
Appendix: Convolutional Tensor-Train LSTM for
Spatio-temporal Learning

Jiahao Su∗12† Wonmin Byeon∗2 Jean Kossaifi2

Furong Huang1 Jan Kautz2 Anima Anandkumar2

jiahaosu@umd.edu, {wbyeon,jkossaifi}@nvidia.com

furongh@cs.umd.edu, {jkautz,aanandkumar}@nvidia.com

1University of Maryland, College Park, MD 2NVIDIA Research, Santa Clara, CA

∗Equal contribution †This work was done while the first author was an intern at NVIDIA.

Project page: https://sites.google.com/nvidia.com/conv-tt-lstm

In the supplementary material, we first provide a constructive proof that our approach can be computed
with linear complexity in time. We then provide complete implementation details for all experiments
and perform additional ablation studies of our model, demonstrating that our Conv-TT-LSTM model
is general and outperforms regular ConvLSTM with varying settings. Finally, we provide additional
visualizations of our experimental results.

To facilitate the reading of our paper, we provide a Table of notations in Table 5.

Symbol Meaning Value or Size
H Height of feature map

-W Width of feature map
Cin # of input channels
Cout # of output channels
t Current time step -
W Weights for X (t) [K ×K × 4Cout × Cin]
X (t) Input features [H ×W × Cin]

H(t) Hidden state

[H ×W × Cout]

C(t) Cell state
I(t) Input gate
F(t) Forget gate
C̃(t) Cell memory
O(t) Output gate

Φ Mapping function for higher-order RNN -
M order of higher-order RNN

M ≥ N
N Order of CTTD
K Initial filter size

K(0) = K
K(i) Filter size in K̃(i)
C(i) # channels in H̃(i) C(0) = 4Cout
G(i) Factors in the CTTD [K(0)×K(0)× C(i)× C(i− 1)]

D Size of sliding window D = M −N + 1
P(i) Preprocessing kernel [D ×K ×K × Cout × C(i)]
H̃(i) Pre-processed hidden state [H ×W × C(i)]
K(i) Weights for H̃(i) [K(i)×K(i)× C(i)× C(0)]

Table 5: Table of notations.

14

https://sites.google.com/nvidia.com/conv-tt-lstm

A An Efficient Algorithm for Convolutional Tensor-Train Module

This section proves that our convolutional tensor-train module, CTT (Eq.(9) in main paper), can be
evaluated with linear computational complexity. Our proof is constructive and readily provides an
algorithm for computing CTT in linear time.

First, let’s recall the formulation of the CTT function:

Φ = CTT(H(t− 1), · · · ,H(t−N); G(1), · · · ,G(N)) =

N∑
i=1

K(i) ∗ H(t− i), (14)

where K(i) is the i-th kernel with size [K(i)×K(i)×C(i)×C(0)] (K(i) = i[K(1)− 1] + 1 is the
filter size that increases linearly with i; K(1) is the initial filter size; C(i) is the number of channels
inH(t− i); and C(0) is the number of channels for the output of the function Φ). Moreover, each
kernel K(i) is factorized by convolutional tensor-train decomposition (CTTD).

K(i):,:,ci,c0 , CTTD
(
{G(j)}ij=1

)
=

C(i−1)∑
ci−1=1

· · ·
C(1)∑
c1=1

G(i):,:,ci,ci−1 ∗ · · · ∗ G(1):,:,c1,c0 , ∀i ∈ [N]. (15)

However, a naive algorithm that first reconstruct all the kernels K(i), then applies Eq.(14) results in
computational complexity of O(N3), as illustrated in Eq.(1). To scale our approach to higher-order
models (i.e., larger N), we need a more efficient implementation of the function CTT.

