
Supplementary Material:
Organizing recurrent network dynamics by

task-computation to enable continual learning

Lea Duncker∗
Gatsby Unit, UCL

London, UK
duncker@gatsby.ucl.ac.uk

Laura N. Driscoll∗
Stanford University

Stanford, CA
lndrisco@stanford.edu

Krishna V. Shenoy
Stanford University

Stanford, CA
shenoy@stanford.edu

Maneesh Sahani†
Gatsby Unit, UCL

London, UK
maneesh@gatsby.ucl.ac.uk

David Sussillo†
Google Brain, Google Inc.

Mountain View, CA
sussillo@google.com

Related work

We review a selection of previous approaches to continual learning that either apply a form of
regularization to changes of the network weights, or modify the learning rule during training, since
these are most relevant to the approach we introduce in section 4 of the main paper.

Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) was proposed in [1], and aims to slow down learning for weights
that were deemed important for previous tasks. This is is achieved by adding an importance-weighted
regularization term to the objective function, which ties a given parameter to its value after learning a
previous task. The important weights are computed as the diagonal of the Fisher Information matrix
F evaluated at the parameter values θ∗i at the end of training on the previous task. For a loss function
L(θ), the EWC objective is given by

L(θ) = L(θ) +
λ

2

∑
i

Fi(θi − θ∗i )2 (1)

For the comparisons in Figure 3 of the main paper, the value of the regularization parameter λ was
determined by a coarse gridsearch and was set to λ = 1e5 – the largest parameter for which the
optimization remained numerically stable for all networks.

Synaptic Intelligence

Synaptic intelligence was proposed in [2] and is another continual learning approach based on weight
change regularization. The method aims to counteract catastrophic forgetting by trying to avoid
drastic changes in important network parameters. Importance is measured via ωµi and reflects how
much the connection weight θi has contributed to an improvement of the objective L(θ) on task k.
ωµi is computed online as the running sum of the product of the gradient of the loss with respect to
the parameters and the change in parameters throughout training. The synaptic intelligence objective

∗Equal Contribution
†Equal Contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



0 50 100 150 200
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
 fo

r D
el

ay
Pr

o DelayPro
training period

DelayAnti
training period Pwz ∇W rec Pz , Py ∇W out Ph

(ours)

∇W rec Pz , ∇W out Ph

Pwz ∇W rec , Py ∇W out

Figure S1: Log-cost on test trials when training the first and second task under different modifications
of stochastic gradient descent. One sided projections are less successful in retaining a low cost on the
first task after training on the second task.

is given by

L(θ) = L(θ) + c
∑
i

Ωki (θ̃i − θi)2, Ωki =
∑
ν<k

ωνi
(∆ν

i )2 + ξ (2)

where θ̃i = θi(t
k−1) is the value of the weight at the end of training the previous task and ∆ν

i =
θi(t

ν)− θi(tν−1).

For the comparisons in Figure 3 of the main paper the regularization parameter c was chosen by a
coarse gridsearch and was set to c = 1 and ξ = 0.01. For larger values of c the initial retention of
tasks was improved, but the optimization eventually became unstable for all networks.

Orthogonal Weights Modification

The authors of [3] propose Orthogonal Weights Modification (OWM) as an approach for sequentially
learning multiple classification tasks in feed-forward neural networks. The key idea is to allow
for modifications of the network weights only along directions that are orthogonal to the subspace
spanned by all previously encountered inputs. This is done by defining a projection matrix for task j

Pj
` = I−A`(A

T
` A` + αI)−1AT

` (3)

where A` = [x`1, . . .x
`
n] contains all previously encountered inputs to the network layer ` and α is a

small constant used for regularization. The learning update is given by

W` ←W` − κPj
`∇W` (4)

where ∇W` is the standard gradient descent update obtained via backpropagation. In order to avoid
having to store all input patterns encountered so far, the authors use a recursive least squares (RLS)
approach [4] to computing Pj

` .

Instead of projecting out previously encountered inputs only (as in OWM), our proposed learning
rule modifies both sides of the gradient update. We compare modifications on either side of the
gradient update to demonstrate that a double-sided modification reduces forgetting. In Figure S1,
we repeat the experiments of Figure 3 using one-sided projections and plot the log-cost on test trials
throughout training of the first and second task. The increase in cost after introducing the second
task provides a comparison of the extent of forgetting across methods. Tasks are best retained using
the double-sided approach because both input and output spaces can interfere across tasks unless we
project out updates in these dimensions during learning.

