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Abstract

While using invariant and equivariant maps, it is possible to apply deep learning to a
range of primitive data structures, a formalism for dealing with hierarchy is lacking.
This is a significant issue because many practical structures are hierarchies of
simple building blocks; some examples include sequences of sets, graphs of graphs,
or multiresolution images. Observing that the symmetry of a hierarchical structure
is the “wreath product” of symmetries of the building blocks, we express the
equivariant map for the hierarchy using an intuitive combination of the equivariant
linear layers of the building blocks. More generally, we show that any equivariant
map for the hierarchy has this form. To demonstrate the effectiveness of this
approach to model design, we consider its application in the semantic segmentation
of point-cloud data. By voxelizing the point cloud, we impose a hierarchy of
translation and permutation symmetries on the data and report state-of-the-art
on SEMANTIC3D, $3DIs, and VKITTI, that include some of the largest real-world
point-cloud benchmarks.

1 Introduction

In designing deep models for structured data, equivariance (invariance) of the model to transformation
groups has proven to be a powerful inductive bias, which enables sample efficient learning. A
widely used family of equivariant deep models constrain the feed-forward layer so that specific
transformations of the input lead to the corresponding transformations of the output. A canonical
example is the convolution layer, in which the constrained MLP is equivariant to translation operations.
Many recent works have extended this idea to design equivariant networks for more exotic structures
such as sets, exchangeable tensors and graphs, as well as relational and geometric structures.

This paper considers a nested hierarchy of such structures, or more generally, any hierarchical
composition of transformation symmetries. These hierarchies naturally appear in many settings: for
example, the interaction between nodes in a social graph may be a sequence or a set of events. Or in
diffusion tensor imaging of the brain, each subject may be modeled as a set of sequences, where each
sequence is a fibre bundle in the brain. The application we consider in this paper models point clouds
as 3D images, where each voxel is a set of points with coordinates relative to the center of that voxel.

To get an intuition for a hierarchy of symmetry transformations, consider the example of a sequence
of sequences — e.g., a text document can be viewed as a sequence of sentences, where each sentence
is itself a sequence of words. Here, each inner sequence as well as the outer sequence is assumed
to possess an “independent” translation symmetry. Contrast this with symmetries of an image (2D
translation), where all inner sequences (say row pixels) translate together, so we have a total of two
translations. This is the key difference between the wreath product of two translation groups (former)
and their direct product (latter). It is the wreath product that often appears in nested structures. As is
evident from this example, the wreath product results in a significantly larger set of transformations,
and as we elaborate later, it provides a stronger inductive bias.
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Figure 1: Wreath product can express the symmetries of hierarchical structures: wreath product of three
groupsU “"K "H acting on the set of elemens Q R, can be seen a@adependent copiesf groups,

H, K andU at different level of hierarchy acting on copies ofP; Q andR. Intuitively, a linear map
Wk RFOR RPIR equivariant tdJ K ~H, performs pooling over leaves under each inner rngde
applies equivariant map for each inner structuiue, (W y, W « andW 4 respectively), and broadcasting the
output back to the leaves. 8"K "H -equivariant map can be constructed as the sum of these three contributions,
from equivariant maps at each level of hierarchy.

We are interested in application of equivariant/invariant deep learning to this type of nested structure.
The building blocks of equivariant and invariant MLPs atpiivariant linear mapsf the feedforward

layer. We show that any equivariant linear map for the hierarchical structure is built using equivariant
maps for the individual symmetry group at different levels of the hierarchy. Our construction only
uses additional pooling and broadcasting operations; seg|Fig. 1.

In the following, after discussing related works in Secfipn 2, we give a short background on equivariant
MLPs in Sectior B. Sectidr 4 starts by giving the closed form of equivariant maps for direct product
of groups before moving to the more dif cult case of wreath product in Seftign 4.2. Finally, Seftion 5
applies this idea to impose a hierarchical structure on 3D point clouds. We show that the equivariant
map for this hierarchical structure achieves state-of-the-art performance on the largest benchmark
datasets for 3D semantic segmentation.

2 Related Works

Group theory has a long history in signal process2#],[where in particular Fourier transformation

and group convolution for Abelian groups have found tremendous success over the past decades.
However, among non-commutative groups, wreath product constructions have been the subject of
few works. Rockmor¢39] give ef cient procedures for fast Fourier transforms for wreath products.

In a series of related works Foote et[A5], Mirchandani et al[34] investigate the wreath product

for multi-resolution signal processing. The focus of their work is on the wreath product of cyclic
groups for compression and Itering of image data.

