A Proofs

A.1 Preliminaries: Online optimization with time-dependent regularization

We give a brief background on Follow the Regularized Leader and Online Mirror Descent algorithmic
templates, in the case where the regularization is varying and time-dependent.

The setup is the standard setup of online linear optimization. Let W C R be a convex domain.
On each prediction round ¢ = 1, ..., T, the learner has to produce a prediction w; € R based on
g1,---,8:t-1, and subsequently observes a new loss vector g, and incurs the loss w;, - g,. The goal is

to minimize the regret compared to any w* € W, given by Y '_ g, - (w, — w*).

Follow the Regularized Leader (FTRL). The FTRL template generates predictions wy, ..., wr €
W, fort=1,...,T, as follows:

-1
Wy = argmin{w . ng + R,(w)} . (6)
s=1

wew
Here, Ry, ..., Ry : W — R is a sequence of twice-differentiable, strictly convex functions.

The derivation and analysis of FTRL-type algorithms is standard; see, e.g., [29, 13, 25]. In our
analysis, however, we require a particular regret bound that we could not find stated explicitly in the
literature (similar bounds exist, however, and date back at least to [7]). For completeness, we provide
the bound here with a proof in the full version of the paper [? ].

Theorem 10. Suppose that R, = n; 'R for all t for some strictly convex R, withn; > ... > nr > 0.
Then there exists a sequence of points z; € [wy, wei1| such that the following regret bound holds for
allw* e W:

T T

th (w, - *)<—(R(w*) R(w)) + Z( - )R(w*) ROveen) 45 Y melladli)?

t= t=1

where ||g||,2 = gTV2R(Z,)g is the local norm induced by R at an appropriate 7; € [wy, wyy1], and
I - |5 is its dual norm.

Online Mirror Descent (OMD). The closely-related OMD framework produces predictions
Wi,...,wr via the following procedure: initialize w; = argmin,, .\ Ri(w), and fort =1,...,T,
compute

w,,, = argmin{g, - w + Dg, (w,w;)} = (VR) ™ (VR (w;) — g1);
w

. , (7N
Wit = argmin Dg, (w, wy, ).
wew
Here, Ry,...,Rr : W — R is a sequence of twice-differentiable, strictly convex functions and

Dr(w’,w) = R(w’) = R(w) — VR(w) - (w’ — w) is the Bregman divergence of a convex function R
at point w € W.

The proof of the following regret bound (which is again a somewhat specialized variant of standard
bounds for OMD) appears in the full version of the paper [? ].

Theorem 11. Suppose that R, = n; 'R for all t for some strictly convex R, withn; > ... > nr > 0.

Then there exists a sequence of points z; € [w;, w; ] such that the following regret bound holds for

allw* e W:
T-1 T
< —(R(W*)—R ( - —)D 42 )2,
Zg, (we = w*) ( (w*) = R(w1)) Z = ) PRV W) + 5 ;m(ug,nt)
where || - ||; is the local norm induced by R at an appropriate z; € [wy,w; ], and || - || is its dual.

A.2 Upper bounds for FTRL

Proof of Lemma 6. We observe that Eq. (4) is an instantiation of FTRL with R,(p) = n;'R(p) as
regularizations, where R(p) = —H(p) = Zf\il pilog p; is the negative entropy. Hence, we can invoke
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Theorem 10 to bound the regret compared to any probability distribution p*. It suffices to bound
the regret for p* that minimizes ZIT:I p - ¢;, which is always a point-mass on a single expert i*, for
which R(p*) = 0. Therefore, Theorem 10 in our case reads

T T

T N
1 ! ! 1 %2
;;pt,i(gt,i ~gri) < o R - Z(ﬂ - E)R(ptﬂ) +3 > nlllall;)*.

=1 t=1

Now set 17, = 4/log(N)/t. For the first two terms in the bound, observe that R(p;) = —log N, and
further, that
1 1 1 1 1 Ul

- — = < = . 8
M+t M \flogNVi+Vi+1  2ytlogN 2logN ©

For the final sum, we have to evaluate the Hessian V2R (p;) atapoint p; € [p;, pi+1]. A straightforward
differentiation shows that this matrix is diagonal, with diagonal elements V2R (p/);; = 1/p 7.i- Thus,

(1) = gl (V2R(p))) 'gr = p) - &2 ©)

The final sum can be divided and bounded as follows

T 4log N T
Y npr-gd)= ) mlpi-gl+ ) mip-gd)
t=1 t=1 t=1+4log N
T
<4logN + Z n:(p - &%)
t=1+log N

Where we used the fact that Y ' _; n, = Y!_ +/log(N)/s < 24/tlogN. To conclude the proof it
suffices to show that p;’i < 9p;,;fort > 4log N. To see this, denote G; = Z;;% gs and write

“Ne+1Grali
e = ¢ M8 o (Me=1141)Gr i
e—ﬂth,i

For t > 4log N, the following relations hold:

1
0 < Nrs1lgril £ Me1 < ok
Vi+1—+r \log N 1
0 < (nr —114+1)|Ge il < vlogN t < <n <=
b \t(t+1) Vieviel T2
Hence, for t > 4log N we have
—Th+1Gt+1,i
1 < S <3,
3 e MG
and consequently
e~ Mt+1Greli e MmGui
Preli = T =9psi.