Algorithm 1: Convolutional Tensor-Train LSTM (Original: T (N) = O(N3)).
Input: current input X (t), previous cell state C(t− 1),

M previous hidden states {H(t− 1), · · · ,H(t−M)}
Output: new hidden stateH(t), new cell state C(t)
Initialization: K(0) = 1; V = 0
/* Convolutional Tensor-Train (CTT) module */
for i = 1 to N do

/* preprocessing module */
// compress the states from a sliding window
H̃(i) = P(i) ∗ [H(t− i); · · · ;H(t− i+N −M)]
// recursively construct the kernel
K(i) = G(i) ∗ K(i− 1)
// accumulate the output
V = V +K(i) ∗ H̃(i)

end for
/* Long-Short Term Memory (LSTM) */[
I(t);F(t); C̃(t);O(t)

]
= σ(W ∗ X (t) + V)

C(t) = C(t− 1) + C̃(t) ◦ I(t); H(t) = O(t) ◦ σ(C(t))
returnH(t), C(t)

Recursive evaluation. We will prove that CTT can be evaluated backward recursively using

V(i− 1):,:,ci−1 =

C(i)∑
ci=1

G(i):,:,ci,ci−1 ∗ (V(i):,:,ci +H(i):,:,ci) , i = N,N − 1, · · · , 0 (16)

where V(N) is initialized as zeros, and the final output of CTT is equal to V(0).

Proof. First, we note that K(i) can be represented recursively in terms of K(i− 1) and G(i):

K(i):,:,ci,c0 =

C(i−1)∑
ci−1=1

G(i):,:,ci,ci−1 ∗ K(i− 1):,:,ci−1,c0 (17)

15

with K(1) = G(1). Next, we aim to inductively prove the following holds for any n ∈ [N]:

Φ:,:,c0 =

n∑
i=1

C(i)∑
ci=1

K(i):,:,ci,c0 ∗ H(t− i):,:,ci +

C(n)∑
cn=1

K(n):,:,cn,c0 ∗ V(n):,:,cn , (18)

and therefore it holds for n = 1, Φ:,:,c0 =
∑C(1)

c1=1 G(1):,:,c1,c0 ∗ (V(1):,:,c1 +H(1):,:,c1) = V(0):,:,c0 .

Notice that the case n = N is obvious by the definition of CTT and the zero initialization of V(N).
Therefore the remaining of this proof is to induce the case n = N − 1 from n = N .

Φ:,:,c0 =

N∑
i=1

C(i)∑
ci=1

K(i):,:,ci,c0 ∗ H(t− i):,:,ci +

C(N)∑
cN=1

K(N):,:,cN ,c0 ∗ V(N):,:,cN (19)

=

N−1∑
i=1

C(i)∑
ci=1

K(i):,:,ci,c0 ∗ H(t− i):,:,ci +

C(N)∑
cN=1

K(N):,:,cN ,c0 ∗ (H(N):,:,cN +H(N):,:,cN)︸ ︷︷ ︸ (20)

Notice that the second term can be rearranged as

C(N)∑
cN=1

K(N):,:,cN ,c0 ∗ (H(N):,:,cN +H(N):,:,cN) (21)

=

C(N)∑
cN=1

[C(N−1)∑
cN−1=1

G(N − 1):,:,cN ,cN−1 ∗ K(N − 1):,:,cN−1,c0︸ ︷︷ ︸
K(N):,:,cN ,c0 , by Eq.(17)

]
∗ (H(N):,:,cN +H(N):,:,cN) (22)

=

CN−1∑
cN−1=1

K(N − 1):,:,cN−1,c0 ∗
[C(N)∑

cN=1

G(N − 1):,:,cN ,cN−1 ∗ (H(N):,:,cN +H(N):,:,cN)︸ ︷︷ ︸
V(N−1):,:,N−1, by Eq.(16)

]
(23)

=

C(N−1)∑
cN−1=1

K(N − 1):,:,cN−1,c0 ∗ V(N − 1):,:,N−1 (24)

where Eq.(22) uses the recursive formula in Eq.(17), and Eq.(23) is by definition of V(N − 1) in
Eq.(16). Therefore, we show that the case n = N − 1 also holds

Φ:,:,c0 =

N−1∑
i=1

C(i)∑
ci=1

K(i):,:,ci,c0 ∗ H(t− i):,:,ci +

C(N−1)∑
cN−1=1

K(N − 1):,:,cN−1,c0 ∗ V(N − 1):,:,N−1 (25)

which completes the induction from n = N to n = N − 1.

B Experimental Details

This section provides detailed setups of all experiments (datasets, model architectures, learning
strategies, and evaluation metrics) for video prediction and early activity recognition.