Supplementary methods

Low-rank multi-task computation in RNNs

Previous work in RNNs has shown that the low-dimensional solution to a cognitive task can be
implemented in an RNN via a low-rank component in Wrec [5] and that individual tasks’ low-
rank components may be combined by summation to solve multiple tasks in the same network
[6]. Similarly, a single dynamical system implementing multiple independent computations can be
constructed via a dynamics matrix W = [Wrec Win] of the form

W =

K∑
k=1

Wk =

K∑
k=1

UkV
T
k (5)

2



where Wk is a low-rank component implementing a particular computation. We can think of the
Wk independently, as long as the different low-rank dynamical components do not interfere with
each other. To ensure this noninterference, we require UT

kVk′ = 0, for all k 6= k′, which translates
into the output-space of one component being orthogonal to the input-space of another component.
For general choices of φ(h), we also require that the non-linearity does not map the output-space Uk

of one component into the input-space Vk′ of another component, as this would cause the activity
across dynamical components to interfere with each other.

Continual learning algorithm details

The algorithm we introduced in section 4 of the main paper relies on several projection matrices,
which are used to modify the SGD learning update to enable continual learning. In order to compute
the relevant projection matrices, we first compute the covariance matrices

Σz
k =

∑
t,r

zk,rt zk,rt
T

=

[
Σh
k Σhx

k

Σxh
k Σx

k

]
, Σy

k = Y1:kY1:k
T (6)

from network activity generated on task k, averaged across time indices t and trials r. The total
covariance (Σz

1:k = Z1:kZ1:k
T, Σwz

1:k = WZ1:kZ1:k
TWT and analogous for other covariances,

averaging over data from all previously encountered tasks) is updated online after each task via

Σ∗1:k =
1

k

k∑
`=1

Σ∗` =
k − 1

k

1

k − 1

k−1∑
`=1

Σ∗` +
1

k
Σ∗k =

k − 1

k
Σ∗1:k−1 +

1

k
Σ∗k (7)

where ∗ = {wz, z, y, h}.
The projection matrices we use for our continual learning algorithm are computed as

P1:k
wz =

(
α−1WΣz

1:kW
T + I

)−1
(8)

P1:k
z =

(
α−1Σz

1:k + I
)−1

(9)

P1:k
h =

(
α−1Σh

1:k + I
)−1

(10)

P1:k
y =

(
α−1Σy

1:k + I
)−1

(11)

Our proposed continual learning algorithm is summarized in Algorithm 1.

In the main paper, we have motivated our algorithm in terms of preserving the input/output space of
the dynamics on previous tasks by projecting away interfering dimensions from the weight update.
This is effectively implementing a solution of the same form as Equation (5), where the orthogonal
projections ensure that a new low-rank component required to solve the new task – added to the
system via the gradient update – will not interfere with existing dynamics. In this way, the projection
matrices are exactly implementing the constraints on the input/output space mentioned above in the
context of Uk and Vk.

An alternative interpretation of the action of the projection matrices is in terms of slowing down
the learning rate along previously explored directions in network-activity space. Our algorithm
implements an adaptive learning rate schedule across tasks, where directions of fast or slow learning
depend on the dynamical input/output space of previous tasks. This interpretation becomes more
apparent when explicitly considering the action of the projection matrices on the gradient. Letting
P1:k
∗ = U1:k

∗ Γ1:k
∗ U1:k

∗
T denote the eigendecomposition of the projection matrices, we can express

the weight update as

∆WCL = P1:k
wz ∇WL P1:k

z = U1:k
wzΓ

1:k
wzU

1:k
wz

T ∇WL U1:k
z Γ1:k

z U1:k
z

T
(12)

U1:k
wz

T
∆WCLU

1:k
z = Γ1:k

wzU
1:k
wz

T ∇WL U1:k
z Γ1:k

z (13)
∼

∆WCL = Γ1:k
wz

∼
∇WL Γ1:k

z (14)

where
∼

∆WCL denotes the weight update rotated into the relevant input/output space as defined by
the eigenbasis of the projection matrices. The weight update to the ij-th entry in the weight matrix

3



can be expressed in this rotated space as

[
∼

∆WCL]ij =
α2[

∼
∇WL]ij

(λwzi + α)(λzj + α)
(15)

where λ∗i denotes the ith eigenvalue of Σ∗1:k, for ∗ = {wz, z, y, h}. This shows that the learning
rate of the weight updates is scaled by the inverse eigenvalue of the covariance of network activity
on previous tasks. Our learning algorithm hence implements an adaptive learning rate schedule
dependent on the total variance of activity along input/output directions on previous tasks. If the
network produces a lot of variance along a given direction during a previous tasks, the total variance
along this direction λ∗i will take on a larger value and therefore slow the learning rate along the
associated direction on later tasks. Crucially, this slowing depends on interactions of the total amount
of variance in the input and output space of the dynamical system, as is apparent from Equation (15).