<
Zj—l e_nHlGHl,j Zjv—l e_T]th,j

Since p; € [p;, pi+1], the same inequality holds for p;; that is, p; ; < 9p, ; for all , and the proof is
complete. ]

Lemma 12. For the adaptive MW algorithm in Eq. (4) with loss vectors g; = i,,i, we have

T N

7 5 I6logN 1~
FnY ey s L
t=1 i=1
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Proof. By setting t) = 64A2log N and n); = Vlog(N)/t we obtain

fo

T N
Zntzpt,i(it,i—it,i*)zﬁ Znt Z Ut()ZPtz [zz )
t=1 i=1 =

t=to+1 i=

< 24/log(N) \/_+— Z sz, fzz—fm)

t= Io+1 i=

16IZgN 3 ZZPN Hi /‘LL

t=ty+1 i=

where in the final inequality we used observation 3. To conclude we note that p, ; (u; — pix) = 0,
thus we can modify the last summation to range over t =1, ...,T.

Lemma 13. For the adaptive MW algorithm in Eq. (4), we have
501og N 5—
A

T
ZTIIH(ptH) <

:RT
log N -

Proof. First we split the sum as follows,

logN an (pr+1) = N ZU:H(PHI) + gN Z n:H(pra1),

t=ty+1

where 1) = 64A~2 log N. For the summation of ¢t = {to+1,...,T} we use Lemma 7 with 7 =
tlogN >ty logN = 64A72 logzN to obtain

N
1 1
= i 1
lOgN ,;’1 NeH(pra1) = t;ﬁ Tloe N TogN Zpt+1,z og DreLi
Z Zptﬂ A+2 Z %A\/tlogN

t t0+1 i#0* t=to+1 thgN

<_ZZP11 i — pir +A+ZZ«/W §avilogN

t=ty+1 i= t=to+1

where the last inequality follows for reordering terms in the summation and that A < p; — y;» for
i #i*. Using the fact that p,, i(pl- - ,u,- «) > 0 we get

1
H < = i (i +A+2 e §0VtlogN 1
logN ,,Z'l NeH(pear) ZZPZ - pir) Z thgN (10)
0+ t=1 i= t=tp+1
Moreover, we have
T
Z 1 e SAvlogN\f / —lA\/logN\fdt
e Vtlog N yllogN \/_
— 1 . 16 e—éA log N vt 0
Vlog N Ay/logN T an
16
<
Alog N
16
< —.
A
Lastly, for the summation of t = {1, ...,#} we get
0]
1610gN
10 N ZUtH(Pm) < 2yiplogN = === (12)

which follows from H(p) < log N and thl 1/t < 2+/fy. Combining Egs. (10) to (12), the proof is
concluded. |
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A.3 Lower bound for OMD

Proof of Theorem 9. Let g, denote the probability that MW-OMD chooses the best expert (i.e.,
expert #1) on round ¢. For ¢ < C, the best expert suffers higher losses than the other expert, thus
E[g;] < 1/2. Fort > C, it holds that

e~ Losi s (Gs1-Fs.2)

t—1

s

q: = Z ([ " ) <e ):.51775([;1 432)_6 ):5 lmexp( Z ns([sz_ Sl))
1+e ﬁ177\ s, 17652 s=C+1

Now, observe that
C
an >Cnc = aVc.
s=1

Also, by a standard application of Hoeffding’s lemma (e.g., Appendix A of [3]),

t—1 t—1
Eexp Z ns(gs,Z_és,l)) = I_[ Eens““’z_[“’l)
s=C+1 s=C+1
t—1
< l_l s O3 /8
s=C+1

-1 = ,
< exp(A ;ns) exp(8 ;ns)
< exp(ZaA\/; +a’ log t) .
Overall, we have shown that for ¢ > C,
E[q:] < exp(—aVC +2aAVr + a’log1).