B.1 Preprocessing Module

In the main paper, we use a sliding window to concatenate consecutive states in the preprocessing
module (section 3). In the discussion (section 5), we argued that other possible approaches are less
effective in preserving spatio-temporal structure than our sliding window approach. Here, we discuss
an alternative approach previously proposed for non-convolutional higher-order RNN [9], which we
name as fixed window approach. We will compare these two approaches in computational complexity,
temporal structure-preserving, and predictive performance.

16

Algorithm 2: Convolutional Tensor-Train LSTM (Accelerated: T (N) = O(N)).
Input: current input X (t), previous cell state C(t− 1),

M previous hidden states {H(t− 1), · · · ,H(t−M)}
Output: new hidden stateH(t), new cell state C(t)
Initialization: K(0) = 1; V(N) = 0
/* Convolutional Tensor-Train (CTT) module */
for i = N to 1 do

/* preprocessing module */
// compress the states from a sliding window
H̃(i) = P(i) ∗ [H(t− i); · · · ;H(t− i+N −M)]
// recursively compute the intermediate results

V(i− 1) = G(i) ∗
(
V(i) + H̃(i)

)
;

end for
/* Long-Short Term Memory (LSTM) */[
I(t);F(t); C̃(t);O(t)

]
= σ (W ∗ X (t) + V(0))

C(t) = C(t− 1) + C̃(t) ◦ I(t); H(t) = O(t) ◦ σ(C(t))
returnH(t), C(t)

Fixed window approach. With fixed window approach, M previous steps {H(t− 1), · · · ,H(t−
M)} are first concatenated into a single tensor, which is then repeatedly mapped to N inputs
{H̃(1), · · · , H̃(N)} to the CTT module.

Fixed Window (FW): H̃(i) = P(i) ∗ [H(t− 1); · · · ;H(t−N)] (26a)

Sliding Window (SW): H̃(i) = P(i) ∗ [H(t− i); · · · ;H(t− i+N −M)] (26b)

For comparison, we list both equations for the fixed window approach and the sliding window
approach. We also illustrate these two approaches in Figure 5.

Drawbacks of fixed window approach. (a) The fixed window approach has a larger window size
than the sliding window approach, thus requires more parameters in the preprocessing kernels and
higher computational complexity. (b) More importantly, the fixed window approach does not preserve
the chronological order of the preprocessed states; unlike sliding window approach, the index i
for H̃(i) in fixed window approach cannot reflect the time for the compressed states. Actually, all
preprocessed states H̃(1), · · · , H̃(M) are equivalent, which violates the property (2) in designing
our convolutional tensor-train module (Section 3.1). (c) In Table 8, we compare these two approaches
on Moving-MNIST-2 under the same experimental setting, and we find that the sliding window
approach performs slightly better than the fixed window. We choose sliding window approach in our
implementation of the preprocessing module for all the reasons above.

B.2 Model Architectures

Video prediction. All experiments use a 12-layers ConvLSTM / Conv-TT-LSTM with 32 channels
for the first and last 3 layers, and 48 channels for the 6 layers in the middle. A convolutional
layer is applied on top of all recurrent layers to compute the predicted frames, followed by an extra
sigmoid layer for the KTH action dataset. Following Byeon et al. [45], we add two skip connections
performing concatenation over channels between (3, 9) and (6, 12) layers. An illustration of the
network architecture is included in Figure 6a. All convolutional kernels are initialized by Xavier’s
normalized initializer [49] and initial hidden/cell states are initialized as zeros.

Early activity recognition. Following [7], the network architecture consists of four modules: a 2D-
CNN encoder, a video prediction network, a 2D-CNN decoder and a 3D-CNN classifier, as illustrated
in Figure 6b. (1) The 2D-CNN encoder has two 2-strided 2D-convolutional layers with 64 channels,
which reduce the resolution from 224× 224 to 56× 56, and (2) the 2D-CNN decoder contains two
2-strided transposed 2D-convolutional layers with 64 channels, which restore the resolution from

17

H(t−2:t−4)

P(3)

*

*

*

P(2)

P(1)

H(t−1:t−3)

H(t−3:t−5)

H (1)
~

H (2)
~

H (3)
~

(a) Sliding window approach (final implementation)

P(3)

H(t−1:t−5)

*

*

*

P(2)

P(1)

H (1)
~

H (2)
~

H (3)
~

(b) Fixed window approach (alternative)

Figure 5: Variations of proprocessing modules.