Group theory has also found many applications in machine lear@ijgdnd in particular deep
learning. Design of invariant MLPs for general groups goes back to Shawe-TdgjorMore
recently, several works investigate the design of equivariant networks for general3fjtarid

in nite groups [7,[10,26]. In particular, use of the wreath product for design of networks equivariant
to a hierarchy of symmetries is brie y discussed[88]. Equivariant networks have found many
applications in learning on various structures, from image and3éktto sets[B6,/50], exchangeable
matrices[R]], graphslL, [28,132], and relational datallg], to signals on sphere®|]27]. A large body

of works investigate equivariance to Euclidean isometees, [11,[44]46].

When it comes to equivariant models for compositional structures, contributions have been sparse,
with most theoretical work focusing on semidirect product (or more generally using induced repre-
sentations from a subgroup) to model tensor- elds on homogeneous sBa&ék Direct product of
symmetric groups have been used to model interactions across sets of éijtas] in generaliza-

tions to relational data [18].

Relation to Maron et al. [33] Maron et al[33] extensively study equivariant networks for direct
product of groups; in contrast we focus on wreath product. Since both of these symmetry trans-
formations operate on the Cartesian produdbefets (see Fi]1), the corresponding permutation
groups are comparable. Indeed, direct product action is a sub-group of the imprimitive action of the



wreath product. The implication is that if sub-structures in the hierarchy transform independently
(e.g, in sequence of sequences), then using the equivariant maps proposed in this paper gives a
strictly stronger inductive bias. However, if sub-structures move togeghgriqt an image), then

using a model equivariant to direct product of groups is preferable. One could also compare the
learning bias of these models by noting that when using wreath product, the number of independent
linear operators grows with the “sum” of independent operators for individual building blocks; in
contrast, this number grows with the “product” of independent operators on blocks when using direct
product. In the following we speci cally contrast the use of direct product with wreath product for
compositional structures.

3 Preliminaries

3.1 Group Action

AgroupG “ge is a set equipped with a binary operation, such that the set is closed under this
operationgh >G, the operation is associativg,hke “ghek, there exists identity elemeat-G,
and a unique inverse for eagh> G satisfyinggg * e The action ofG on a nite setN is a function

G N Nthattransforms the elementsf for each choice off >G; for short we writeg n
instead of “g;ne. Group actions preserve the group structure, meaning that the transformation
associated with the identity element is idengtyn  n, and composition of two actions is equal to
the action of the composition of group elemetdde n g “h ne. Such a set, with &-action
de ned on it is called &-set. The group action N naturally extends ta >R®*S where it de nes
a permutation of indiceg "Xi1;:::; XN "Xg1,:ii;Xgn . We often use a permutation matrix
G 9 >70;1+N N to represent this action —that& 9°x g x.

3.2 Equivariant Multilayer Perceptrons

Afunction RN RMis equivariant to a given actions of gro@iff “G 9"xe G 9 “xe for

anyx >RN andg >G. That is, a symmetry transformation of the input results in the corresponding
symmetry transformation of the output. Note that the action on the input and output may in general
be different. In particular, whe® ¢ |y for all g — that is, the action on the output is trivial

— equivariance reduces to invariance. Héggjs theM M identity matrix. For simplicity and
motivated by practical design choices, we assume the same action on the input and output.

For a feedforward layer x ( "Wx , where is a point-wise non-linearity and/ >RN N | the

equivariance condition above simpli es to commutativity conditBr*W WG 9! g >G. This
imposes a symmetry oW in the form of parameter-sharing8, 47]. While we can use computational
means to solve this equation for any nite group, an ef cient implementation requires a closed form
solution. Several recent works derive the closed form solutions for interesting groups and structures.
Note that in general the feedforward layer may have multiple input and output channels, with identical
G-action on each channel. This only require replicating the parameter-sharing paWérnfan each
combination of input and output channel. An Equivariant MLP is a stack of equivariant feed-forward
layers, where the composition of equivariant layers is also equivariant. Therefore, our task in building
MLPs equivariant to nite group actions is reduced to nding equivariant linear maps in the form of
parameter-sharing matrices satisfy@g®W WG 9! g >G; see Fig. 4(a.1,a.2) foW that are
equivariant taCy4, the group of circular translations of 4 objects (a.1), and symmetric ¢sguihe

group of all permutations of 4 objects (a.2).

4 Equivariant Map for Product Groups

In this section we formalize thienprimitive actionof the wreath product, which is used in describing

the symmetries of hierarchical structures. We then introduce the closed form of linear maps equivariant
to the wreath product of two groups. With hierarchies of more than two levels, one only needs to
iterate this construction. To put this approach in perspective and to make the distinction clear, rstwe
present the simpler case of direct product; see [33] for an extensive discussion of this setting.



4.1 Equivariant Linear Maps for Direct Product of Groups

The easiest way to combine two groups is through their direct

productG H K. Here, the underlying set is the Cartesian

product of the input sets and group operatiofhisks™ h®k%

"hh%kk%. If P is anH -set andQ a K -set then the group

G H K naturallyactsomN P Qusing™h;ke “p;cr

“h p;k o-; see Fig. 2. This type of product is useful in

modeling the Cartesian product of structures. The following

claim characterises the equivariant map for direct product OfFigure 2:Direct product action.
two groups using the equivariant map for building blocks.

Claim 1. LetG ™ represent -action, and leW  >RP P be an equivariant linear map for
this action. Similarly, leW ¢ R9 @ be equivariant tK -action given byG ** for k >K . Then,

the product grougds H K naturally acts orRN  RPQ usingG'®® G ™ a G ¥, and the

Kronecker producW ¢ Wy a W, is aG-equivariant linear map.

Note that the claim is not restricted to permutation acfidte proof follows from thenixed-product
propertyof the Kronecker produgtand the equivariance 8% ; andW  :

G%Wsg "GM™MaG e WhaWke "G™Whea "G Kwyge
"WHG Mea WG e "WyaWge G "aG ke WeGY | g>G:

An implication of the tensor product form @ , « is that the number of independent linear operators

of the product map (free parameters in the parameter-sharing) is the product of the independent
operators of the building blocks. Note that whenever dealing with product of inputs belondig to
andR @, the result which belongs "< and therefore it is vectorized.

Example 1(Convolution in Higher Dimensions)D-dimensional convolution is a Kronecker (tensor)
product of one-dimensional convolutions. The number of parameters grows with the product of kernel
width across all dimensions; Fig. 4(a.1) shows the parameter-sharing for circular 1D convolution
W ¢,, and (b.1) shows the parameter-sharing for the direct profet, c, .

Example 2 (Exchangeable TensorsiHartford et al.[21] introduce a layer for modeling interactions
across multiple sets of entities,g, a user-movie rating matrix. Their model can be derived as the
Kronecker product of 2-parameter equivariant layer for séi§][ The number of parameters is
therefore2® for a rankD exchangeable tensor. Fig. 4(b.1) shows the 2-parameter nvédgffor
sets, and (c.1) shows the parameter-sharing for the direct produgt s, .

4.2 Wreath Product Action and Equivariance to a Hierarchy of Symmetries

Let us start with an informal de nition. Suppose as befBrandQ are respectively aHl -set and a

K -set. We can attach one copy@fto each element d®. Each of these inner sets or bers have
their own copy oK acting on them. Action off onP simply permutes these bers. Therefore the
combination of alK actions on all inner sets combined whitaction on the outer set de nes the
action of the wreath product dd Q. Fig. 3 demonstrates how one poipt g moves under this
action. Next few paragraphs formalize this.

Semidirect Product. Formally, wreath product is de ned usirggmidirectproduct which is a
generalization of direct product. In part due to its use in building networks equivariant to Euclidean
isometries, application of semidirect product in building equivariant networks is explored in several
recent works; se€l)] and citations therein. In semidirect product, the underlying set (of group
members) is again the product set. However the group operation is more involved. The (external)
semi-direct produdt K # H, requires diomomorphism H  Aut”K e that for each choice of

2The tensor product of irreducible representation of two distinct nite groups is an irreducible representation
for the product group. Therefore this construction of equivariant maps can be used with a decomposition into
irreducible representations for the general linear case.
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Figure 4:Parameter-sharing patter in the equivariant linear maps for compositional structures. Equivariant
maps for sequence and set are given in the rst coluanh,@.9. The rst row shows the maps equivariant to
variousproductsof sets and sequences, while the second row is the corresponding nmgsted structure
Product Structures: (b.1) product of sequences (as in image) 1) product of sets (exchangeable matrices);
(d.1) product of a set and a sequenca®]l) product of a sequence and a set. In the notation, the outer structure
appears rstinH K. Hierarchical Structures: (b.2) sequence of sequencesd, multi-resolution sequence
model); €.2) nested set of setsil 2) set of sequencese @ sequences of sets (similar to the model used in the
application section.) In wreath product notation, the outer structure appszradn K “H. Note how the
equivariant map for the hierarchy is a scaled version of the map for the outer structure with copies of the inner
structure maps appearing as diagonal blocks.

h >H, re-labels the elements Bf while preserving its group structure. Usingthe binary operation

for the product grougc K # H is de ned as"h;ke"h®k% "hh%®k ,,"k%e. A canonical
example is the semidirect product of translatiokg @nd rotationsK ), which identi es the group of

all rigid motions in the Euclidean space. Here, each rotation de nes an automorphism of translations
(e.g, moving north becomes moving east aéf clockwise rotation).