Algorithm 1: sequential training via orthogonal task dynamics
Input: task sequence T1, T2, . . . TK , learning rate η, maxiter
Output: W,Wrec

initialization;
P0
wz = I, P0

z = I P0
h = I P0

y = I;
for task k = 1, . . .K do

for iter i = 1, . . . maxiter do
W←W − ηP1:k−1

wz ∇WL P1:k−1
z ;

Wout ←Wout − ηP1:k−1
y ∇WoutL P1:k−1

h ;
end
Σz
k,Σ

y
k ← covariance on trials from task k;

P1:k
wz ,P

1:k
z ,P1:k

h ,P1:k
y ← update projection matrices;

end

Network training details

Networks were trained to minimize the squared error between the output activations and the tar-
gets, with added L2-norm weight (regularization weight parameter 1e−5) and activity regulariza-
tion(regularization weight parameter 1e−7). The regularization parameters were determined through
a gridsearch. We used 64 trials per minibatch during training. maxiter was set to 1.25e7/64 per
task. In practice we used SGD with momentum ν = 0.9, still applying the projection matrices to the
gradient. The learning rate was set to η = 0.001. The covariance is computed on validation trials
for each tasks. We set α = 0.001 for all networks that were trained using our continual learning
algorithm.

Task performance measure

The decoded response direction at the last time step of the trial is considered correct if it is within 10%
of the target direction (within 2π

10 ). If the activity of the fixation output falls below 0.5, the network
is considered to have broken fixation. Average performance was calculated across 20 iterations for
1000 trials for each task.

Targeted Dimensionality Reduction (TDR)

We closely follow the method originally outlined in (Mante, Sussillo et al. 2013) [7]. We used
multi-variable, linear regression to determine how stimulus inputs affect the responses of each hidden
unit at a given time in the trial. We describe the hidden unit responses of unit i as a linear combination
of stimulus inputs:

hi(k) = βi(0) cos θk + βi(1) sin θk + βi(2) (16)

where hi(k) is the response of unit i at a given timestep on trial k and θk is the stimulus angle on
trial k. The regression coefficients βi(v) for v = 0, 1 describe how much the trial-by-trial activity of
unit i, at a given time in the trial, depends on cos θk, sin θk respectively. βi(2) is a bias term.

4



To estimate the regression coefficients βi(v), we define for each unit a matrix Fi of sizeNcoef×Ntrial,
where Ncoef = 3 is the number of regression coefficients to be estimated, and Ntrial = 400 is the
number of trials used in the regression analysis. The regression coefficients can be expressed as:

βi = (FiF
T
i )−1Fihi (17)

where βi is a vector of length Ncoef with elements βi(v), v = 0, 1, 2. We rearrange entries of βi
of length Ncoef , into a new set of vectors, βv of length Nunits. These new vectors correspond to
directions in state space that capture maximal variance of the input variables v. We orthogonalize
regression vectors with the QR-decomposition:

B = QR (18)

where B = [β0,β1,β2] is a matrix whose columns correspond to regression vectors βv. Q is an
orthogonal matrix andR is an upper triangular matrix. The first two columns ofQ correspond to the
orthogonalized regression vectors β⊥v , which we refer to as TDR axes related to cos θ and sin θ inputs
respectively. TDR axes were defined separately for each task producing an independent set of TDR
axes related to input variables for each task, βTaskA

v . Axes were typically defined by responses on the
last timestep of a task period of interest, with the exception of Figure 8A,B where initial conditions
are visualized in a subspace defined by the first timestep of the go period.

We note that a key difference between our approach and the original implementation of TDR is that
we skip the de-noising step. Because we only applied this method to simuluated data, we could
simply remove the added shared and private noise in the inputs and hidden units respectively.

Calculating subspace angles

We calculate the angle between TDR axes identified during stimulus and go periods for sequentially
and simultaneously trained networks.

θv = cos−1
βTaskA
v · βTaskB

v

‖βTaskA
v ‖‖βTaskB

v ‖
(19)

We are finding the angles θv between TDR axes βTaskA
v and βTaskB

v for v = 0, 1. Angles are computed
for comparisons between axes w.r.t. the same input (either cos θ or sin θ) across different tasks within
the same network.

Finding fixed points in trained networks

We studied RNN dynamics by reducing their nonlinear dynamics to linear approximations. We first
write down the update equation.

ht+1 = φ(Wrecht + Winxt + ξt) = F (ht,xt) (20)

We optimize to find fixed points {h∗1,h∗2, ...} of an RNN such that h∗i ≈ F (h∗i ,x
∗). These positions

in state space are called fixed points because they remain in the same location on each update step. We
use the term fixed point to include approximate fixed points, which are slow enough on the timescale
of our tasks that they appear to be fixed.

We identify fixed points during each task period separately. Each task period is defined by a temporal
segment where task inputs are static (x∗). These static inputs are given to the system during fixed
point finding. Numerical procedures for identifying fixed points are described in [8, 9]. Around each
fixed point, the local behavior of the nonlinear system can be approximated as a linear one:

ht+1 ≈ h∗ + J(h∗,x∗)(ht − h∗) (21)

where Jij(h
∗,x∗) = ∂Fi(h

∗,x∗)
∂h∗j

denotes the Jacobian of the RNN update rule. We studied these
linear systems using eigenvector decomposition for non-normal matrices as in [8–10]:

J = RΛL =

N∑
a=1

λaral
T
a , (22)

5



0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

DelayPro
DelayAnti

MemoryPro
MemoryAnti

Figure S2: The log cost for each task on 5 example networks trained using our continual learning
approach. The cost is computed on test trials under different learning schedules for each panel. The
color shading indicates which task was trained on each epoch of training.

where the columns of R (ra) and the rows of L (lTa ) are the right and left eigenvectors of J respectively.
Λ is a diagonal matrix of the associated eigenvalues, λa. For some task periods we studied, there
was a single fixed point and all λa < 1, suggesting dynamics were contracting towards a single fixed
point in all dimensions. In other task periods, we found a collection of fixed points where some
λa > 1. We examined all eigenvectors (ra) associated with slightly expanding dimensions to better
understand their relationship with hidden unit activity. To do this, we projected right eigenvectors into
axes identified through targeted dimensionality reduction (TDR) or using vectors of Wout (Output).
These projections revealed collections of fixed points together formed ring attractors (both in memory
and go periods of Memory tasks).

Supplementary results

Effect of training order

1 2 3 4
Task Number

3.5

3.0

2.5

2.0

1.5

Fi
na

l S
te

p 
Lo

g 
Co

st

Delay Tasks
Memory Tasks

A

64128 256 512
Network Size

3.40

3.35

3.30

3.25

3.20

Fi
na

l S
te

p 
Lo

g 
Co

st

DelayPro TaskB

Figure S3: Effects of task order and network size. A: Final log-cost at the end of training on the
respective tasks for tasks that were trained 1st, 2nd, 3rd or 4th. B: Final log-cost on DelayPro,
trained 1st for different network sizes

We show the behavior of the log loss on test trials throughout training for example task orderings
in Figure S2. We found that our continual learning approach is mostly robust to task orderings
during training. The performance was affected only for training orders where the MemoryPro(Anti)
task was trained first, followed by DelayPro(Anti), where retention of the DelayPro(Anti) task
appeared to be worse (Figure S2 middle column).

Tasks that were trained first generally achieved the lowest test error (Figure S3A), consistent with the
first task being the least constrained in terms of the size and orientation of the subspace the dynamics
can explore. In support of this view, we found that single tasks achieved slightly lower test errors in
larger networks (Figure S3B).

Effect of network size

Figure S3B shows some effect of network size on training a single task. We next tested whether our
continual learning approach was sensitive to the number of recurrent units in the network. Figure ??

6



0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

256 units

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

128 units

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

64 units

Figure S4: The log cost for each task on 5 example networks trained using our continual learning
approach under different numbers of recurrent units. The color shading indicates which task was
trained on each epoch of training.

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

ReLU
DelayPro
DelayAnti

MemoryPro
MemoryAnti

0 200 400 600 800
Total trials (x 1000)

4

2

0

2
Lo

g 
Co

st
 

(fo
r e

ac
h 

ta
sk

)

softplus

0 200 400 600 800
Total trials (x 1000)

4

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

tanh

Figure S5: Same as Figure S4 for networks with 256 recurrent units and different choices of activation
function.

shows the log cost on test trials for each task for three network sizes. Networks with fewer recurrent
units had a lower capacity, which made separating task components into orthogonal subspaces harder.
We found that the performance of our algorithm was worse for networks with 64 recurrent units, but
comparable for networks with 128 units.

Effect of activation function

Our continual learning approach is based on intuition from linear systems, and all results of the
main paper were based on networks with rectified linear (ReLU) activation functions. Figure S5
shows the log-cost on test trials throughout sequential training under other choices of nonlinear
activation function. Notably, the retention of the first task was worse, while the retention of later
tasks was comparable. Compared to the log-losses in Figure 3D&E of the main paper, our algorithm
is competitive even under more general choices of activation function. However, the extension of
our algorithm to highly nonlinear settings, where projections based on linear subspaces will be less
effective is a direction of future work.

Performance on decision-making task

We have focused on a small set of tasks in the main paper. To show that our learning approach is
also effective on other tasks, we include the test error throughout training on a set of perceptual
decision-making tasks in Figure S6. In these tasks, networks receive two stimulus inputs that are
separated in time by a delay period. A decision has to be made via a response along the direction
of the stronger stimulus. Inputs are structured as before, but now involve two modalities. The
network either receives input for only one of the two modalities (MemoryDM tasks), or both. When
the network receives inputs for both modalities, it has to learn to contextually ignore input for one of
the modalities (ContextMemoryDM tasks), or respond in the direction of the stimulus with highest
combined strength across both modalities (MultiMemoryDM task). Further details may be found in
[11].

Fixed point structure for Anti tasks

Fixed point structures across Pro/Anti tasks were similar, but with rotated relationships to output
dimensions. Figure S7 shows the Anti-task analogue to Figure 5 of the main text.

7



0 200 400 600 800
Total trials (x 1000)

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

0 200 400 600 800
Total trials (x 1000)

2

0

2

Lo
g 

Co
st

 
(fo

r e
ac

h 
ta

sk
)

MemoryDM1
MemoryDM2
ContextMemoryDM1
ContextMemoryDM2
MultiMemoryDM

Figure S6: Log cost for each tasks on 5 example networks (with different random seeds) trained
under different orderings of decision-making tasks.

A B C

D E F G

Figure S7: As in Figure 5, fixed points (black) and hidden state activity (red) for a single trial,
θ = π

2 . Activity from other trials of the same task are faded (colored by θ) emanating from ’x’. Axes
identified through targeted dimensionality reduction (TDR) or using vectors of Wout (Output). Insets
are overlaid eigenspectra of all period specific fixed points. A-B: DelayAnti stimulus, go period.
C: MemoryAnti stimulus period. D-E: MemoryAnti memory period ring attractor in two subspaces.
F-G: MemoryAnti go period ring attractor in two subspaces. D-G: Unstable right eigenvectors of
linearized dynamics around each fixed point are projected into activity subspace (black lines).

Proof of descent direction

We can show that the direction of the remaining update is still a valid descent direction on the loss.
Letting u = −P1∇WLP2 and g = ∇WL, we require that 〈u, g〉 ≤ 0 for u to be a descent direction
on the loss L.

〈u, g〉 = −Tr
[
∇WLTP1∇WLP2

]
= −vec(∇WL)T(P2 ⊗P1)vec(∇wL) ≤ 0 (23)

where vec(·) denotes the vectorization operation. It holds that 〈u, g〉 ≤ 0 when P1 and P2 are
positive semidefinite matrices – a property that is conserved under the Kronecker product.

8



References
[1] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,

Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[2] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3987–3995.
JMLR. org, 2017.

[3] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent processing
in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

[4] Monson H Hayes. Statistical digital signal processing and modeling. 1996.

[5] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computations in
low-rank recurrent neural networks. Neuron, 99(3):609–623, 2018.

[6] Alexis M Dubreuil, Adrian Valente, Francesca Mastrogiuseppe, and Srdjan Ostojic. Disentangling the
roles of dimensionality and cell classes in neural computations. 2019.

[7] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent computa-
tion by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

[8] David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-dimensional
recurrent neural networks. Neural Comput., 25(3):626–649, March 2013.

[9] Matthew Golub and David Sussillo. Fixedpointfinder: A tensorflow toolbox for identifying and character-
izing fixed points in recurrent neural networks. Journal of Open Source Software, 3(31):1003, 2018.

[10] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Universality
and individuality in neural dynamics across large populations of recurrent networks. In Advances in neural
information processing systems, pages 15603–15615, 2019.

[11] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing Wang.
Task representations in neural networks trained to perform many cognitive tasks. Nature neuroscience,
22(2):297, 2019.

9