56× 56 to 224× 224. (3) The video prediction network is miniature version of Figure 6a, where the
number of layers in each block is reduced to 2. In the experiments, we evaluate three realizations
of each layer: ConvLSTM, Conv-TT-LSTM or causal 3D-convolutional layer. (4) The 3D-CNN
classifier takes the last 16 frames from the input and predicts a label for the 41 categories. The
classifier contains two 2-strided 3D-convolutional layers with stride 2 and 128 channels, each of
which is followed by a 3D-pooling layer. These layers reduce the resolution from 56× 56 to 7× 7,
and the output feature is fed into a two-layer perceptron with 512 hidden units for a predictive label.

Conv-TT-LSTM x 3
(32)

Conv-TT-LSTM x 3
(48)

Conv-TT-LSTM x 3
(48)

Conv-TT-LSTM x 3
(32)

X̂ (t+1)

X (t)

(a) Prediction model

2D-CNN Encoder

Prediction model
(Conv-TT-LSTMs)

2D-CNN Decoder

Classifier

X (t)

ŷX̂ (t+1)

(b) Recognition model

Figure 6: Network architecture for video prediction and early activity recognition tasks.

B.3 Training Strategy

To facilitate training, we argue for a careful choice of learning scheduling and gradient clipping.
Specifically, various learning scheduling techniques, including learning rate decay, scheduled sam-
pling [50], and curriculum learning with varying weighting factors, are added during training. (1)
For video prediction, we use learning rate decay along with scheduled sampling, where scheduled
sampling starts if the model does not improve for a few epochs in terms of validation loss. (2) For
early activity recognition, we combine learning rate decay with weighting factor decay, where the
weighting factor decreases linearly λ := max(λ− ε, 0) on the plateau. (3) We also found gradient
clipping essential for higher-order models. We train All models with ADAM optimizer [23]. In the
initial experiments, we found that our models are unstable at a high learning rate 1e−3, but learn
poorly at a low learning rate of 1e−4. Consequently, we use gradient clipping with learning rate of
1e−3, with a clipping value of 1 for all experiments.

18

B.4 Hyper-parameters Selection

Table 6 summarizes our search values for different hyper-parameters for Conv-TT-LSTM. (1) For
filter size K, we found models with larger filter size K = 5 consistently outperform the ones with
K = 3. (2) For learning rate, we found that our models are unstable at a high learning rate such
as 10−3, but learn poorly at a low learning rate 10−4. Consequently, we use gradient clipping with
learning rate 10−3, with clipping value 1 for all experiments. (3) While the performance typically
increases as the order grows, the model suffers gradient instability in training with a high order, e.g.,
N = 5. Therefore, we choose the orderN = 3 for all Conv-TT-LSTM models. (4)(5) For small ranks
C(i) and steps M , the performance increases monotonically with C(i) and M . But the performance
stays on plateau when we further increase them, therefore we settle down at C(i) = 8,∀i and M = 5
for all experiments.

Filter size K Learning rate Order of CTTD N Ranks of CTTD C(i) Time steps M

{3, 5} {10−4, 5× 10−4, 10−3} {1, 2, 3, 5} {4, 8, 16} {1, 3, 5}

Table 6: Hyper-parameters search values for Conv-TT-LSTM experiments.

Similarly, Table 7 summarize the hyper-parameters search for tensor-train compression of ConvL-
STM [28]. (1) Since the best ConvLSTM baseline has filter size K = 5, we only consider K = 5 in
the compression experiments. (2) We observe that the compressed ConvLSTM models consistently
achieve better performance with learning rate 10−3. (3)(4) The compressed ConvLSTMs are robust
to different order and ranks, and N = 2, R = 8 wins by a small margin.

Filter size K Learning rate Order of TTD N Ranks of TTD R

5 {10−4, 10−3} {2, 3} {8, 16, 32}

Table 7: Hyper-parameters search values for Tensor-Train compression of ConvLSTM.

