run time. Moreover, all loops whose indices are known at compile
time (e.g. to compute the norm of a vector of size D) are unrolled aggressively.

Second, we can use the recursive template mechanics to implement a fully-fledged automatic dif-
ferentiation engine. We recall here that a given KeOps shared object can only compute a single
formula. Consequently, in order to compute the gradient ∇F of a formula F , we need to build new
shared objects to take care of partial derivatives with respect to all the input variables. As in the
forward evaluation, this is done on-the-fly during the call to the Pytorch .backward() or .grad()
methods in a way that is transparent to end-users. For instance, the partial derivative of a Gaussian
matrix-vector product with respect to a variable x, can be computed by adding the symbolic Grad< >
operator in front of the formula SF that encodes the sum reduction of a formula F:

1 auto GSF = Grad< SF, X, E >

Here, the input variable E is the gradient to back-propagate from the outputs. The effect of the
Grad< > operator is then surprisingly simple: instead of injecting the code of the forward function,
the compiler inlines the code contained in the DiffT method – the backward function. The resulting
C++/CUDA function then outputs the chain rule derivative of SF without hassle.

33

