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Abstract

While using invariant and equivariant maps, it is possible to apply deep learning to a
range of primitive data structures, a formalism for dealing with hierarchy is lacking.
This is a significant issue because many practical structures are hierarchies of
simple building blocks; some examples include sequences of sets, graphs of graphs,
or multiresolution images. Observing that the symmetry of a hierarchical structure
is the “wreath product” of symmetries of the building blocks, we express the
equivariant map for the hierarchy using an intuitive combination of the equivariant
linear layers of the building blocks. More generally, we show that any equivariant
map for the hierarchy has this form. To demonstrate the effectiveness of this
approach to model design, we consider its application in the semantic segmentation
of point-cloud data. By voxelizing the point cloud, we impose a hierarchy of
translation and permutation symmetries on the data and report state-of-the-art
on SEMANTIC3D, S3DIS, and VKITTI, that include some of the largest real-world
point-cloud benchmarks.

1 Introduction

In designing deep models for structured data, equivariance (invariance) of the model to transformation
groups has proven to be a powerful inductive bias, which enables sample efficient learning. A
widely used family of equivariant deep models constrain the feed-forward layer so that specific
transformations of the input lead to the corresponding transformations of the output. A canonical
example is the convolution layer, in which the constrained MLP is equivariant to translation operations.
Many recent works have extended this idea to design equivariant networks for more exotic structures
such as sets, exchangeable tensors and graphs, as well as relational and geometric structures.

This paper considers a nested hierarchy of such structures, or more generally, any hierarchical
composition of transformation symmetries. These hierarchies naturally appear in many settings: for
example, the interaction between nodes in a social graph may be a sequence or a set of events. Or in
diffusion tensor imaging of the brain, each subject may be modeled as a set of sequences, where each
sequence is a fibre bundle in the brain. The application we consider in this paper models point clouds
as 3D images, where each voxel is a set of points with coordinates relative to the center of that voxel.

To get an intuition for a hierarchy of symmetry transformations, consider the example of a sequence
of sequences – e.g., a text document can be viewed as a sequence of sentences, where each sentence
is itself a sequence of words. Here, each inner sequence as well as the outer sequence is assumed
to possess an “independent” translation symmetry. Contrast this with symmetries of an image (2D
translation), where all inner sequences (say row pixels) translate together, so we have a total of two
translations. This is the key difference between the wreath product of two translation groups (former)
and their direct product (latter). It is the wreath product that often appears in nested structures. As is
evident from this example, the wreath product results in a significantly larger set of transformations,
and as we elaborate later, it provides a stronger inductive bias.
∗Currently at Borealis AI. Work done while at UBC.
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Figure 1: Wreath product can express the symmetries of hierarchical structures: wreath product of three
groups U ≀K ≀H acting on the set of elements P × Q × R, can be seen as independent copies of groups,
H, K and U at different level of hierarchy acting ↻ on copies of P,Q and R. Intuitively, a linear map
WU≀K≀H ∶ RPQR

→ RPQR equivariant to U ≀K ≀H, performs pooling over leaves under each inner node ,
applies equivariant map for each inner structure (i.e., WU, WK and WH respectively), and broadcasting the
output back to the leaves. A U ≀K ≀H-equivariant map can be constructed as the sum of these three contributions,
from equivariant maps at each level of hierarchy.

We are interested in application of equivariant/invariant deep learning to this type of nested structure.
The building blocks of equivariant and invariant MLPs are equivariant linear maps of the feedforward
layer. We show that any equivariant linear map for the hierarchical structure is built using equivariant
maps for the individual symmetry group at different levels of the hierarchy. Our construction only
uses additional pooling and broadcasting operations; see Fig. 1.

In the following, after discussing related works in Section 2, we give a short background on equivariant
MLPs in Section 3. Section 4 starts by giving the closed form of equivariant maps for direct product
of groups before moving to the more difficult case of wreath product in Section 4.2. Finally, Section 5
applies this idea to impose a hierarchical structure on 3D point clouds. We show that the equivariant
map for this hierarchical structure achieves state-of-the-art performance on the largest benchmark
datasets for 3D semantic segmentation.

2 Related Works

Group theory has a long history in signal processing [22], where in particular Fourier transformation
and group convolution for Abelian groups have found tremendous success over the past decades.
However, among non-commutative groups, wreath product constructions have been the subject of
few works. Rockmore [39] give efficient procedures for fast Fourier transforms for wreath products.
In a series of related works Foote et al. [15], Mirchandani et al. [34] investigate the wreath product
for multi-resolution signal processing. The focus of their work is on the wreath product of cyclic
groups for compression and filtering of image data.

Group theory has also found many applications in machine learning [25], and in particular deep
learning. Design of invariant MLPs for general groups goes back to Shawe-Taylor [41]. More
recently, several works investigate the design of equivariant networks for general finite [38] and
infinite groups [7, 10, 26]. In particular, use of the wreath product for design of networks equivariant
to a hierarchy of symmetries is briefly discussed in [38]. Equivariant networks have found many
applications in learning on various structures, from image and text [31], to sets [36, 50], exchangeable
matrices [21], graphs [1, 28, 32], and relational data [18], to signals on spheres [9, 27]. A large body
of works investigate equivariance to Euclidean isometries; e.g., [11, 44, 46].

When it comes to equivariant models for compositional structures, contributions have been sparse,
with most theoretical work focusing on semidirect product (or more generally using induced repre-
sentations from a subgroup) to model tensor-fields on homogeneous spaces [8, 10]. Direct product of
symmetric groups have been used to model interactions across sets of entities [21] and in generaliza-
tions to relational data [18].

Relation to Maron et al. [33] Maron et al. [33] extensively study equivariant networks for direct
product of groups; in contrast we focus on wreath product. Since both of these symmetry trans-
formations operate on the Cartesian product of G-sets (see Fig. 1), the corresponding permutation
groups are comparable. Indeed, direct product action is a sub-group of the imprimitive action of the
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wreath product. The implication is that if sub-structures in the hierarchy transform independently
(e.g., in sequence of sequences), then using the equivariant maps proposed in this paper gives a
strictly stronger inductive bias. However, if sub-structures move together (e.g., in an image), then
using a model equivariant to direct product of groups is preferable. One could also compare the
learning bias of these models by noting that when using wreath product, the number of independent
linear operators grows with the “sum” of independent operators for individual building blocks; in
contrast, this number grows with the “product” of independent operators on blocks when using direct
product. In the following we specifically contrast the use of direct product with wreath product for
compositional structures.