B.5 Datasets

Moving-MNIST-2 dataset. We generate the Moving-MNIST-2 dataset by moving two digits with
size 28 × 28 in the MNIST dataset within a 64 × 64 black canvas. These digits are placed at a
random initial location and move with constant velocity in the canvas and bounce when they reach
the boundary. Following Wang et al. [6], we generate 10,000 videos for training, 3,000 for validation,
and 5,000 for test with default parameters in the generator3.

KTH action dataset. The KTH action dataset [20] contains videos of 25 individuals performing six
types of actions on a simple background. Our experimental setup follows Wang et al. [6], which uses
persons 1-16 for training and 17-25 for testing, and we resize each frame to 128× 128 pixels. We
train all our models to predict 10 frames given 10 input frames. We randomly select 20 contiguous
frames from the training videos as a sample and group every 10,000 samples into one epoch to apply
the learning strategy, as explained at the beginning of this section.

Something-Something V2 dataset. The Something-Something V2 dataset [21] is a benchmark for
activity recognition, which can be download online4. Following Wang et al. [7], we use the official
subset with 41 categories that contains 55111 training videos and 7518 test videos. The video length
ranges between 2 and 6 seconds with 24 frames per second (fps). We reserve 10% of the training
videos for validation, and use the remaining 90% for optimizing the models.

B.6 Evaluation Metrics

We use two traditional metrics, MSE (or PSNR) and SSIM [51], and a recently proposed deep-
learning-based metric LPIPS [52], which measures the similarity between features from different

4https://20bn.com/datasets/something-something

19

https://20bn.com/datasets/something-something

layer. Since MSE (or PSNR) is based on pixel-wise difference, it favors vague and blurry predictions
— thus, it is not a proper measurement of perceptual similarity. While SSIM was initially proposed
to address the problem, Zhang et al. [52] shows that their proposed LPIPS metric aligns better with
human perception.

B.7 Ablation Studies

Here, we show that our proposed Conv-TT-LSTM consistently improves the performance of Con-
vLSTM, regardless of the architecture, loss function, and learning schedule used. Specifically, we
perform three ablation studies on our experimental setting, by (1) Reducing the number of layers
from 12 layers to 4 layers (same as [4] and [6]); (2) Changing the loss function from L1 + L2 to
L1 only; and (3) Disabling the scheduled sampling and use teacher forcing during training process.
We compare the performance of our proposed Conv-TT-LSTM against the ConvLSTM baseline in
these ablated settings, Table 8. The results show that our proposed Conv-TT-LSTM consistently
outperforms ConvLSTM in all settings, i.e., the Conv-TT-LSTM model improves upon ConvLSTM in
a board range of setups, which is not limited to the specific setting used in our paper. These ablation
studies further show that our setup is optimal for predictive learning in Moving-MNIST-2 dataset.

Model Layers Sched. Loss (10 -> 30) Params.4 12 TF SS `1 `1 + `2 MSE SSIM LPIPS

ConvLSTM -
3 5 5 3 5 3

37.19 0.791 184.2 11.48M
Conv-TT-LSTM FW 31.46 0.819 112.5 5.65M

ConvLSTM -
5 3 3 5 5 3

33.96 0.805 184.4 3.97M
Conv-TT-LSTM FW 30.27 0.827 118.2 2.65M

ConvLSTM -
5 3 5 3 3 5

36.95 0.802 135.1 3.97M
Conv-TT-LSTM FW 34.84 0.807 128.4 2.65M

ConvLSTM -
5 3 5 3 5 3

33.08 0.806 140.1 3.97M
Conv-TT-LSTM FW 28.88 0.831 104.1 2.65M
Conv-TT-LSTM SW 5 3 5 3 5 3 25.81 0.840 90.38 2.69M

Table 8: Evaluation of ConvLSTM and our Conv-TT-LSTM under ablated settings. In this table, FW
stands for fixed window approach, SW stands for sliding window approach; For learning scheduling,
TF denotes teaching forcing and SS denotes scheduled sampling. The experiments show that (1) our
Conv-TT-LSTM is able to improve upon ConvLSTM under all settings; (2) Our current learning
approach is optimal in the search space; (3) The sliding window approach outperforms the fixed
window one under the optimal experimental setting.