Now we are ready to de ne the wreath product of two groups.
As before, leH andK denote two nite groups, and |€ be
anH -set. De neB as the direct product® P Sopies oK,
and index these copies ij>P: B K, ::: Kp i Kp.

SinceP is anH -set,H also naturally acts oB by permuting

the bers K. The semidirect produ@ # H de ned using this

automorphism oB is called the wreath product, and written

asK "H. Each member of the product group can be identi egigure 3:imprimitive action of wreath
by the pair”h; b, whereb as a member of theasegroup itself product.

is aP-tuple. This shows that the order of the wreath product

group isX $ $1 Swhich can be much larger than the direct product grdup H , whose order is
¥ 33S

4.2.1 Imprimitive Action of Wreath Product

If in addition toP being anH -set,K action onQ is also de ned, the wreath product group acts on

“hiky;iiikpe "pige Thopiknp oe:
Intuitively, H permutes the copies & acting on eacl, and itself acts o?. We can think ofP as
the outer structure an@ as the inner structure; see Fig. 3.

Example 3(Sequence of Sequencegjonsider our early example where bdth Cp andK  Cq
are cyclic groups with regular actiond®? H,Q K. Each member of the wreath produgs ~“Cp ,
acts by translating each inner sequence using someCy, while c®> Cp translates the outer
sequence bg*®



Let theP P permutation matrixG ™ represent the action ¢f >H, and theQ Q matrices
P Qisthe followingPQ P Q permutation matrix:

“he ~ ke, Ll “he ~kqe
i 1;1G o Gl;PG

P ~
G Q lpnpa G X 1)
p

1

B

“he ~"kpe. ... “he ~"kpe
p.1G 7T it GppG A
where1l,hp is @aP P matrix whose only
nonzero element is at roprand columrh p with

the value of 1; an@ ;?’;,Eis the element at roy

and columm®of the permutation matri@ ™.

In the summation formulation, the Kronecker
productl,n, a G % puts a copy of permu-
tation matrixG *»* as a block ofG ¢°. Note
it 1 e e T T et o et st
haveP 1 (permutation) matrices participating'ct ¢ ™) on the right, is built from permutations of
in creatingGAg', compared with two matricesthe outer structure usin@ " and mdgpendent permu-

. T . i i “kie. ... kg
in the vanilla Kronecker product; see Fig. 5. '2Uons of inner structure ™7;:::3G "

4.2.2 Equivariant Map

Consider a hierarchical structure, potentially with more than two levels of hierarchy, such as a set
of sequences of images. Moreover, suppose that we have an equivariant map for each individual
structure. The question answered by the following theorem is: how to use the equivariant map for
each level to construct the equivariant map for the entire hierarchy? For now we only consider two
levels of hierarchy; extension to more levels follows naturally, and is discussed later. Note that one
instance of the hierarchye(g, a sequence of sets) belongsRB?, because each instance of the
structure is irRQ and the outer structure is of siBe— that is vectorization of the input follows the
hierarchy.

Theorem 4.1. Let W -4 > RPQ PQ be the matrix of some linear map equivariant to the
imprimitive action oK "H onP Q. Any such map can be written as follows

qﬂmes
3111 11111111111111111,11111111111111111111u

Wk WHa“lQlao lpaWg; where 1o 1;:::;17; (2)

Ip istheP P identity matrix, W 4 >RP P is H-equivariant, andV x >R® @ is equivariant
to K -action.

Proof is in Appendix A. Pictorially, the rst term of Eq. (2) scales up the matklx, , while the

second term adds copies \0f ¢ on the diagonal blocks of the scaled matrix. Assunmsetsof
independent equivariant linear operatovg x « and™W ¢, from Eq. (2) it is evident that theumber

of indefendent linear operatoesjuivariant taKk “H grows with the sum of those of the building
blocks? These operators may be combined using any parameter to create a parameterized linear
map, which in turn can be expressed using parameter-sharing in a vanilla feed-forward layer. This in
contrast with direct product in which the number of free parameters has a product form.

Example 4 (Various Hierarchies of Sets and Sequencé&X)nsider two of the most widely used
equivariant maps, translation equivariant convolutidhc, , and Sg-equivariant map which has
the formW s, wilg W, [50]. There are four combinations of these structures in a two level
hierarchical structure: 1) set of sef ~Sp ; 2) sequence of sequendgg ~ Cp ; 3) set of sequences
Co " Sp; 4) sequence of se8, ~Cp . Fig. 4(b.2-e.2) show the parameter-sharing matrix for these
hierarchical structures, assuming a full kernel in 1D circular convolution.

“In the proof we show that the number of parameters is the sum of those of the building blocks minus one.
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