3 Preliminaries

3.1 Group Action

A group G = {g} is a set equipped with a binary operation, such that the set is closed under this
operation, gh ∈ G, the operation is associative, g(hk) = (gh)k, there exists identity element e ∈ G,
and a unique inverse for each g ∈ G satisfying gg−1 = e. The action of G on a finite set N is a function
α ∶ G ×N→ N that transforms the elements of N, for each choice of g ∈ G; for short we write g ⋅ n
instead of α(g, n). Group actions preserve the group structure, meaning that the transformation
associated with the identity element is identity e ⋅ n = n, and composition of two actions is equal to
the action of the composition of group elements (gh) ⋅ n = g ⋅ (h ⋅ n). Such a set, with a G-action
defined on it is called a G-set. The group action on N naturally extends to x ∈ R∣N∣, where it defines
a permutation of indices g ⋅ (x1, . . . , xN) ≐ (xg⋅1, . . . , xg⋅N). We often use a permutation matrix
G(g) ∈ {0,1}N×N to represent this action – that is G(g)x = g ⋅ x.

3.2 Equivariant Multilayer Perceptrons

A function φ ∶ RN → RM is equivariant to a given actions of group G iff φ(G(g)x) = G̃(g)φ(x) for
any x ∈ RN and g ∈ G. That is, a symmetry transformation of the input results in the corresponding
symmetry transformation of the output. Note that the action on the input and output may in general
be different. In particular, when G̃(g) = IM for all g – that is, the action on the output is trivial
– equivariance reduces to invariance. Here, IM is the M ×M identity matrix. For simplicity and
motivated by practical design choices, we assume the same action on the input and output.

For a feedforward layer φ ∶ x↦ σ(Wx), where σ is a point-wise non-linearity and W ∈ RN×N , the
equivariance condition above simplifies to commutativity condition G(g)W =WG(g)∀g ∈ G. This
imposes a symmetry on W in the form of parameter-sharing [38, 47]. While we can use computational
means to solve this equation for any finite group, an efficient implementation requires a closed form
solution. Several recent works derive the closed form solutions for interesting groups and structures.
Note that in general the feedforward layer may have multiple input and output channels, with identical
G-action on each channel. This only require replicating the parameter-sharing pattern in W, for each
combination of input and output channel. An Equivariant MLP is a stack of equivariant feed-forward
layers, where the composition of equivariant layers is also equivariant. Therefore, our task in building
MLPs equivariant to finite group actions is reduced to finding equivariant linear maps in the form of
parameter-sharing matrices satisfying G(g)W =WG(g)∀g ∈ G; see Fig. 4(a.1,a.2) for W that are
equivariant to C4, the group of circular translations of 4 objects (a.1), and symmetric group S4, the
group of all permutations of 4 objects (a.2).

4 Equivariant Map for Product Groups

In this section we formalize the imprimitive action of the wreath product, which is used in describing
the symmetries of hierarchical structures. We then introduce the closed form of linear maps equivariant
to the wreath product of two groups. With hierarchies of more than two levels, one only needs to
iterate this construction. To put this approach in perspective and to make the distinction clear, first we
present the simpler case of direct product; see [33] for an extensive discussion of this setting.
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4.1 Equivariant Linear Maps for Direct Product of Groups

Figure 2: Direct product action.

The easiest way to combine two groups is through their direct
product G =H ×K. Here, the underlying set is the Cartesian
product of the input sets and group operation is (h,k)(h′,k′) ≐
(hh′,kk′). If P is an H-set and Q a K-set then the group
G =H ×K naturally acts on N = P ×Q using (h,k) ⋅ (p, q) ≐
(h ⋅ p,k ⋅ q); see Fig. 2. This type of product is useful in
modeling the Cartesian product of structures. The following
claim characterises the equivariant map for direct product of
two groups using the equivariant map for building blocks.

Claim 1. Let G(h) represent H-action, and let WH ∈ RP×P be an equivariant linear map for
this action. Similarly, let WK ∶ RQ×Q be equivariant to K-action given by G(k) for k ∈K. Then,
the product group G =H ×K naturally acts on RN = RPQ using G(g) =G(h) ⊗G(k), and the
Kronecker product WG =WH ⊗WK, is a G-equivariant linear map.

Note that the claim is not restricted to permutation action.2 The proof follows from the mixed-product
property of the Kronecker product3, and the equivariance of WH and WK:

G(g)WG = (G(h) ⊗G(k))(WH ⊗WK) = (G(h)WH)⊗ (G(k)WK)
= (WHG

(h))⊗ (WKG
(k)) = (WH ⊗WK)(G(h) ⊗G(k)) =WGG

(g) ∀g ∈ G.

An implication of the tensor product form of WH×K is that the number of independent linear operators
of the product map (free parameters in the parameter-sharing) is the product of the independent
operators of the building blocks. Note that whenever dealing with product of inputs belonging to RP
and RQ, the result which belongs to RPQ and therefore it is vectorized.
Example 1 (Convolution in Higher Dimensions). D-dimensional convolution is a Kronecker (tensor)
product of one-dimensional convolutions. The number of parameters grows with the product of kernel
width across all dimensions; Fig. 4(a.1) shows the parameter-sharing for circular 1D convolution
WC4 , and (b.1) shows the parameter-sharing for the direct product WC3×C4 .
Example 2 (Exchangeable Tensors). Hartford et al. [21] introduce a layer for modeling interactions
across multiple sets of entities, e.g., a user-movie rating matrix. Their model can be derived as the
Kronecker product of 2-parameter equivariant layer for sets [50]. The number of parameters is
therefore 2D for a rank D exchangeable tensor. Fig. 4(b.1) shows the 2-parameter model W§4 for
sets, and (c.1) shows the parameter-sharing for the direct product WS3×S4 .

4.2 Wreath Product Action and Equivariance to a Hierarchy of Symmetries

Let us start with an informal definition. Suppose as before P and Q are respectively an H-set and a
K-set. We can attach one copy of Q to each element of P. Each of these inner sets or fibers have
their own copy of K acting on them. Action of H on P simply permutes these fibers. Therefore the
combination of all K actions on all inner sets combined with H-action on the outer set defines the
action of the wreath product on P ×Q. Fig. 3 demonstrates how one point (p, q) moves under this
action. Next few paragraphs formalize this.

Semidirect Product. Formally, wreath product is defined using semidirect product which is a
generalization of direct product. In part due to its use in building networks equivariant to Euclidean
isometries, application of semidirect product in building equivariant networks is explored in several
recent works; see [10] and citations therein. In semidirect product, the underlying set (of group
members) is again the product set. However the group operation is more involved. The (external)
semi-direct product G =K⋊γH, requires a homomorphism γ ∶H → Aut(K) that for each choice of

2The tensor product of irreducible representation of two distinct finite groups is an irreducible representation
for the product group. Therefore this construction of equivariant maps can be used with a decomposition into
irreducible representations for the general linear case.

3
(A⊗B)(C⊗D) = (AC)⊗ (BD)

4
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Figure 4: Parameter-sharing patter in the equivariant linear maps for compositional structures. Equivariant
maps for sequence and set are given in the first column (a.1, a.2). The first row shows the maps equivariant to
various products of sets and sequences, while the second row is the corresponding map for nested structure.
Product Structures: (b.1) product of sequences (as in image); (c.1) product of sets (exchangeable matrices);
(d.1) product of a set and a sequence; (e.1) product of a sequence and a set. In the notation, the outer structure
appears first in H ×K. Hierarchical Structures: (b.2) sequence of sequences (e.g., multi-resolution sequence
model); (c.2) nested set of sets; (d.2) set of sequences; (e.2) sequences of sets (similar to the model used in the
application section.) In wreath product notation, the outer structure appears second in K ≀H. Note how the
equivariant map for the hierarchy is a scaled version of the map for the outer structure with copies of the inner
structure maps appearing as diagonal blocks.

h ∈H, re-labels the elements of K while preserving its group structure. Using γ, the binary operation
for the product group G = K ⋊γ H is defined as (h,k)(h′,k′) = (hh′,kγh(k′)). A canonical
example is the semidirect product of translations (K) and rotations (H), which identifies the group of
all rigid motions in the Euclidean space. Here, each rotation defines an automorphism of translations
(e.g., moving north becomes moving east after 90○ clockwise rotation).

Figure 3: Imprimitive action of wreath
product.

Now we are ready to define the wreath product of two groups.
As before, let H and K denote two finite groups, and let P be
an H-set. Define B as the direct product of P = ∣P∣ copies of K,
and index these copies by p ∈ P: B =K1 × . . .×Kp × . . .×KP .
Each member of this group is a tuple b = (k1, . . . ,kp, . . .kP ).
Since P is an H-set, H also naturally acts on B by permuting
the fibers Kp. The semidirect product B ⋊H defined using this
automorphism of B is called the wreath product, and written
as K ≀H. Each member of the product group can be identified
by the pair (h, b), where b as a member of the base group itself
is a P -tuple. This shows that the order of the wreath product
group is ∣K∣P ∣H∣ which can be much larger than the direct product group K ×H, whose order is
∣K∣∣H∣.

4.2.1 Imprimitive Action of Wreath Product

If in addition to P being an H-set, K action on Q is also defined, the wreath product group acts on
P ×Q (making it comparable to the direct product). Specifically, (h,k1, . . . ,kP ) ∈ K ≀H acts on
(p, q) ∈ P ×Q as follows:

(h,k1, . . . ,kP ) ⋅ (p, q) ≐ (h ⋅ p,kh⋅p ⋅ q).
Intuitively, H permutes the copies of K acting on each Q, and itself acts on P. We can think of P as
the outer structure and Q as the inner structure; see Fig. 3.
Example 3 (Sequence of Sequences). Consider our early example where both H = CP and K = CQ
are cyclic groups with regular action on P ≅H, Q ≅K. Each member of the wreath product CQ ≀CP ,
acts by translating each inner sequence using some c ∈ CQ, while c′ ∈ CP translates the outer
sequence by c′.
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Let the P × P permutation matrix G(h) represent the action of h ∈ H, and the Q × Q matrices
G(k1), . . . ,G(kP ) represent the action of kp on Q. Then the action of g ∈K ≀H on (the vectorized)
P ×Q is the following PQ × PQ permutation matrix:

G(g) =

⎡⎢⎢⎢⎢⎢⎢⎣

G
(h)

1,1G
(k1), . . . , G

(h)

1,PG
(k1)

⋮ ⋱ ⋮
G
(h)

P,1G
(kP ), . . . , G

(h)

P,PG
(kP )

⎤⎥⎥⎥⎥⎥⎥⎦

=
P

∑
p=1

1p,h⋅p ⊗G(kp) (1)

Figure 5: Permutation for the imprimitive wreath prod-
uct (G(g)) on the right, is built from permutations of
the outer structure using G(h) and independent permu-
tations of inner structures G(k1), . . . ,G(k4).

where 1p,h⋅p is a P × P matrix whose only
nonzero element is at row p and column h⋅pwith
the value of 1; and G

(h)

p,p′ is the element at row p

and column p′ of the permutation matrix G(h).
In the summation formulation, the Kronecker
product 1p,h⋅p ⊗G(kp) puts a copy of permu-
tation matrix G(kp) as a block of G(g). Note
that the resulting permutation matrix is differ-
ent from the Kronecker product; in this case we
have P + 1 (permutation) matrices participating
in creating G(g), compared with two matrices
in the vanilla Kronecker product; see Fig. 5.

4.2.2 Equivariant Map

Consider a hierarchical structure, potentially with more than two levels of hierarchy, such as a set
of sequences of images. Moreover, suppose that we have an equivariant map for each individual
structure. The question answered by the following theorem is: how to use the equivariant map for
each level to construct the equivariant map for the entire hierarchy? For now we only consider two
levels of hierarchy; extension to more levels follows naturally, and is discussed later. Note that one
instance of the hierarchy (e.g., a sequence of sets) belongs to RPQ, because each instance of the
structure is in RQ and the outer structure is of size P – that is vectorization of the input follows the
hierarchy.

Theorem 4.1. Let WK≀H ∈ RPQ×PQ be the matrix of some linear map equivariant to the
imprimitive action of K ≀H on P ×Q. Any such map can be written as follows

WK≀H =WH ⊗ (1Q1⊺Q) + IP ⊗WK, where 1Q =

Q times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[1, . . . ,1]⊺, (2)

IP is the P × P identity matrix, WH ∈ RP×P is H-equivariant, and WK ∈ RQ×Q is equivariant
to K-action.

Proof is in Appendix A. Pictorially, the first term of Eq. (2) scales up the matrix WH, while the
second term adds copies of WK on the diagonal blocks of the scaled matrix. Assuming sets of
independent equivariant linear operators {WK} and {WH}, from Eq. (2) it is evident that the number
of independent linear operators equivariant to K ≀H grows with the sum of those of the building
blocks.4 These operators may be combined using any parameter to create a parameterized linear
map, which in turn can be expressed using parameter-sharing in a vanilla feed-forward layer. This in
contrast with direct product in which the number of free parameters has a product form.

Example 4 (Various Hierarchies of Sets and Sequences). Consider two of the most widely used
equivariant maps, translation equivariant convolution WCP

, and SQ-equivariant map which has
the form WSQ

= w1IQ + w2 [50]. There are four combinations of these structures in a two level
hierarchical structure: 1) set of sets SQ ≀SP ; 2) sequence of sequences CQ ≀CP ; 3) set of sequences
CQ ≀SP ; 4) sequence of sets SQ ≀CP . Fig. 4(b.2-e.2) show the parameter-sharing matrix for these
hierarchical structures, assuming a full kernel in 1D circular convolution.

4In the proof we show that the number of parameters is the sum of those of the building blocks minus one.
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The reader is invited to contrast the three parameter layer for set of sets, with the four parameter
layer for interactions across sets in Fig. 4(c.1,c.2). Similarly, a model for sequence of sequences has
far fewer parameters than a model for an image, as seen in Fig. 4(b.1, b.2).

4.2.3 Deeper Hierarchies and Combinations with Direct Product

With more than two levels, the symmetry group involves more than one wreath product, which means
that the equivariant map for the hierarchy is given by a recursive application of Theorem 4.1. For
example, the equivariant map for (K ≀H) ≀ U, in which U acts on some set R, and WU is the
corresponding equivariant map, is given by W(K≀H)≀U = WU ⊗ (1PQ1⊺PQ) + IR ⊗WK≀H, where
WK≀H is in turn given by Eq. (2). Note that wreath product is associative, and so the iterative
construction above leads the same equivariant map as WK≀(H≀U).

We can also mix and match this construction with that of direct product in Claim 1; for example, to
produce the map for exchangeable tensors (product of sets), where each interaction is in the form of
an image (hierarchy) – i.e., the group is (CR ×CV ) ≀ (SP ×SQ).

4.3 Efficient Implementation

With equivariant maps for direct product of groups, efficient implementation of WK×H using efficient
implementation for individual blocks WK, and WH is non-trivial – e.g., consider 2D convolution. In
contrast, it is possible to use a black-box implementation of the parameter-sharing layers for WK,
and WH to construct WK≀H. To this end, let x ∈ RPQ be the input signal, and mat(x) ∈ RP×Q
denote its matrix form; for example in a set of sets, each column is an inner set in this matrix form.
Throughout, we are assuming a single input-output channel, relying on the idea that having multiple
channels simply corresponds to replicating the linear map for each input-output channel combination.
Then we can rewrite Eq. (2) as

WK≀Hx = vec ((WH (mat(x)1Q))1⊺Q +mat(x)WK) , (3)

where the first multiplication mat(x)1Q pools over columns (inner structures), and after application
of the H-equivariant map WH to the pooled value, the result is broadcasted back using right-
multiplication by 1⊺Q. The second term simply transforms each inner structure using WK. The
overall operation turns out to be simple and intuitive: the inner equivariant map is applied to individual
inner structures, and the outer equivariant map is applied to pooled values and broadcasted back.

Example 5 (Equivariant Map for Multiresolution Image). Consider a coarse pixelization of an
image into small patches. Eq. (3) gives the following recipe for a layer equivariant to independent
translations within each patch as well as global translation of the coarse image: 1) apply convolution
to each patch independently; 2) pool over each patch, apply convolution to the coarse image, and
broadcast back to individual pixels in each patch. 3) add the contribution of these two operations.
Notice how pooling over regions, a widely used operation in image processing, appears naturally in
this approach. One could also easily extend this to more levels of hierarchy for larger images.

5 Application: Point-Cloud Segmentation

Figure 6: We impose a hierarchy of transla-
tion and permutation symmetry by voxelizing
the point-cloud.

In this section we consider a simple application of the
theory above to large-scale point-cloud segmentation. The
layer is the 3D version of equivariant linear map for se-
quence of sets, which is visualized in Fig. 4(d.2) – that
is we combine translation and permutation symmetry by
voxelizing the point-cloud; see Fig. 6. Using a hierarchi-
cal structure is beneficial compared to both the set model
and 3D convolution. In particular, the set model lacks
any prior of the Euclidean nature of the data, while the
3D convolution, in order to preserve resolution requires a
fine-grained voxelization where each point appears in one
voxel. The reader may ask: “how is the wreath product
used to characterize the setting when the number of points
is changing per voxel?” While our derivation using wreath
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Table 1: Performance of various models on point cloud segmentation benchmarks.

SEMANTIC-8 S3DIS VKITTI

OA mIoU OA mIoU OA mIoU mAcc
DEEPSETS[50] 89.3 60.5 67.3 42.7 74.2 42.9 36.8
POINTNET++[36] 85.7 63.1 81.0 54.5 79.7 34.4 47.0
SPG[30] 92.9 76.2 85.5 62.1 84.3 67.3 52.0
CONVPOINT[4] 93.4 76.5 88.8 68.2 - - -
KP-FCNN[43] - - - 70.6 - - -
RSNET[23] - - - 56.5 - - -
PCCN[45] - - - 58.3 - - -
SNAPNET[5] 91.0 67.4 - - - - -
ENGELMANN ET AL. 2018[13] - - - - 79.7 57.6 35.6
ENGELMANN ET AL. 2017[12] - - - - 80.6 54.1 36.2
3P-RNN[49] - - - - 87.8 54.1 41.6

WREATH PRODUCT NET. (ours) 93.9 75.4 90.6 71.2 88.4 68.9 58.6
WREATH PRODUCT NET. + ATTN (ours) 95.2 77.4 95.8 80.1 90.7 69.5 59.2

product assumes a fixed number of points, since the resulting model for the set is independent of the
number of data points, we can operate on various points per voxel. This is the same reason why we
can apply the same convolution filter to images of different sizes.

The past few years have seen a growing body of work on learning with point cloud data; see [19] for
a survey. Many methods use hierarchical aggregation and pooling; this includes the use of furthest
point clustering for pooling in POINNET++[37], use of concentric spheres for pooling in SHELLNET,
or KD-tree guided pooling in [24]. Several works extend convolution operation to maintain both
translation and permutation equivariance in one way or another [3, 4, 45]; see also [6, 17]. Here,
objective is not to introduce a radically new procedure, but to show the effectiveness of the approach
discussed in previous sections in deep model design from first principles. Indeed, we are able to
achieve state-of-the-art in several benchmarks for large point-clouds.

5.1 Equivariance to a Hierarchy of Translations and Permutations

Let X ∈ RN×C be the input point cloud, where N is the number of points and C is the number of
input channels (for concreteness, in this section are including the channel dimension in our formulae.)
In addition to 3D coordinates, these channels may include RGB values, normal vectors or any
other auxiliary information. Consider a voxelization of the point cloud with a resolution D voxels
per dimension, and consider the hierarchy of translation symmetry across voxels and permutation
symmetry within each voxel. We may also replace 3D coordinates with relative coordinates within
each voxel. Let Π ∈ {0,1}D3

×N with one non-zero per column identify the voxel membership.
Then the combination of equivariant set layer XW1 + 11⊺XW2 [50] with 3D convolution using the
pool-broadcast interpretation given in Eq. (3), results in the following wreath-product equivariant
linear layer

φ(X) =XW1 +Π⊺(W3 ∗ (ΠX)), (4)

where W1 ∈ RC×C
′

, ∗ denotes the convolution operation, W3 ∈ RK
3
×C×C′ is the convolution kernel,

with kernel width K, and C ′ output channels. Here, multiplication with Π and Π⊺ performs the
pooling and broadcasting from/to points within voxels, respectively. Note that we have dropped the
“set” operation Π⊺((ΠX)W2) that pools over each voxel, multiplies by the weight and broadcasts
back to the points. This is because it can be absorbed in the convolution operation, and therefore
it is redundant. In the equation above pooling operation can replace summation (implicit in matrix
multiplication) with any other commutative operation; see [35, 48, 51], we use mean-pooling for the
experiments. While the layer of Eq. (4) already achieves state-of-the-art in the experiments, we also
consider adding an (equivariant) attention mechanism for further improvement; see Appendix B for
details.
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5.2 Empirical Results
Table 2: Comparison of pre-processing and training
time and the number of parameters for SEMANTIC-8.

Method Pre-
Proc. (hrs) Train (hrs)

# Params.
×106

POINTNET 8.82 3.54 3.50
POINTNET++ 8.84 7.46 12.40
SNAPNET 13.42 53.44 30.76
SPG 17.43 1.50 0.25
CONVPOINT 13.42 48.74 2.76

OURS 4.39 53.76 5.27
OURS + ATTN 4.39 91.68 47.01

We evaluate our model on two of the largest real
world point cloud segmentation benchmarks, SE-
MANTIC3D [20] and the Stanford Large-Scale 3D
Indoor Spaces ( S3DIS) [2], as well as a dataset
of virtual point cloud scenes, the VKITTI bench-
mark [16]. As shown in Table 1, in all cases we
report new state-of-the-art. Table 2 compares the
processing time and the size of different models.
The architecture of WREATH PRODUCT NET. is
a stack of equivariant layer Eq. (4) plus ReLU
nonlinearity and residual connections. WREATH PRODUCT NET.+ATTN also adds the attention mech-
anism. 5 Details on architecture and training, as well as further analysis of our results appear in
Appendix C.

Table 3: Effect of voxelization
resolution for SEMANTIC-8.

# Voxels
Per Dim OA mIoU

2 81.7 62.7
3 85.9 67.3
4 90.6 70.5
5 92.3 72.2
6 93.7 72.8
7 94.4 74.1
8 95.1 75.6
9 94.6 77.1
10 95.2 77.4
12 94.8 73.0
16 90.6 71.5

Outdoor Scene Segmentation - SEMANTIC3D [20] is the largest Li-
DAR benchmark dataset, consisting of 15 training point clouds and
15 tests point clouds with withheld labels, amassing altogether over
4 billion labeled points from a variety of urban and rural scenes. In
particular, rather than working with the smaller REDUCED-8 variation,
we run our experiments on the full dataset (SEMANTIC-8)6. Table 1 re-
ports mIoU unweighted mean intersection over union metric (mIoU),
as well as the overall accuracy (OA) for various methods. In Table 3
we report these measures for different voxelization resolution. At
highest resolutions the performance degrades due to overfitting.

Indoor Scene Segmentation - Stanford Large-Scale 3D Indoor
Spaces (S3DIS) [2] consists of various 3D RGB point cloud scans
from an assortment of room types on six different floor in three
buildings on the Stanford campus, totaling almost 600 million points.
Table 1 show that we achieve the best overall accuracy as well as
mean intersection over union. This is in spite of the fact that our competition use extensive data-
augmentation also for this dataset. In addition to random jittering and subsampling employed by both
KPCONV and CONVPOINT, KPCONV also uses random dropout of RGB data.

Virtual Scene Segmentation - Virtual KITTI (VKITTI) [16] contains 35 monocular photo-realistic
synthetic videos with fully annotated pixel-level labels for each frame and 13 semantic classes in
total. Following [12], we project the 2D depth information within these synthetic frames into 3D
space, thereby obtaining semantically annotated 3D point clouds. Note that VKITTI is significantly
smaller than either SEMANTIC3D or S3DIS, containing only 15 millions points in total.

Conclusion

This paper presents a procedure to design neural networks equivariant to hierarchical symmetries
and nested structures. We describe how the imprimitive action of wreath product can formulate
the symmetries of the hierarchy, contrast its use case with direct product, and characterize linear
maps equivariant to the wreath product of groups. This analysis showed that we can always build
an equivariant layer for the hierarchy using equivariant maps for the building blocks, and additional
pool-and-broadcast operations. We consider one of the many use cases of this approach to design a
deep model for large-scale semantic segmentation of point cloud data, where we are able to achieve
state-of-the-art using a simple architecture.

5We have released a PYTORCH implementation of our models at https://github.com/rw435/
wreathProdNet

6The leader-board can be viewed at http://www.semantic3d.net/view_results.php?chl=1
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Broader Impact

As deep learning finds its way in various real-world applications, the practitioners are finding more
constrains in representing their data in formats and structures amenable to existing deep architectures.
The list of basic structures such as images, sets, and graphs that we can approach using deep models
has been growing over the past few years. The theoretical contribution of this paper substantially
expands this list by enabling deep learning on a hierarchy of structures. This could potentially unlock
new applications in data-poor and structure-rich settings. The task we consider in our experiments is
deep learning with large point-cloud data, which is finding growing applications, from autonomous
vehicles to geographical surveys. While this is not a new task, our empirical results demonstrate the
effectiveness of the proposed methodology in dealing with hierarchy in data structure.
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A Proof of Theorem 4.1

Proof. We show that both of the two terms in Eq. (2) are equivariant to K ≀H-action as expressed by
the permutation matrix of Eq. (1).

Part 1. We show that G(g) commutes with the first term in Eq. (2) for any g ∈K ≀H:

(WH ⊗ (1Q1⊺Q))G(g) = (WH ⊗ (1Q1⊺Q))
⎛
⎝
P

∑
p=1

1p,h⋅p ⊗G(kp)
⎞
⎠

(5)

=
P

∑
p=1

(WH1p,h⋅p)⊗

=(1Q1⊺Q)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((1Q1⊺Q)G(kp)) (6)

=WH

⎛
⎝
P

∑
p=1

1p,h⋅p
⎞
⎠
⊗ (1Q1⊺Q) (7)

= (WHG
(h))⊗ (1Q1⊺Q) = (G(h)WH)⊗ (1Q1⊺Q) (8)

=
P

∑
p=1

(1p,h⋅pWH)⊗ ((1Q1⊺Q)G(kp)) (9)

=
P

∑
p=1

(1p,h⋅p ⊗G(kp)) (WH ⊗ (1Q1⊺Q)) (10)

=
⎛
⎝
P

∑
p=1

1p,h⋅p ⊗G(kp)
⎞
⎠
(WH ⊗ (1Q1⊺Q)) =G(g) (WH ⊗ (1Q1⊺Q)) .

(11)

In Eq. (5) we substitute from Eq. (1). In Eq. (6) we pulled the summation out, and then used the
mixed product property of Kronecker product. We also note that a permutation of the uniformly
constant matrix 1Q1

⊺

Q is constant. In Eq. (7), since the summation can be restricted to the first term
we pull out WH. In Eq. (8) we use the fact that the summation of the previous line is the permutation
matrix G(h) and apply the key assumption that WH and WK are equivariant to H and K-action
respectively. The following lines repeat the procedure so far in reverse order to commute G(g) and
(WH ⊗ (1Q1⊺Q)).

Part 2. For the second term, again we use the mixed-product property and equivariance of the input
maps

(IP ⊗WK)G(g) = (IP ⊗WK)
⎛
⎝
P

∑
p=1

1p,h⋅p ⊗G(kp)
⎞
⎠

(12)

=
P

∑
p=1

(IP1p,h⋅p)⊗ (WKG
(kp)) (13)

=
P

∑
p=1

(1p,h⋅pIP )⊗ (G(kp)WK) (14)

=
P

∑
p=1

(1p,h⋅p ⊗G(kp)) (IP ⊗WK) =G(g) (IP ⊗WK) (15)

where in Eq. (14) we used the fact that the identity matrix commutes with any matrix, as well as
the equivariance of G(kp). Eqs. (13) and (15) simply use the mixed product property. Putting the
two parts together shows the equivariance of the first and second term in Eq. (2), completing the
proof.
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A.1 Proof of Maximality

Previously we proved that the linear maps of Eq. (2) is equivariant to imprimitive action of wreath
product K ≀H given by Eq. (1). Here, we prove that any K ≀H equivariant linear map has this form.

Claim 2. Assuming that any K-equivariant (H-equivariant) linear map WK (WH) can be written
as a linear combination of K (H) independent linear operators, then any WK≀H as defined in Eq. (2)
is a linear combination of K +H − 1 independent linear bases.

Proof. Consider the two terms (I) WH ⊗ (1Q1⊺Q) and (II) IP ⊗WK in Eq. (2), where (I) has H
independent bases and (II) has K independent bases. If they had independent bases, their summation
would have K +H linear bases. However, (I) and (II) have exactly one shared basis: WH = IP is
H-equivariant, and WK = 1Q1

⊺

Q is K-equivariant. Therefore, IP ⊗ (1Q1⊺Q) is a basis for both (I)
and (II).

Next, we show that any K ≀H-equivariant linear map can be written using as a weighted sum of
K +H − 1 independent linear operators. Together with proof of equivariance of WK≀H these two
facts prove that any K ≀H equivariant linear map has the form of Eq. (2).

Claim 3. Any linear map that is equivariant to the imprimitive action of K ≀ H can a linear
combination of K +H − 1 equivariant linear bases.

Proof. Let W ∈ RN×N be the matrix representing this equivariant map, satisfying WGg =
GgW ∀g ∈K≀H. Since Gg⊺WGg =W ∀g ∈K≀H, all elements of the matrix W that are in the
same orbit are tied together. This constraint means that the number of unique values in W are equal
to the number of orbits in this simultaneous action on rows and columns of W. Using a property of
Kronecker product, we can also write the equation above as vec(GgWGg⊺) = (Gg ⊗Gg)vec(W).
Therefore, the diagonal group action is given by Gg ⊗Gg. Using Burnside’s lemma we get the
number of orbits L in this action to be

L = 1

∣G∣ ∑g∈K≀H
Tr(G(g) ⊗G(g)) = ∑

g∈K≀H

Tr(G(g))2 (16)

Our objective is to show that L = H +K − 1. Our strategy is to replace the definition of Gg from
Eq. (1) into Eq. (16) and simplify. This simplification involves numerous steps.

L = 1

∣H∣∣K∣P ∑
h∈H,k1,...,kP ∈K

Tr
⎛
⎝
P

∑
p=1

1p,h⋅p ⊗G(kp)
⎞
⎠

2

(17)

= 1

∣H∣∣K∣P ∑
h∈H,k1,...,kP ∈K

Tr
⎛
⎝
P

∑
p=1

G(h)p,pG
(kp)

⎞
⎠

2

(18)

= 1

∣H∣∣K∣P ∑
h∈H,k1,...,kP ∈K

⎛
⎝
P

∑
p=1

G(h)p,p Tr (G(kp))
⎞
⎠
⎛
⎝
P

∑
p′=1

G
(h)

p′,p′ Tr (G(kp′))
⎞
⎠

(19)

= 1

∣H∣∣K∣P ∑
h∈H,k1,...,kP ∈K

⎛
⎝
P

∑
p=1

G(h)p,p Tr (G(kp))
2⎞
⎠
+

⎛
⎝
P

∑
p=1

P

∑
p′≠p,p′=1

G(h)p,pG
(h)

p′,p′ Tr (G(kp))Tr (G(kp′))
⎞
⎠

(20)

where in Eq. (18) we observed that the contribution from G(kp) to the trace of G(g) is non-zero only
if G(h)p,p = 1. Note that all the G matrices are permutation matrices and in the following we will
continue to use this fact without elaborating. In Eq. (19) we used linearity of trace, and in Eq. (20)
we divided the product of the previous line into p = p′ and p ≠ p′. As we show below, the first term
simplifies to K and the second terms simpliefies to H − 1, showing that L =K +H − 1. We start by
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simplifying the first term of Eq. (20) below:

1

∣H∣∣K∣P ∑
h∈H,k1,...,kP ∈K

⎛
⎝
P

∑
p=1

G(h)p,p Tr (G(kp))
2⎞
⎠

(21)

= 1

∣H∣∣K∣P
P

∑
p=1

(∑
h∈H

G(h)p,p)
⎛
⎝ ∑
k1,...,kP ∈K

Tr(G(kp))2
⎞
⎠

(22)

= 1

∣H∣∣K∣P
⎛
⎝∑h∈H

P

∑
p=1

G(h)p,p
⎞
⎠
(∣K∣P−1 ∑

k∈K

Tr(G(k))2) (23)

= 1

∣H∣∣K∣P (∑
h∈H

Tr(G(h))) (∣K∣P−1∣K∣K) (24)

= 1

∣H∣∣K∣P ∣H∣∣K∣PK =K (25)

where beside simple algebra, in Eq. (24), we used the Burnside lemma on WK, which gives us the
number of unique parameters (orbits) as K = 1

∣K∣ ∑k∈K Tr(G(k))2. Similarly for H-action we get
1
∣H∣ ∑h∈H Tr(G(h))2 =H . In Eq. (25) we used the fact that H action on P is transitive (i.e., it has a

single orbit), to get ∣H∣ = ∑h∈H Tr(G(h)). Similarly, due to transitivity of K-action on Q we have
∣K∣ = ∑k∈K Tr(G(k)). Next, we use these same equalities to simplify the second term of Eq. (20):

1

∣H∣∣K∣P ∑
h∈H,k1,...,kP ∈K

P

∑
p=1

P

∑
p′≠p,p′=1

G(h)p,pG
(h)

p′,p′ Tr (G(kp))Tr (G(kp′)) (26)

= 1

∣H∣∣K∣P
P

∑
p=1

P

∑
p′≠p,p′=1

(∑
h∈H

G(h)p,pG
(h)

p′,p′)
⎛
⎝
∣K∣P−2 (∑

k∈K

Tr(G(kp′))
2⎞
⎠

(27)

= 1

∣H∣∣K∣P
⎛
⎝∑h∈H

⎛
⎝
P

∑
p=1

P

∑
p′=1

G(h)p,pG
(h)

p′,p′
⎞
⎠
−
⎛
⎝
P

∑
p=1

G(h)p,p
2⎞
⎠
⎞
⎠
(∣K∣P−2∣K∣2) (28)

= 1

∣H∣ ∑h∈H
⎛
⎝
P

∑
p=1

G(h)p,p
⎞
⎠
⎛
⎝
P

∑
p′=1

G
(h)

p′,p′
⎞
⎠
−
⎛
⎝
P

∑
p=1

G(h)p,p
⎞
⎠

(29)

= 1

∣H∣ ∑h∈H
Tr(G(h))2 −Tr(G(h)) =H − 1. (30)

Eqs. (25) and (30) together with Eq. (16) show that L = H + K − 1, that any linear map WG

equivariant to imprimitive action of K ≀H, can be written using H +K − 1 independent linear bases.
Considering this proof together with our proof for the first part (that the equivariant map of Eq. (2)
has H +K − 1 independent linear bases) completes the proof that any K ≀H-equivariant linear map
is of the form Eq. (2).

B Adaptive Pooling and Attention

While the layer of Eq. (4) performs competitively, to improve its performance we add a novel attention
mechanism. To this end we complement the pool-and-broadcast scheme of Eq. (4) with an adaptive
pooling mechanism using a learned Π̃ ∶ RN → ∆L in Eq. (4), where ∆L is the L-dimensional
probability simplex. Here, one may interpret L as the number of latent classes, analogous to D3

voxels. The pooling matrix Π̃, is a function of input through a linear map W
(`)
3 ∈ RC×L followed by

Softmax ∶ RL → (0,1)L, so that the probability of each point belonging to different classes sums to
one – that is

Π̃n = Softmax ((XW3)n)∀n ∈ [N]. (31)

We then use a linear function that models the interaction between latent classes, for each pair of
channels. This is done using a rank four tensor W4 ∈ RL×L×C×C . As before the result is broadcasted
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back using Π̃⊺

n, giving us the adaptive pooling layer, in which the output for channel c is given by

φ(X)c =
C′

∑
c′=1

Π̃⊺W4,c,c′Π̃Xc. (32)

Intuitively this layer can decide which subset of nodes to pool, and therefore acts like an equivariant
attention mechanism. In experiments, we see further improvement in results when adding this
nonlinear layer to the linear layer of Eq. (4).

C Details on Experiments

C.1 Architecture and Data Processing

Our results are produced using minor architectural variations and limited hyperparameter search.
Concretely, our best-performing models on SEMANTIC3D and S3DIS involve 56 residual-style blocks,
where each block comprises of 2 equivariant linear maps of Eq. (4). Each map involves a single
3D convolution operator with periodic padding and a 3 × 3 × 3 kernel. We use an identity map to
facilitate skip connections within these blocks. The number channels is fixed 64, except the final
block, which maps to the number of segmentation classes (8 for SEMANTIC3D and 13 for S3DIS).
When incorporating adaptive pooling, we utilize 5, 10, 15, 25 and 50 latent classes L for blocks 1-19,
19-29, 30-39, 40-49 and 50-56, respectively and inclusively. Our best-performing model on VKITTI

uses 22 such residual-style blocks with identical architectural hyperparameters. For adaptive pooling,
we then use 5, 10, 15, and 20 latent classes for blocks 1-9, 10-14, 15-19, and 20-22, respectively and
inclusively.

Additionally, while previous works rely on stochastic point cloud subsampling during pre-processing
and reprojection during post-processing, we simply split large point clouds into subsets of 1 million
points each to ameliorate memory issues. We then compute a 9× 9× 9 voxelization over each sample,
and train on mini-batches of 4 such samples. To generate predictions, we stitch predictions on these
smaller samples together.

C.2 Datasets: Training, Validation and Test

Outdoor Scene Segmentation - SEMANTIC3D SEMANTIC3D [20] We hold out 4 of the available
15 training point clouds to use as a validation set, as in [30].

Table 4 reports the overall accuracy (OA), and mean intersection over union (mIoU) for our method
and the competition. We achieve both the best overall accuracy as well as the best mean intersectio
over union.

Method OA mIoU Man-Made
Terrain

Natural
Vegetation

High
Vegetation

Low
Vegetation Buildings Hardscape Scanning

Artifacts Cars

DEEPSETS[50] 89.3 60.5 90.8 76.3 41.9 22.1 94.0 46.5 26.8 85.4
POINTNET[36] 85.7 63.1 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6
SNAPNET[5] 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2
SPG[30] 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4
CONVPOINT[4] 93.4 76.5 92.1 80.6 76.0 71.9 95.6 47.3 61.1 87.7

WREATH PRODUCT NET. (ours) 93.9 75.4 93.4 84.0 76.4 68.2 96.8 45.6 47.4 91.9
WREATH PRODUCT NET. + ATTN (ours) 94.6 77.1 95.2 87.1 75.3 67.1 96.1 51.3 51.0 93.4

Table 4: Performance of various models on the full SEMANTIC3D dataset (semantic-8). Higher is better,
bolded is best. mIoU is unweighted mean intersection over union metric. OA is overall accuracy. Per
class splits show mIoU.

Indoor Scene Segmentation - Stanford Large-Scale 3D Indoor Spaces (S3DIS) The S3DIS

dataset [2] consists of various 3D RGB point cloud scans from an assortment of room types on
six different floor in three buildings on the Stanford campus, totaling almost 600 million points.
Following previous works by [12, 30, 36, 37, 42], we perform 6-fold cross validation with micro-
averaging, computing all metrics once over the merged predictions of all test folds.

Here, we achieve the best overall accuracy as well as mean intersection over union. This is in spite of
the fact that our competition use extensive data-augmentation also for this dataset. In particular, both
KPCONV and CONVPOINT use random jittering and subsampling.
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Figure 7: (top left) RGB scan of a point cloud with 280 994 028 points from the SEMANTIC3D dataset;
(middle left) segmentation results from our method; (bottom left) ground truth segmentation; (top
right) RGB scan of a point cloud with 19 767 991 points from the SEMANTIC3D dataset. (middle
right) segmentation results from our method; (bottom right) ground truth segmentation;

Method OA mIoU Ceiling Floor Wall Beam Column Window Door Chair Table Bookcase Sofa Board Clutter

DEEPSETS[50] 67.3 42.7 81.1 72.4 67.2 16.9 25.8 44.2 48.5 51.0 49.8 21.7 24.4 17.2 34.6
POINTNET[36] 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNET[23] N/A 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0
PCCN[45] N/A 58.3 92.3 96.2 75.9 0.27 6.0 69.5 63.5 65.6 66.9 68.9 47.3 59.1 46.2
SPG[30] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
CONVPOINT[4] 88.8 68.2 95.0 97.3 81.7 47.1 34.6 63.2 73.2 75.3 71.8 64.9 59.2 57.6 65.0
KP-FCNN[43] N/A 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

WREATH PRODUCT NET. (ours) 90.6 71.2 94.3 96.7 80.6 65.0 76.2 62.1 71.9 64.3 62.7 60.2 68.8 63.5 59.9
WREATH PRODUCT NET. + ATTN (ours) 95.8 80.1 97.2 97.8 88.6 72.3 82.0 73.6 78.6 75.1 72.0 73.1 71.4 82.1 77.2

Table 5: Performance of various models on the S3DIS dataset (micro-averaged over all 6 folds). Higher
is better, bolded is best. mIoU is unweighted mean intersection over union metric. OA is overall
accuracy. Per class splits show mIoU.

C.3 Virtual Scene Segmentation - Virtual KITTI

The VKITTI dataset [16] contains 35 monocular photo-realistic synthetic videos with fully annotated
pixel-level labels for each frame and 13 semantic classes in total. Following [12], we project the
2D depth information within these synthetic frames into 3D space, thereby obtaining semantically
annotated 3D point clouds. Similar to the training and evaluation scheme in [12, 29], we separate
the original set of sequences into 6 non-overlapping subsequences and use a 6 fold cross-validation
protocol (with micro-averaging similar to the methodology on S3DIS).

Note that VKITTI is significantly smaller than either SEMANTIC3D or S3DIS, containing only 15 millions
points in total. We hypothesize that these smaller, and sparser point clouds provide little geometric
signal outside vegetation and road structure. This partially explains our only incremental improvement
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Method OA mIoU mAcc

DEEPSETS[50] 74.2 42.9 36.8
POINTNET[36] 79.7 34.4 47.0
ENGELMANN ET AL. 2018[13] 79.7 57.6 35.6
ENGELMANN ET AL. 2017[12] 80.6 54.1 36.2
3P-RNN[49] 87.8 54.1 41.6
SPG[29] 84.3 67.3 52.0

WREATH PRODUCT NET. (ours) 88.4 68.9 58.6
WREATH PRODUCT NET. + ATTN (ours) 90.7 69.5 59.2

Table 6: Performance of various models on the VKITTI dataset (micro-averaged over all 6 folds).
Higher is better, best results are in bold. mIoU is unweighted mean intersection over union metric.
OA is overall accuracy. mAcc is mean accuracy.

over the state of the art (see Table 6). However, we expect future simulations of point cloud scenes
to become increasingly dense, in line with increasingly powerful LiDAR scanners for real world
applications [14, 40], where our simple baselines can potentially produce significant gain both in
accuracy and computation.
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