C Additional Experimental Results

Per-frame evaluations. The per-frame metrics are illustrated in Figure 7 for Moving-MNIST-2
dataset, and Figure 8 for KTH action dataset. (1) In the Moving-MNIST-2 dataset, PredRNN++
performs comparably with our Conv-TT-LSTM on early frames, but drops significantly for long-
term prediction. E3D-LSTM performs similarly to ConvLSTM baseline, and our Conv-TT-LSTM
consistently outperforms E3D-LSTM and ConvLSTM over all frames. (2) In the KTH action dataset,
PredRNN++ consistently perform worse than our Conv-TT-LSTM model for all frames; E3D-LSTM
performs well on early frames in MSE and SSIM, but quickly deteriorates for long-term prediction.

Additional visual results: Video prediction. Figure 9, 10, 11, 12, 13, and 14 show additional visual
comparisons. We also attach two video clips (KTH and MNIST) as supplementary material.

Additional visual results: Early activity recognition. We attach two video clips (video 1 and 2) as
supplementary material. The videos show the comparisons among 3D-CNN, Conv-LSTM and our
Conv-TT-LSTM when the input frames are partially seen. The time-frame of the video corresponds
to an amount of video frames seen by the models.

20

Figure 7: Frame-wise comparison in MSE, SSIM and PIPS on Moving-MNIST-2 dataset. For
MSE and LPIPS, lower curves denote higher quality; while for SSIM, higher curves imply better
quality. Our Conv-TT-LSTM performs better than ConvLSTM baseline, PredRNN++ [6] and E3D-
LSTM [7] in all metrics (except for PredRNN++ in term of MSE).

Figure 8: Frame-wise comparison in PSNR, SSIM and PIPS on KTH action dataset. For LPIPS,
lower curves denote higher quality; For PSNR and SSIM, higher curves imply better quality. Our
Conv-TT-LSTM outperforms ConvLSTM, PredRNN++ [6] and E3D-LSTM [7] in SSIM and LPIPS.

input ground truth (top) / predictions
t = 1 4 6 8 11 13 15 17 19 21 23 25 27 29

E3D-LSTM

Conv-TT-LSTM

Figure 9: 20 frames prediction on KTH given 10 input frames. Every 2 frames are shown.

input ground truth (top) / predictions
t = 1 4 6 8 11 13 15 17 19 21 23 25 27 29

E3D-LSTM

Conv-TT-LSTM

Figure 10: 20 frames prediction on KTH given 10 input frames. Every 2 frames are shown.

21

input ground truth (top) / predictions
t = 1 4 6 8 11 13 15 17 19 21 23 25 27 29

E3D-LSTM

Conv-TT-LSTM

Figure 11: 20 frames prediction on KTH given 10 input frames. Every 2 frames are shown.

input ground truth (top) / predictions
t = 1 4 6 8 11 13 15 17 19 21 23 25 27 29

E3D-LSTM

Conv-TT-LSTM

Figure 12: 20 frames prediction on KTH given 10 input frames. Every 2 frames are shown.

input ground truth (top) / predictions
t = 1 4 6 8 11 14 17 20 23 26 29 32 35 38

PredRNN++

E3D-LSTM

ConvLSTM

Conv-TT-LSTM

Figure 13: 30 frames prediction on Moving-MNIST given 10 input frames. Every 3 frames are shown.
The first frames (t = 1 and 11) are animations. To view the animation, Adobe reader is required.

input ground truth (top) / predictions
t = 1 4 6 8 11 14 17 20 23 26 29 32 35 38

PredRNN++

E3D-LSTM

ConvLSTM

Conv-TT-LSTM

Figure 14: 30 frames prediction on Moving-MNIST given 10 input frames. Every 3 frames are shown.
The first frames (t = 1 and 11) are animations. To view the animation, Adobe reader is required.