Whenever ¢t < | := min{2‘6C/A2,exp(}¥\/E/a)} the right hand side is < exp(— a\/_)
a>1/ V/C. Hence, in that case,

=

n

14l
Ry ZZAE[I—QS] zZ%Az%Arl. []
s=1

s=1
B Analysis of OMD in the Purely Stochastic Case

Proof of Theorem 8. Applying Theorem 11 for the experts setting we get

P, log 77: I&II, )
77t+1 2

where we used the fact that the Bregman divergence of the negative entropy is the KL divergence. In
addition, using similar observations as in the proof of Lemma 6 (e.g., Egs. (8) and (9)) and setting
n: = c/\/t we obtain

logN 1 L&
Rr < 1 =
T A 26 ZTh og Pretin 2 ;ZTIZIJH

i=1

T-1

Ry < nl—l(mpl) —H(pY) + Z(

Applying additive translation we get,

logN 1 = 1 L Y
Ry < — 1 = i(Cri = Crx)% 13
TS, + 22 ;Ut og Pretin 2 ; ;Pt, (41, 1i*) (13)
Similarly to Lemma 12 we can bound the third term by
T N
1 ¢ 15 logN 1=
SO MY Prallii= o) < T4 Rp = 2ok SRy (14)

t=1 i=1

15



We now examine the second term. Using the MW algorithm defined in Eq. (5) we have,

-1

1 ZNl e_zs:l Nslei 1

lo = log = =lo (1 T "s“s»f—fw*)).
gpl+l,i* g _Z_l; Iné s,i% g Z

i#i*
Plugging it back to the original term we get

1 & 1 11 |
— lo =— —lo (1 +) e L ”S“Sv"‘és"i*)).
2 ZI” & preir 2¢ le 1+ )

i#i*
By taking the expectation and using its linearity property we obtain

" TZI %E[log(l +) e Tuntti)] < o Z log(1+ ZEP_ZQ )
py iZi* i
<i; 1og(1+Z]_[Ee”“” fa)]).

i#£i* s=

where we used Jensen inequality for concave functions for the first inequality and the fact that
Xy = [, i — ;= are i.i.d. for the second inequality. Applying Hoeffding’s Lemma yields,

T-1 -1
1 1
— =15 (Cs,i=Cs %) — — 1.2
% E log( E | |E e ]) < 5 E \/;log 1+Nexp( E (375 nSA))).
i#i* s= t=1 s=1
Next, we bound the argument of the exponent
-1 ;2 et L -1
12 hl z —
) (3n} - nen) < 525 Z:] %

s=1 K
< %(1 +logt) — cAVE

<c? logt — cAVL,
where we bounded the summations by their integrals. Therefore we have
T-1

_ Y I(L—ﬂ;A)) 1 i ( czlogt—cA\/?)
2CZ log(1+Ne 1 2CZ’\/;log 1+ Ne .

First we examine the sum from #; onward, while we require that for ¢ > #; it holds
c?logt < %CA\/;. (15)
To satisfy Eq. (15) it suffices to take

t = (S—C)zlog2 S—C

A A
Therefore,
= LTy 1
-y = (1+N c*logt- 2“”) < — —log(l +Ne*fcw)
S — Z —yeavi (log(1+x) <x)
t t]+]
< N ! —3eaVi gy
2c \/'
< ie 268V gy
c2A
2N -c?1 2 1
ST crlogh (c*logt; < 5cAVIT)
2
< AlogN’ (t; > 1 and ¢ = y/log N)
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To conclude we examine the bound up to ¢,

1
1 1 2
1 (1 Ne€ logt—ZCA\ﬁ)
5 ) log(1 e
t=1

I/\

. c? log t—ZCA\/?)
% Z lo ( Ne

n

1 1 2
< b Z$(log2N+c logt)

log 2N + c?logt Z

(logt < logty)
2c

1=1
log 2N + c*logt
< OeLN T o8h
c
Since ¢ = +/log N, for t; > [e?] we have ¢*logt; = log N logt; > log2N, and also Eq. (15) still
holds. This implies

2
M\/ﬁg 2¢log VT

< 2An

logN (8\/@)

Cc

<128

when we used the fact that clogf; < A+/f; for the last 1nequa11ty. Adding both results(up to #; and
from ¢, onward) we obtain,

1 1
o <128
2c 2Znt gpt+1 i*

Finally, plugging Egs. (14) and (16) into Eq. (13), taking the expectation and rearranging terms we get

— 256logN . ,(8logNy\ 8logN
E[R7] < X log( A )+ T

logN (8\/@) 2
A

16
+A10gN (16)

C Analysis of Time-varying Regularization Algorithms

In this section, we assume the setup of online (linear) optimization, with the notation established in
Section 4.1. For the proofs below, we recall the notion of a Bregman divergence. For a continuously
differentiable and strictly convex function F : W — R defined on a closed convex set W, the
Bregman divergence associated with F at a point w € 'W is defined by

Yw' e W, Dr(w,w)=F(w')—F(w)-VF(w)-(w —w).

C.1 Follow the Regularized Leader
First, we present a general analysis for Follow the Regularized Leader, described in Eq. (6), and later

establish Theorem 10.
Theorem 14. There exists a sequence of points z; € [w;, wy41] such that, for all w* € W,

T
th (we = w*) < Rpa (w¥) = Ry (w) + Z RiOwisn) = Resr Owrs) + 3 ) (lail)?
t=1

Here ||w|l; = VWTV2R,(z;)w is the local norm induced by R; at z;, and || - ||}/ is its dual.

Proof. Denote @, (w) = w - Y.} g; + R, (w), so that w, = argmin,, cyy ®,(w). We first write
T

T T
th Wil = z(®t+l(wt+l) - (Dt(wt+1)) + Z(Rt(wt+1) - Rt+1(Wt+1))
t=1 =1 t=1

T

T
= O (wr) = Q1w + ) (@ (we) = Pi(we) + ) (Ri(wit) = Rest (wea)).

t=1 t=1
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Since w;, is the minimizer of ®, over W, first-order optimality conditions imply
q)t(wt) - (Dt(wt+1) = _Vq)t(wt) . (Wt+1 - Wt) - DcD,(Wt+1, Wt) < _D(I),(Wt+lawt) = _DR,(WHI, Wt)9

where we have used the fact that the Bregman divergence is invariant to linear terms. On the other
hand, since wr 4 is the minimizer of ®7,;, we have that

T
th WX = Oy (W) = Rryt (W) = @741 (wre1) — Rrar(w?).

Combining inequalities and observing that ®;(w;) = R;(w]), we obtain
T T T
th “(Wee1 — W*) < RT+1(W*) - Ri(wyp) + Z(Rt(wt+l) - Rt+l(wt+l)) - ZDR, (Weat, wy).
t=1 t=1 t=1
On the other hand, a Taylor expansion of R;(-) around w; with an explicit second-order remainder
term implies that, for some intermediate point z, € [w;, ws4], it holds that

DR, (Wes1, W) = %(Wt+l - Wt)T Vth(Zt) (Wes1 —wy) = %||Wt+l - WI”zz-
An application of Holder’s inequality then gives

* )2 )2
8t - (Wt - Wt+1) < ”gt”z lw: = weetlly < %(”gt”z) + %”Wt - Wt+l||z2 = %(”gt”t) +DR,(WI+1’WZ)-
The proof is finalized by summing over ¢ = 1, ..., T and adding to the inequality above. ]
Proof of Theorem 10. Fix any w* € W. Observe that FTRL with regularizations R, (w) = n;'R(w)

is equivalent to FTRL with R, (w) = n;' (R(w) — R(w*)). Applying Theorem 14 for the latter and
rearranging, we obtain the claimed bound. |

C.2 Online Mirror Descent

We next consider Online Mirror Descent (see Eq. (7)), and prove the following general bound from
which Theorem 11 directly follows.

Lemma 15. There exist points z; € [w;, w’_ | such that for all w* € W,

;+1
T T-1 1

Zgz'(wz —w*) < Ri(w*) = Ri(w1) + ;(DR,H(W*,WHI) Dg,(W*, wes1)) + 3 Z{ lgeIl7)?

Here ||\w|l; = VW'V 2R, (z;)w is the local norm induced by R, at z;, and || - ||} is its dual.

Proof. Fix any w* € W. We will bound each of the terms g; - (w; — w*). First, from the update rule

of Mirror Descent and the three-point property of the Bregman divergence, we have

0 (Wi =w*) = (VR(wy) = VR(wy, ) - (Wi, = w?)
= DRt (W*5 Wt) - DRr (W*7 W;+1) - DRr (w;+1’ WI)'
Now, a Taylor expansion of R; at x, (with an explicit Lagrange remainder term) shows that there

exists z; € [wy, wss1] for which
1 T o2 2
DR,(W;H,Wt) = Q(W;H -w;) VR (z;) (W; —wy) = 2||Wt+1 Wt”t'
Also, since w4 is the projection (with respect to the Bregman divergence R;) of the point w’_ onto

the set W that contains w*, it holds that Dg, (W*, w;41) < Dg, (x*,w/, ). Putting things together,
we obtain

t - (Wi =w*) < DR, (W*, wi) = DR, (W, wii1) = llw),y = wellZ,. (17
On the other hand, Holder’s inequality and the fact that ab < %(a + b?) yield
g (wi=wi) < llgelly - lhwe = wiglle < 3l + Slwe = w117 (18)

Summing Eqgs. (17) and (18) together overz = 1, ..., T gives the regret bound
T T 1 Z
2
;g, S(wp = w*) < ;(DR, (W*,we) = D, (¥ W) + 3 ;(ug,n,)
Rearranging the first summation and using the facts that D, (w*, wr41) > 0 and Dg, (w*,w) <
R (w*) — R (w1) (the latter follows since w1 is the minimizer of Ry, and so VR (w{) - (w* —w;) > 0)
gives the stated regret bound. n
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