22

	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	12.0:
	12.1:
	12.2:
	12.3:
	12.4:
	12.5:
	12.6:
	12.7:
	12.8:
	12.9:
	anm12:
	13.0:
	13.1:
	13.2:
	13.3:
	13.4:
	13.5:
	13.6:
	13.7:
	13.8:
	13.9:
	13.10:
	13.11:
	13.12:
	13.13:
	13.14:
	13.15:
	13.16:
	13.17:
	13.18:
	13.19:
	13.20:
	13.21:
	13.22:
	13.23:
	13.24:
	13.25:
	13.26:
	13.27:
	13.28:
	13.29:
	anm13:
	14.0:
	14.1:
	14.2:
	14.3:
	14.4:
	14.5:
	14.6:
	14.7:
	14.8:
	14.9:
	14.10:
	14.11:
	14.12:
	14.13:
	14.14:
	14.15:
	14.16:
	14.17:
	14.18:
	14.19:
	14.20:
	14.21:
	14.22:
	14.23:
	14.24:
	14.25:
	14.26:
	14.27:
	14.28:
	14.29:
	anm14:
	15.0:
	15.1:
	15.2:
	15.3:
	15.4:
	15.5:
	15.6:
	15.7:
	15.8:
	15.9:
	15.10:
	15.11:
	15.12:
	15.13:
	15.14:
	15.15:
	15.16:
	15.17:
	15.18:
	15.19:
	15.20:
	15.21:
	15.22:
	15.23:
	15.24:
	15.25:
	15.26:
	15.27:
	15.28:
	15.29:
	anm15:
	16.0:
	16.1:
	16.2:
	16.3:
	16.4:
	16.5:
	16.6:
	16.7:
	16.8:
	16.9:
	16.10:
	16.11:
	16.12:
	16.13:
	16.14:
	16.15:
	16.16:
	16.17:
	16.18:
	16.19:
	16.20:
	16.21:
	16.22:
	16.23:
	16.24:
	16.25:
	16.26:
	16.27:
	16.28:
	16.29:
	anm16:
	17.0:
	17.1:
	17.2:
	17.3:
	17.4:
	17.5:
	17.6:
	17.7:
	17.8:
	17.9:
	17.10:
	17.11:
	17.12:
	17.13:
	17.14:
	17.15:
	17.16:
	17.17:
	17.18:
	17.19:
	anm17:
	18.0:
	18.1:
	18.2:
	18.3:
	18.4:
	18.5:
	18.6:
	18.7:
	18.8:
	18.9:
	anm18:
	19.0:
	19.1:
	19.2:
	19.3:
	19.4:
	19.5:
	19.6:
	19.7:
	19.8:
	19.9:
	19.10:
	19.11:
	19.12:
	19.13:
	19.14:
	19.15:
	19.16:
	19.17:
	19.18:
	19.19:
	19.20:
	19.21:
	19.22:
	19.23:
	19.24:
	19.25:
	19.26:
	19.27:
	19.28:
	19.29:
	anm19:
	20.0:
	20.1:
	20.2:
	20.3:
	20.4:
	20.5:
	20.6:
	20.7:
	20.8:
	20.9:
	20.10:
	20.11:
	20.12:
	20.13:
	20.14:
	20.15:
	20.16:
	20.17:
	20.18:
	20.19:
	20.20:
	20.21:
	20.22:
	20.23:
	20.24:
	20.25:
	20.26:
	20.27:
	20.28:
	20.29:
	anm20:
	21.0:
	21.1:
	21.2:
	21.3:
	21.4:
	21.5:
	21.6:
	21.7:
	21.8:
	21.9:
	21.10:
	21.11:
	21.12:
	21.13:
	21.14:
	21.15:
	21.16:
	21.17:
	21.18:
	21.19:
	21.20:
	21.21:
	21.22:
	21.23:
	21.24:
	21.25:
	21.26:
	21.27:
	21.28:
	21.29:
	anm21:
	22.0:
	22.1:
	22.2:
	22.3:
	22.4:
	22.5:
	22.6:
	22.7:
	22.8:
	22.9:
	22.10:
	22.11:
	22.12:
	22.13:
	22.14:
	22.15:
	22.16:
	22.17:
	22.18:
	22.19:
	22.20:
	22.21:
	22.22:
	22.23:
	22.24:
	22.25:
	22.26:
	22.27:
	22.28:
	22.29:
	anm22:
	23.0:
	23.1:
	23.2:
	23.3:
	23.4:
	23.5:
	23.6:
	23.7:
	23.8:
	23.9:
	23.10:
	23.11:
	23.12:
	23.13:
	23.14:
	23.15:
	23.16:
	23.17:
	23.18:
	23.19:
	anm23:

