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In Supplementary Material, after summarizing basic notions of quantum computation, we provide
proofs of theorems and propositions mentioned in the main text. In Sec. A, the basic notions of
quantum computation are summarized. In Sec. B, the feasibility of implementing a quantum oracle
that we use in our quantum algorithm is summarized. In Sec. C, we show Proposition 1 on the
perfect reconstruction of the kernel, which is a crucial technique in our quantum algorithm. In Sec. D,
we show Proposition 2 on a quantum state that we use in our quantum algorithm for sampling an
optimized random feature. In Sec. E, we show our quantum algorithm (Algorithm 1) for sampling the
optimized random feature, and prove Theorem 1 on the runtime of Algorithm 1. In Sec. F, we show
the overall algorithm (Algorithm 2) for learning with the optimized random features by combining
Algorithm 1 with stochastic gradient descent (Algorithm 3), and prove Theorem 2 on the runtime of
Algorithm 2. Note that lemmas that we show for the runtime analysis of our quantum algorithm are
presented in Sec. E, and the proofs in the other sections do not require these lemmas on quantum
computation. The notations used in Supplementary Material is the same as those in the main text.

A Quantum computation

In this section, we summarize basic notions of quantum computation, referring to Refs. [1, 2] for
more detail.

Analogously to a bit {0, 1} in classical computation, the unit of quantum computation is a quantum
bit (qubit), mathematically represented by C2, i.e., a 2-dimensional complex Hilbert space. A fixed
orthonormal basis of a qubit C2 is denoted by {|0〉 := ( 1

0 ) , |1〉 := ( 0
1 )}. Similarly to a bit taking

a state b ∈ {0, 1}, a qubit takes a quantum state |ψ〉 = α0 |0〉 + α1 |1〉 = ( α0
α1

) ∈ C2. While a
register of m bits takes values in {0, 1}m, a quantum register of m qubits is represented by the
tensor-product space

(
C2
)⊗m ∼= C2m , i.e., a 2m-dimensional Hilbert space. We may use = rather

than ∼= to represent isomorphism for brevity. We let H denote a finite-dimensional Hilbert space
representing a quantum register; that is, an m-qubit register isH = C2m . A fixed orthonormal basis
{|x〉 : x ∈ {0, . . . , 2m − 1}} labeled by m-bit strings, or the corresponding integers, is called the
computational basis ofH. A state ofH can be denoted by |ψ〉 =

∑2m−1
x=0 αx |x〉 ∈ H. Any quantum

state |ψ〉 requires an L2 normalization condition ‖|ψ〉‖2 = 1, and for any θ ∈ R, |ψ〉 is identified
with eiθ |ψ〉.
In the bra-ket notation, the conjugate transpose of the column vector |ψ〉 is a row vector denoted by
〈ψ|, where 〈ψ| and |ψ〉 may be called a bra and a ket, respectively. The inner product of |ψ〉 and
|φ〉 is denoted by 〈ψ |φ〉, while their outer product |ψ〉 〈φ| is a matrix. The conjugate transpose of
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an operator A is denoted by A†, and the transpose of A with respect to the computational basis is
denoted by AT.

A measurement of a quantum state |ψ〉 is a sampling process that returns a randomly chosen bit string
from the quantum state. An m-qubit state |ψ〉 =

∑2m−1
x=0 αx |x〉 is said to be in a superposition of the

basis states |x〉s. A measurement of |ψ〉 in the computational basis {|x〉} provides a random m-bit
string x ∈ {0, 1}m as outcome, with probability p(x) = |αx|2. After the measurement, the state
changes from |ψ〉 to |x〉 corresponding to the obtained outcome x, and loses the randomness in |ψ〉;
that is, to iterate the same sampling as this measurement, we need to prepare |ψ〉 repeatedly for each
iteration. For two registersHA⊗HB and their state |φ〉AB =

∑
x,x αx,x′ |x〉

A⊗|x′〉B ∈ HA⊗HB ,

a measurement of the register HB for |φ〉AB in the computational basis {|x′〉B} of HB yields an
outcome x′ with probability p(x′) =

∑
x p(x, x

′), where p(x, x′) = |αx,x′ |2. The superscripts of a
state or an operator represent which register the state or the operator belongs to, while we may omit
the superscripts if it is clear from the context.

A quantum algorithm starts by initializing m qubits in a fixed state |0〉⊗m, which we may write as
|0〉 if m is clear from the context. Then, we apply a 2m-dimensional unitary operator U to |0〉⊗m, to
prepare a state U |0〉⊗m. Finally, a measurement of U |0〉⊗n is performed to sample an m-bit string
from a probability distribution given by U |0〉⊗m. Analogously to classical logic-gate circuits, U
is represented by a quantum circuit composed of sequential applications of unitaries acting at most
two qubits at a time. Each of these unitaries is called an elementary quantum gate. The runtime of a
quantum algorithm represented by a quantum circuit is determined by the number of applications of
elementary quantum gates in the circuit.

With techniques shown in Refs. [3–5], non-unitary operators can also be used in quantum computation.
In particular, to apply a non-unitary operator A in quantum computation, we use the technique of
block encoding [5], as summarized in the following. A block encoding of A is a unitary operator
U = ( A ·

· · ) that encodes A in its left-top (or |0〉 〈0|) subspace (up to numerical precision). Note that
we have

U = ( A B
C D ) = |0〉 〈0| ⊗A + |0〉 〈1| ⊗B + |1〉 〈0| ⊗C + |1〉 〈1| ⊗D, (1)

if A, B, C, and D are on the Hilbert space of the same dimension. Consider a state |0〉⊗|ψ〉 =
( |ψ〉

0

)

in the top-left (or |0〉 〈0|) subspace of U, where 0 is a zero column vector, and |0〉 ∈ Cd for some d.
Applying U to the state |0〉 ⊗ |ψ〉, we would obtain

U (|0〉 ⊗ |ψ〉) =
√
p |0〉 ⊗ A |ψ〉

‖A |ψ〉‖2
+
√

1− p |⊥〉 , (2)

where p = ‖A |ψ〉‖22, and |⊥〉 is a state of no interest satisfying (|0〉 〈0| ⊗ 1) |⊥〉. Then, we can
prepare the state to which A is applied, i.e.,

A |ψ〉
‖A |ψ〉‖2

(3)

using this process for preparing U (|0〉 ⊗ |ψ〉) and its inverse process repeatedly O( 1√
p ) times,

by means of amplitude amplification [6]. Note that given a quantum circuit, its inverse can be
implemented by replacing each gate in the circuit with its inverse gate; that is, the circuit and its
inverse circuit have the same runtime since they are composed of the same number of gates. In Sec. E,
we will use the following more precise definition of block encoding to take the precision ∆ into
account. For any operator A on s qubits, i.e., on C2s , a unitary operator U on (s+ a) qubits, i.e., on
C2s+a , is called an (α, a,∆)-block encoding of A if it holds that∥∥∥A− α

(
1⊗ 〈0|⊗a

)
U
(
1⊗ |0〉⊗a

)∥∥∥
∞

5 ∆, (4)

where ‖ · ‖∞ is the operator norm. Note that since any unitary operator U satisfies ‖U‖∞ 5 1, it is
necessary that ‖A‖∞ 5 α+ ∆.

B Feasibility of implementing quantum oracle

In this section, we summarize the feasibility of implementing a quantum oracle that we use in our
quantum algorithm.

2



The quantum oracles are mathematically represented by unitary operators. As shown in the main text,
to access given examples of data in our quantum algorithm, we use a quantum oracle Oρ acting as

Oρ(|0〉) =
∑

x̃∈X̃

√
q̂(ρ)(x̃) |x̃〉 =

√
q̂(ρ)

∑

x̃∈X̃
|x̃〉 , (5)

where we write
q̂(ρ) =

∑

x̃∈X̃
q̂(ρ) (x̃) |x̃〉 〈x̃| . (6)

We can efficiently implement the quantum oracle Oρ with an acceptable preprocessing overhead
using the N given examples of input data x̃0, . . . , x̃N−1. From these examples, we can prepare a data
structure proposed in Ref. [7] inO(N(D logG)

2
) time usingO(N(D logG)

2
) bits of memory, while

collecting and storing theN data points requires at least Θ(ND logG) time and Θ(ND logG) bits of
memory. Note that this data structure is also used in “quantum-inspired” classical algorithms [8–10].
Then, we can implement Oρ by a quantum circuit combined with a quantum random access memory
(QRAM) [11, 12], which can load data from this data structure into qubits in quantum superposition
(i.e. linear combinations of quantum states). With TQ denoting runtime of this QRAM per query, it is
known that this implementation of Oρ with precision ∆ has runtime

Tρ = O(D log(G) polylog(1/∆)× TQ) (7)

per query [7, 13]. The runtime TQ of this QRAM may scale poly-logarithmically in N depending on
how we implement the QRAM, but such an implementation suffices to meet our expectation in the
main text that Tρ should be O(1) or O(polylog(N)) as N increases. Note that the inverse O†ρ of Oρ
has the same runtime Tρ since O†ρ can be implemented by replacing each quantum gate in the circuit
for Oρ with its inverse.

Thus, if both the quantum computer and the QRAM are available, we can implement Oρ feasibly
and efficiently. Similarly to the quantum computer assumed to be available in this paper, QRAM is
actively under development towards its physical realization; e.g., see Ref. [14] on recent progress
towards realizing QRAM. The use of QRAM is a common assumption in quantum machine learning
(QML) especially to deal with a large amount of data; however, even with QRAM, achieving quantum
speedup is nontrivial. Note that we do not include the time for collecting the data or preparing the
above data structure in runtime of our learning algorithm, but even if we took them into account, an
exponential speedup from O(exp(D)) to O(poly(D)) would not be canceled out. Since we exploit
Oρ for constructing a widely applicable QML framework achieving the exponential speedup without
sparsity and low-rank assumptions, our results motivate further technological development towards
realizing the QRAM as well as the quantum computer.

C Perfect reconstruction of kernel

In this section, we show the following perfect reconstruction of the kernel that we use in our quantum
algorithm.

Proposition 1 (Perfect reconstruction of kernel). Given any periodic translation-invariant kernel k̃,
we exactly have for each x̃′, x̃ ∈ X̃

k̃ (x̃′, x̃) =
∑

vG∈VG

Q(τ)(vG)

GD
ϕ(vG, x̃′)ϕ(vG, x̃)

= 〈x̃′|F†DQ(τ)FD |x̃〉 = 〈x̃′|FDQ(τ)F†D |x̃〉 .

Proof. To show the perfect reconstruction of the kernel k̃, we crucially use the assumption given in
the main text that the data domain is finite due to the discretized representation

X̃ = {0, 1, . . . , G− 1}D. (8)

As summarized in the main text, recall that we approximate a translation-invariant (but not necessarily
periodic) kernel k (x′, x) by

k̃ (x′, x) =
∑

n∈ZD
k (x′, x+Gn) . (9)
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To represent the translation-invariant kernel functions, we may write

kTI (x′ − x) := k (x′, x) , (10)

k̃TI (x′ − x) := k̃ (x′, x) . (11)

The function k̃ is periodic by definition; in particular, we have for any n′ ∈ ZD

k̃ (x′, x) = k̃ (x′ +Gn′, x) = k̃ (x′, x+Gn′) = k̃TI(x
′ − x+Gn′). (12)

Recall that the translation-invariant kernel k : X × X → R can be written as

k (x′, x) =

∫

V
dτ (v)ϕ (v, x′)ϕ (v, x) , (13)

where ϕ(v, x) := e−2πiv·x, and dτ is given by the Fourier transform of the kernel, in particular, [15]

dτ(v) = q(τ)(v)dv =

[∫

X
dx e−2πiv·xkTI (x)

]
dv. (14)

Similarly to (14), our proof will expand k̃ using the Fourier transform.

To expand k̃, we first consider the case ofD = 1, and will later considerD = 1 in general. In the case
of D = 1, Shannon’s sampling theorem [16] in signal processing [17] shows that we can perfectly
reconstruct the kernel function k̃TI on a continuous domain

[
−G2 , G2

]
from discrete frequencies of its

Fourier transform. In the one-dimensional case, the Fourier transform of k̃TI on
[
−G2 , G2

]
is

∫ G
2

−G2
dx k̃TI(x)e−2πivx =

∫ ∞

−∞
dx kTI(x)e−2πivx = q(τ)(v). (15)

Then, for any x ∈
[
−G2 , G2

]
, using the discrete frequencies ṽ ∈ Z for q(τ) (ṽ), we exactly obtain

from the sampling theorem

k̃TI (x) =
1

G

∞∑

ṽ=−∞
q(τ)

(
ṽ

G

)
e2πi( ṽG )x =

1

G

∞∑

ṽ=−∞
q(τ)

(
ṽ

G

)
e

2πiṽx
G . (16)

Due to the periodicity (12) of k̃TI, (16) indeed holds for any x ∈ R. In the same way, for any D = 1,
we have for any x ∈ RD

k̃TI (x) =
1

GD

∑

ṽ∈ZD
q(τ)

(
ṽ

G

)
e

2πiṽ·x
G . (17)

In addition, since X̃ is a discrete domain spaced at intervals 1, we can achieve the perfect reconstruc-
tion of the kernel k̃TI on X̃ by the D-dimensional discrete Fourier transform of k̃TI, using a finite set
of discrete frequencies for q(τ). In particular, for each ṽ ∈ X̃ , the discrete Fourier transform of k̃TI

yields

1√
GD

∑

x̃∈X̃
k̃TI (x̃) e

−2πiṽ·x̃
G =

1√
GD

∑

x̃∈X̃

(
1

GD

∑

ṽ′′∈ZD
q(τ)

(
ṽ′′

G

)
e

2πiṽ′′·x̃
G

)
e
−2πiṽ·x̃

G

=
1√
GD

∑

ṽ′∈ZD
q(τ)

(
ṽ

G
+ ṽ′

)
, (18)

where the sum over x̃ in the first line is nonzero if ṽ′′ = ṽ + Gṽ′ for any ṽ′ ∈ ZD. Thus for the
perfect reconstruction of the kernel k̃ on this domain X̃ , it suffices to use feature points vG = ṽ

G for
each ṽ ∈ X̃ , which yields a finite set VG of features

vG =



v

(1)
G
...

v
(D)
G


 ∈ VG :=

{
0,

1

G
, . . . , 1− 1

G

}D
. (19)
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We use the one-to-one correspondence between vG ∈ VG and x̃ ∈ X̃ satisfying

vG =
x̃

G
, (20)

which we may also write using ṽ = x̃ as

vG =
ṽ

G
. (21)

In the same way as the main text, we let Q(τ) : VG → R denote the function in (18)

Q(τ) (vG) :=
∑

ṽ′∈ZD
q(τ) (vG + ṽ′) . (22)

Therefore, from the D-dimensional discrete Fourier transform of (18), we obtain the perfect recon-
struction of the kernel k̃TI on the domain X̃ using the feature points in VG and the function Q(τ)

as

k̃ (x̃′, x̃) = k̃TI (x̃′ − x̃)

=
1√
GD

∑

ṽ∈X̃

(
1√
GD

∑

ṽ′∈ZD
q(τ)

(
ṽ

G
+ ṽ′

))
e

2πiṽ·(x̃′−x̃)
G

=
∑

vG∈VG

Q(τ) (vG)

GD
ϕ (vG, x̃′)ϕ (vG, x̃) , ∀x̃′, x̃ ∈ X̃ , (23)

which shows the first equality in Proposition 1. Note that this equality also leads to a lower bound of
Q

(τ)
max, that is, the maximum of Q(τ) (vG), as shown in Remark 1 after this proof.

To show the second equality in Proposition 1, recall that we write a diagonal operator corresponding
to Q(τ) (vG) as

Q(τ) :=
∑

ṽ∈X̃
Q(τ)

(
ṽ

G

)
|ṽ〉 〈ṽ| . (24)

Note that we write |ṽ〉 = |x̃〉 for ṽ = x̃ ∈ X̃ for clarity of the presentation. In addition, let F denote
a unitary operator representing (one-dimensional) discrete Fourier transform

F :=

G−1∑

x̃=0

(
1√
G

G−1∑

ṽ=0

e−
2πiṽx̃
G |ṽ〉

)
〈x̃| , (25)

and FD denote a unitary operator representing D-dimensional discrete Fourier transform

FD := F⊗D =
∑

x̃∈X̃


 1√

GD

∑

ṽ∈X̃
e−

2πiṽ·x̃
G |ṽ〉


 〈x̃| . (26)

The feature map can be written in terms of FD as

ϕ (vG, x̃) = e−2πivG·x̃ =
√
GD 〈ṽ |FD | x̃〉 =

√
GD 〈x̃ |FD | ṽ〉 , (27)

where vG = ṽ
G , and the last equality follows from the invariance of FD under the transpose with

respect to the computational basis. From (23), (26), and (27), by linear algebraic calculation, we
obtain the conclusion for any x̃′, x̃ ∈ X̃

k̃ (x̃′, x̃) =
〈
x̃′
∣∣∣F†DQ(τ)FD

∣∣∣ x̃
〉

=
〈
x̃′
∣∣∣FDQ(τ)F†D

∣∣∣ x̃
〉
, (28)

where the last equality follows from the fact that the kernel function k̃ is symmetric and real, i.e.,
k̃(x′, x) = k̃(x, x′) and k̃(x′, x) = k̃(x′, x).
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Remark 1 (A lower bound of Q(τ)
max). Equality (23) has the following implication on a lower bound

of the maximum of Q(τ) (vG)

Q(τ)
max = max

{
Q(τ) (vG) : vG ∈ VG

}
. (29)

Recall that we let P (τ) denote a probability mass function on VG proportional to Q(τ)

P (τ) (vG) :=
Q(τ) (vG)∑

v′G∈VG Q
(τ) (v′G)

, (30)

which by definition satisfies the normalization condition
∑

vG∈VG
P (τ) (vG) = 1. (31)

We obtain from (23)

k̃(0, 0) =
∑

vG∈VG

Q(τ) (vG)

GD
, (32)

and hence, we can regard k̃(0, 0) as a normalization factor in

P (τ) (vG) =
1

k̃(0, 0)

Q(τ) (vG)

GD
. (33)

The normalization of P (τ) yields a lower bound of Q(τ)
max

Q(τ)
max = GD × Q

(τ)
max

GD
=

∑

vG∈VG

Q(τ) (vG)

GD
= k̃(0, 0)

∑

vG∈VG
P (τ) (vG) = k̃(0, 0) = Ω(1), (34)

where we use the assumption k̃(0, 0) = Ω(k(0, 0)) = Ω(1).

D Quantum state for sampling an optimized random feature

In this section, we show a quantum state that we use in our quantum algorithm for sampling an
optimized random feature. In particular, as shown in the main text, recall a quantum state on two
quantum registersHX ⊗HX′

|Ψ〉XX
′
∝
∑

x̃∈X̃
Σ̂
− 1

2
ε |x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D

√
q̂(ρ) (x̃) |x̃〉X

′
, (35)

where X and X ′ have the same number of qubits. Then, we show the following proposition.
Proposition 2 (Quantum state for sampling an optimized random feature). If we perform a mea-
surement of the quantum register X ′ on the state |Ψ〉XX

′
defined as (35) in the computational basis

{|x̃〉X
′

: x̃ ∈ X̃}, then we obtain a measurement outcome x̃ with probability Q∗ε
(
x̃
G

)
P (τ)

(
x̃
G

)
.

Proof. The proof is given by linear algebraic calculation. Note that the normalization
∥∥∥|Ψ〉XX

′∥∥∥
2

= 1

of a quantum state always yields the normalization
∑
x̃′∈X̃ p (x̃′) = 1 of a probability distribution

obtained from the measurement of HX′ in the computational basis
{
|x̃′〉X

′}
, and hence, we may

omit the normalization constant in the following calculation for simplicity of the presentation.

Recall the definition of the optimized probability distribution Q∗ε (vG)P (τ) (vG)

Q∗ε (vG)P (τ) (vG) =

〈
ϕ (vG, ·)

∣∣∣∣ q̂(ρ)
(
Σ̂ + ε1

)−1
∣∣∣∣ϕ (vG, ·)

〉
Q(τ) (vG)

∑
v′G∈VG

〈
ϕ (v′G, ·)

∣∣∣∣ q̂(ρ)
(
Σ̂ + ε1

)−1
∣∣∣∣ϕ (v′G, ·)

〉
Q(τ) (v′G)

, (36)
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where we write

Σ̂ = kq̂(ρ), (37)

k =
∑

x̃′,x̃∈X̃
k̃ (x̃′, x̃) |x̃′〉 〈x̃| . (38)

For vG = x̃
G , it follows from (27) that

|ϕ (vG, ·)〉 =
√
GDFD |x̃〉 . (39)

Then, we have

(36) =

〈
ϕ (vG, ·)

∣∣∣∣ q̂(ρ)
(
Σ̂ + ε1

)−1
∣∣∣∣ϕ (vG, ·)

〉

∑
v′G∈VG

Q(τ)(v′G)
GD

〈
ϕ (v′G, ·)

∣∣∣∣ q̂(ρ)
(
Σ̂ + ε1

)−1
∣∣∣∣ϕ (v′G, ·)

〉 Q
(τ) (vG)

GD

=

〈
x̃

∣∣∣∣F
†
Dq̂(ρ)

(
Σ̂ + ε1

)−1

FD

∣∣∣∣ x̃
〉

∑
x̃′∈X̃ Q

(τ)
(
x̃′
G

)〈
x̃′
∣∣∣∣F
†
Dq̂(ρ)

(
Σ̂ + ε1

)−1

FD

∣∣∣∣ x̃′
〉Q(τ)

(
x̃

G

)
. (40)

Then, using (24), we obtain

(40) =

〈
x̃

∣∣∣∣
√

Q(τ)F†Dq̂(ρ)
(
Σ̂ + ε1

)−1

FD
√

Q(τ)

∣∣∣∣ x̃
〉

∑
x̃′∈X̃

〈
x̃′
∣∣∣∣
√

Q(τ)F†Dq̂(ρ)
(
Σ̂ + ε1

)−1

FD
√

Q(τ)

∣∣∣∣ x̃′
〉 . (41)

Therefore, it holds that

Q∗ε

(
x̃

G

)
P (τ)

(
x̃

G

)
∝
〈
x̃

∣∣∣∣
√

Q(τ)F†Dq̂(ρ)
(
Σ̂ + ε1

)−1

FD
√

Q(τ)

∣∣∣∣ x̃
〉

=

〈
x̃

∣∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†Dq̂(ρ)

(
1

Q
(τ)
max

Σ̂ +
ε

Q
(τ)
max

1

)−1

FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣∣
x̃

〉
.

(42)

To simplify the form of (42), define a positive semidefinite operator on the support of q̂(ρ)

Σ̂(ρ)
ε :=

√
q̂(ρ)

(
1

Q
(τ)
max

Σ̂ +
ε

Q
(τ)
max

1

)(
q̂(ρ)

)− 1
2

=
1

Q
(τ)
max

√
q̂(ρ)k

√
q̂(ρ) +

ε

Q
(τ)
max

Π(ρ), (43)

where we use Σ̂ = kq̂(ρ), and Π(ρ) is a projector onto the support of q̂(ρ). In case q̂(ρ) does not

have full rank,
(
q̂(ρ)

)− 1
2 denotes

√(
q̂(ρ)

)−1
, where

(
q̂(ρ)

)−1
in this case is the Moore-Penrose

pseudoinverse of q̂(ρ). We have by definition

(
Σ̂(ρ)
ε

)−1

=
√

q̂(ρ)

(
1

Q
(τ)
max

Σ̂ +
ε

Q
(τ)
max

1

)−1(
q̂(ρ)

)− 1
2

. (44)

Correspondingly, in the same way as the main text, we let Σ̂ε denote a positive definite operator that
has the full support onHX , and coincides with Σ̂

(ρ)
ε if projected on the support of q̂(ρ)

Σ̂ε :=
1

Q
(τ)
max

√
q̂(ρ)k

√
q̂(ρ) +

ε

Q
(τ)
max

1. (45)
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Note that since q̂(ρ) is diagonal and k is symmetric, we have

Σ̂ε = Σ̂T
ε , (46)

where the right-hand side represents the transpose with respect to the computational basis. Then, we
can rewrite the last line of (42) as

Q∗ε

(
x̃

G

)
P (τ)

(
x̃

G

)
∝
〈
x̃

∣∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†Dq̂(ρ)

(
1

Q
(τ)
max

Σ̂ +
ε

Q
(τ)
max

1

)−1

FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣∣
x̃

〉

=

〈
x̃

∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)
(
Σ̂(ρ)
ε

)−1√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣ x̃
〉

=

〈
x̃

∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂−1
ε

√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣ x̃
〉
, (47)

where this probability distribution is normalized by
∑
x̃∈X̃ Q

∗
ε

(
x̃
G

)
P (τ)

(
x̃
G

)
= 1.

To prove the proposition, we analyze the probability distribution obtained from the measurement of
the quantum state

|Ψ〉XX
′
∝
∑

x̃∈X̃
Σ̂
− 1

2
ε |x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ) |x̃〉X
′
∈ HX ⊗HX′ . (48)

where
√

q̂(ρ) |x̃〉X
′

=
√
q̂(ρ) (x̃) |x̃〉X

′
. For any operators A on HX and B on HX′ where the

dimensions of these Hilbert spaces are the same

dimHX = dimHX′ , (49)

a straightforward linear algebraic calculation shows [1]
∑

x̃∈X̃
A |x̃〉X ⊗B |x̃〉X

′
=
∑

x̃∈X̃
|x̃〉X ⊗BAT |x̃〉X

′
. (50)

Applying this equality to (48), we have

|Ψ〉XX
′
∝
∑

x̃∈X̃
Σ̂
− 1

2
ε |x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ) |x̃〉X
′

=
∑

x̃∈X̃
|x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)
(
Σ̂T
ε

)− 1
2 |x̃〉X

′

=
∑

x̃∈X̃
|x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂
− 1

2
ε |x̃〉X

′
, (51)

where the last line follows from (46). If we performed a measurement of |Ψ〉XX
′

in the computational
basis

{
|x̃〉X ⊗ |x̃′〉X

′}
, the probability distribution of measurement outcomes, i.e., the square of the

amplitude as summarized in Sec. A, would be

p(x̃, x̃′) =
∣∣∣
(
〈x̃|X ⊗ 〈x̃′|X

′)
|Ψ〉XX

′ ∣∣∣
2

∝
∣∣∣∣∣

〈
x̃′
∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂
− 1

2
ε

∣∣∣∣∣ x̃
〉∣∣∣∣∣

2

=

〈
x̃′
∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂
− 1

2
ε

∣∣∣∣∣ x̃
〉〈

x̃

∣∣∣∣∣ Σ̂
− 1

2
ε

√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣ x̃
′
〉
.

(52)
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Since a measurement of the registerX ′ yields an outcome x̃′ with probability p (x̃′) =
∑
x̃∈X̃ p (x̃, x̃′)

as summarized in Sec. A, we obtain

p (x̃′) ∝
∑

x̃∈X̃

〈
x̃′
∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂
− 1

2
ε

∣∣∣∣∣ x̃
〉〈

x̃

∣∣∣∣∣ Σ̂
− 1

2
ε

√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣ x̃
′
〉

=

〈
x̃′

∣∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂
− 1

2
ε


∑

x̃∈X̃
|x̃〉 〈x̃|


 Σ̂

− 1
2

ε

√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣∣
x̃′
〉

=

〈
x̃′
∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂
− 1

2
ε 1Σ̂

− 1
2

ε

√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣ x̃
′
〉

=

〈
x̃′
∣∣∣∣∣

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ)Σ̂−1
ε

√
q̂(ρ)FD

√
1

Q
(τ)
max

Q(τ)

∣∣∣∣∣ x̃
′
〉
. (53)

Recall that the normalization
∥∥∥|Ψ〉XX

′∥∥∥
2

= 1 of the quantum state yields
∑
x̃′∈X̃ p (x̃′) = 1.

Therefore, (47) and (53) yield

p (x̃) = Q∗ε

(
x̃

G

)
P (τ)

(
x̃

G

)
, (54)

which shows the conclusion.

E Quantum algorithm for sampling an optimized random feature

In this section, we show our quantum algorithm for sampling an optimized random feature and bound
its runtime.

Algorithm 1 shows our quantum algorithm. Note that each line of Algorithm 1 is performed
approximately with a sufficiently small precision to achieve the overall sampling precision ∆ > 0,
in the same way as classical algorithms that deal with real number using fixed- or floating-point
number representation with a sufficiently small precision. In Algorithm 1, we represent computation
of the function Q(τ) as a quantum oracle Oτ . This oracle Oτ computes Q(τ) while maintaining the
superpositions (i.e., linear combinations) in a given quantum state, that is,

Oτ
(∑

v

αv |v〉 ⊗ |0〉
)

=
∑

v

αv |v〉 ⊗ |Q(τ) (v)〉 , (55)

where αv ∈ C can be any coefficient of the given state, and |v〉 and |Q(τ) (v)〉 are computational-basis
states corresponding to bit strings representing v ∈ V and Q(τ) (v) ∈ R in the fixed-point number
representation with sufficient precision. We use Oτ for simplicity of the presentation, and unlike Oρ
given by (5), Oτ is not a black box in our quantum algorithm since we can implement Oτ explicitly
by a quantum circuit under the assumption in the main text, without using QRAM discussed in Sec. B.
Using the assumption that classical computation can evaluate the function Q(τ) efficiently in a short
time denoted by

Tτ = O(poly(D)), (56)

we can efficiently implement Oτ in runtime O(Tτ ); in particular, if we can compute Q(τ) by
numerical libraries using arithmetics in runtime Tτ , then a quantum computer can also perform the
same arithmetics to implement Oτ in runtime O(Tτ ) [18]. Note that even if the numerical libraries
evaluated Q(τ) by means of a lookup table stored in RAM, quantum computers could instead use the
QRAM. In the following, for simplicity of the presentation, the runtime of Oτ per query may also be
denoted by Tτ (with abuse of notation) as our runtime analysis ignores constant factors. Note that in
the case of the Gaussian kernel and the Laplacian kernel, Q(τ) is given in terms of special functions
as shown in the main text, and we have

Tτ = O(D), (57)

which satisfies (56).

In the rest of this section, we prove the following theorem that bounds the runtime of Algorithm 1.
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Theorem 1 (Runtime of our quantum algorithm for sampling an optimized random feature). GivenD-
dimensional data discretized by G > 0, for any learning accuracy ε > 0 and any sampling precision
∆ > 0, the runtime T1 of Algorithm 1 for sampling each optimized random feature vG ∈ VG from
a distribution Q(vG)P (τ)(vG) close to the optimized distribution Q∗ε (vG)P (τ)(vG) with precision∑
vG∈VG |Q(vG)P (τ)(vG)−Q∗ε (vG)P (τ)(vG)| 5 ∆ is

T1 = O (D log (G) log log (G) + Tρ + Tτ )× Õ
(
Q

(τ)
max

ε
polylog

(
1

∆

))
,

where Tρ and Tτ are the runtime of the quantum oracles Oρ and Oτ per query, and Q(τ)
max, Oρ and

Oτ are defined as (29), (5), and (55), respectively.

Algorithm 1 Quantum algorithm for sampling an optimized random feature (quOptRF).
Input: A desired accuracy ε > 0 in the supervised learning, sampling precision ∆ > 0, quantum

oracles Oρ in (5) and Oτ in (55), and Q(τ)
max > 0 in (29).

Output: An optimized random feature vG ∈ VG sampled from a probability distribution
Q (vG)P (τ) (vG) with

∑
vG∈VG |Q (vG)P (τ) (vG)−Q∗ε (vG)P (τ) (vG) | 5 ∆.

1: Initialize quantum registers X and X ′, load data onto X ′ by Oρ, and perform CNOT gates on
X and X ′

|0〉X ⊗ |0〉X
′ Oρ−−→

∑

x̃∈X̃
|0〉X ⊗

√
q̂(ρ) |x̃〉X

′ CNOT−−−→
∑

x̃∈X̃
|x̃〉X ⊗

√
q̂(ρ) |x̃〉X

′
. (58)

2: Perform F†D on X ′ by QFT [19] to obtain
∑

x̃∈X̃
|x̃〉X ⊗ F†D

√
q̂(ρ) |x̃〉X

′
. (59)

3: Apply the block encoding of
√

1

Q
(τ)
max

Q(τ) (Lemma 1) to X ′ followed by amplitude amplification

to obtain a state proportional to

∑

x̃∈X̃
|x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ) |x̃〉X
′
. (60)

4: Apply the block encoding of Σ̂
− 1

2
ε (Lemma 2) to X to obtain the quantum state |Ψ〉XX

′
in

Proposition 2. {This step requires our technical contribution since no assumption on sparsity
and low rank is imposed on Σ̂ε.}

5: Perform a measurement of X ′ in the computational basis to obtain x̃ with probability
Q∗ε
(
x̃
G

)
P (τ)

(
x̃
G

)
.

6: Return vG = x̃
G .

To prove Theorem 1, in the following, we construct efficient implementations of block encodings;
in particular, we first show a block encoding of

√
1

Q
(τ)
max

Q(τ), and then using this block encoding,

we show that of Σ̂ε. Then, we will provide the runtime analysis of Algorithm 1 using these block
encodings. In Algorithm 1, we combine these block encodings with two fundamental subroutines of
quantum algorithms, namely, quantum Fourier transform (QFT) [19, 20] and quantum singular value
transformation (QSVT) [5]. Using QFT, we can implement the unitary operator F defined as (25)
with precision ∆ by a quantum circuit composed of O

(
log (G) log

(
logG

∆

))
gates [19]. Thus, we

can implement FD = F⊗D defined as (26) by a quantum circuit composed of gates of order

O

(
D log (G) log

(
logG

∆

))
. (61)

Note that QFT in Ref. [19] that we use in the following analysis has slightly better runtime than QFT
in Ref. [20] by a poly-logarithmic term in 1

∆ , but we may also use QFT in Ref. [20] without changing
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any statement of our lemmas and theorems since this poly-logarithmic term is not dominant. In our
analysis, we multiply two numbers represented by O (log (G)) bits using the algorithm shown in
Ref. [21] within time

O (log (G) log log (G)) , (62)
which we can perform also on quantum computer by implementing arithmetics using a quantum
circuit [18]. Note that we could also use exact quantum Fourier transform [1] or grammar-school-
method multiplication instead of these algorithms in Refs. [19, 21], to decrease a constant factor in
the runtime of our algorithm at the expense of logarithmically increasing the asymptotic scaling in
terms of G from log (G) log log (G) to (log (G))

2. In the following runtime analysis, we use the
definition (4) of block encoding to clarify the dependency on precision ∆, and the quantum registers
for storing real number use fixed-point number representation with sufficient precision O(∆) to
achieve the overall precision ∆.

Our construction of block encodings of
√

1

Q
(τ)
max

Q(τ) and Σ̂ε is based on a prescription of constructing

a block encoding from a quantum circuit for implementing a measurement described by a positive
operator-valued measure (POVM) [5]. In particular, for any precision ∆ > 0 and any POVM operator
Λ, that is, an operator satisfying 0 5 Λ 5 1, let U be a unitary operator represented by a quantum
circuit that satisfies for any state |ψ〉

∣∣∣Tr [|ψ〉 〈ψ|Λ]− Tr
[
U
(
|0〉 〈0|⊗n ⊗ |ψ〉 〈ψ|

)
U†
(
|0〉 〈0|⊗1 ⊗ 1

)]∣∣∣ 5 ∆, (63)

where |0〉⊗n is a fixed state of n auxiliary qubits. The quantum circuit U in (63) means that U
implements a quantum measurement represented by the POVM operator Λ with precision ∆; that
is, given any input state |ψ〉 and n auxiliary qubits initially prepared in |0〉⊗n, if we perform the
circuit U to obtain a state U

(
|0〉⊗n ⊗ |ψ〉

)
and perform a measurement of one of the qubits for the

obtained state in the computational basis {|0〉 , |1〉}, then we obtain a measurement outcome 0 with
probability

Tr
[
U
(
|0〉 〈0|⊗n ⊗ |ψ〉 〈ψ|

)
U†
(
|0〉 〈0|⊗1 ⊗ 1

)]
. (64)

Then, it is known that we can construct a (1, 1 + n,∆)-block encoding of Λ using one U, one U†,
and one quantum logic gate (i.e., the controlled NOT (CNOT) gate) [5]. The CNOT gate is defined
as a two-qubit unitary operator

CNOT := |0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗ σx, (65)

where the first qubit is a controlled qubit, the second qubit is a target qubit, and σx is a Pauli unitary
operator

σx := |0〉 〈1|+ |1〉 〈0| . (66)
The CNOT gate acts as

CNOT ((α0 |0〉+ α1 |1〉)⊗ |0〉) = α0 |0〉 ⊗ |0〉+ α1 |1〉 ⊗ |1〉 . (67)

For a given POVM operator Λ, no general way of constructing the circuit representing U in (63) has
been shown in Ref. [5]; in contrast, we here explicitly construct the circuit for a diagonal POVM
operator Λ =

√
1

Q
(τ)
max

Q(τ) in the following lemma, using the quantum oracle Oτ . Note that since

a diagonal operator is sparse, a conventional way of implementing the block encoding of a sparse
operator [5] would also be applicable to construct a block encoding of

√
1

Q
(τ)
max

Q(τ); however, our

key contribution here is to use the circuit for the block encoding of
√

1

Q
(τ)
max

Q(τ) as a building block

of a more complicated block encoding, i.e., the block encoding of Σ̂ε, which is not necessarily sparse
or of low rank.
Lemma 1 (Block encoding of a diagonal POVM operator). For any diagonal positive semidefinite
operator Q(τ) defined as (24), we can implement a

(
1, O

(
D log (G) polylog

(
1
∆

))
,∆
)
-block en-

coding of
√

1

Q
(τ)
max

Q(τ) by a quantum circuit composed of O
(
D log (G) log log (G) polylog

(
1
∆

))

gates and one query to the quantum oracle Oτ .
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|ψ〉X =
∑
ṽ∈X̃ αṽ |ṽ〉

X

|0〉⊗O(D log(G)polylog(1/ε))

|0〉⊗polylog(1/ε)

|0〉⊗polylog(1/ε)

|0〉⊗polylog(1/ε)
|0〉

UG

Oτ
U
Q

(τ)
max

Uθ1

R 0, 1

Figure 1: A quantum circuit representing a unitary operator U that achieves (63) for Λ =√
1

Q
(τ)
max

Q(τ), which can be used for implementing a block encoding of
√

1

Q
(τ)
max

Q(τ). This cir-

cuit achieves the transformation of quantum states shown in a chain starting from (75). The last
controlled gate represents CR. Regarding the notations on quantum circuits, see, e.g., [1].

Proof. We construct a quantum circuit representing a unitary operator U that achieves (63) for
Λ =

√
1

Q
(τ)
max

Q(τ). We write the input quantum state as

|ψ〉X =
∑

ṽ∈X̃
αṽ |ṽ〉X ∈ HX . (68)

Define a function
θ1 (q) := arccos

(
q

1
4

)
. (69)

Define unitary operators UG, U
Q

(τ)
max

, and Uθ1 acting as

UG : |x〉 ⊗ |0〉 UG−−→ |x〉 ⊗
∣∣∣ x
G

〉
, (70)

U
Q

(τ)
max

: |x〉 ⊗ |0〉
U
Q

(τ)
max−−−−→ |x〉 ⊗

∣∣∣∣∣
x

Q
(τ)
max

〉
, (71)

Uθ1 : |x〉 ⊗ |0〉 Uθ1−−→ |x〉 ⊗ |θ1(x)〉 . (72)

Let Rθ denote a unitary operator representing a one-qubit rotation

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
, (73)

and a controlled rotation CR is defined as

CR =
∑

θ

|θ〉 〈θ| ⊗Rθ. (74)

Using these notations, we show a quantum circuit representing U in Fig. 1. This circuit achieves the
following transformation up to precision ∆

|ψ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 (75)

UG−−→
∑

ṽ∈X̃
αṽ |ṽ〉 ⊗

∣∣∣∣
ṽ

G

〉
⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 (76)

Oτ−−→
∑

ṽ∈X̃
αṽ |ṽ〉 ⊗

∣∣∣∣
ṽ

G

〉
⊗
∣∣∣∣Q(τ)

(
ṽ

G

)〉
⊗ |0〉 ⊗ |0〉 ⊗ |0〉 (77)

U
Q

(τ)
max−−−−→

∑

ṽ∈X̃
αṽ |ṽ〉 ⊗

∣∣∣∣
ṽ

G

〉
⊗
∣∣∣∣Q(τ)

(
ṽ

G

)〉
⊗
∣∣∣∣∣
Q(τ)

(
ṽ
G

)

Q
(τ)
max

〉
⊗ |0〉 ⊗ |0〉 (78)

Uθ1−−→
∑

ṽ∈X̃
αṽ |ṽ〉 ⊗

∣∣∣∣
ṽ

G

〉
⊗
∣∣∣∣Q(τ)

(
ṽ

G

)〉
⊗
∣∣∣∣∣
Q(τ)

(
ṽ
G

)

Q
(τ)
max

〉
⊗
∣∣∣∣∣θ1

(
Q(τ)

(
ṽ
G

)

Q
(τ)
max

)〉
⊗ |0〉 (79)
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CR−−→
∑

ṽ∈X̃
αṽ |ṽ〉 ⊗

∣∣∣∣
ṽ

G

〉
⊗
∣∣∣∣Q(τ)

(
ṽ

G

)〉
⊗
∣∣∣∣∣
Q(τ)

(
ṽ
G

)

Q
(τ)
max

〉
⊗
∣∣∣∣∣θ1

(
Q(τ)

(
ṽ
G

)

Q
(τ)
max

)〉
⊗



(

1

Q
(τ)
max

Q(τ)

(
ṽ

G

)) 1
4

|0〉+

√√√√1−
√

1

Q
(τ)
max

Q(τ)

(
ṽ

G

)
|1〉


 , (80)

where the quantum registers for storing real number use fixed-point number representation with
sufficient precision O(∆) to achieve the overall precision ∆ in (63). In (76), each of the D elements
of the vector ṽ in the first quantum register is multiplied by 1

G using arithmetics, and the result is
stored in the second quantum register. Since 1

G can be approximately represented with precision
O(∆) using O

(
log
(

1
∆

))
bits, these D multiplications take O

(
D log (G) log log (G) polylog

(
1
∆

))
time due to (62), which is dominant. The runtime of the quantum oracle Oτ queried in (77) is Tτ .
We can multiply 1

Q
(τ)
max

in (78) and calculate the elementary function θ1 in (79) up to precision O(∆)

by arithmetics within time O
(
polylog

(
1
∆

))
[18]. In (80), we apply CR defined as (74) to the last

qubit controlled by the second last quantum register, which uses O
(
polylog

(
1
∆

))
gates since |θ〉

stored in the second last register consists of O
(
polylog

(
1
∆

))
qubits. The measurement of the last

qubit of (80) in the computational basis {|0〉 , |1〉} yields the outcome 0 with probability

∑

ṽ∈X̃
|αṽ|2

√
1

Q
(τ)
max

Q(τ)

(
ṽ

G

)
= Tr

[
|ψ〉 〈ψ|

√
1

Q
(τ)
max

Q(τ)

]
, (81)

which achieves (63) for Λ =
√

1

Q
(τ)
max

Q(τ) within the claimed runtime.

Using the block encoding of
√

1

Q
(τ)
max

Q(τ) as a building block, we construct a block en-

coding of Σ̂ε in the following. Note that while the following proposition provides a(
1, O

(
D log (G) polylog

(
1
∆

))
,∆
)
-block encoding of 1

1+
(
ε/Q

(τ)
max

)Σ̂ε, this block encoding is equiv-

alently a
(

1 +
(
ε/Q

(τ)
max

)
, O
(
D log (G) polylog

(
1
∆

))
,
(

1 +
(
ε/Q

(τ)
max

))
∆
)

-block encoding of

Σ̂ε by definition. In implementing the block encoding of Σ̂ε, we use the quantum oracle Oρ defined
as (5) in addition to Oτ .

Lemma 2 (Block encoding of Σ̂ε). For any ε > 0 and any operator Σ̂ε given in the form of (45),
we can implement a

(
1, O

(
D log (G) polylog

(
1
∆

))
,∆
)
-block encoding of

1

1 +
(
ε/Q

(τ)
max

)Σ̂ε

by a quantum circuit composed of O
(
D log (G) log log (G) polylog

(
1
∆

))
gates, one query to the

quantum oracle O†ρ, i.e., the inverse of Oρ, and one query to the quantum oracle Oτ .

Proof. We construct a quantum circuit representing a unitary operator U that achieves (63) for
Λ = Σ̂ε. We use the same notations as those in the proof of Lemma 1 except the following notations.
The input state is written in this proof as

|ψ〉X =
∑

x̃∈X̃
αx̃ |x̃〉X ∈ HX . (82)

Define functions

θ2 (q) := arccos (
√
q) , (83)

θ3 (ε) := arccos



√√√√ ε/Q

(τ)
max

1 +
(
ε/Q

(τ)
max

)


 . (84)
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|ψ〉X =
∑
x̃∈X̃ αx̃ |x̃〉

X

|0〉⊗O(D log(G)polylog(1/ε))

|0〉⊗polylog(1/ε)

|0〉⊗polylog(1/ε)

|0〉⊗polylog(1/ε)

|0〉X
′

|0〉A

|0〉B
Rθ3(ε)

O†ρ

F†D UG

Oτ
U
Q

(τ)
max

Uθ2

UR

0, 1

Figure 2: A quantum circuit representing a unitary operator U that achieves (63) for Λ = Σ̂ε, which
can be used for implementing a block encoding of Σ̂ε. The notations are the same as those in Fig. 1.
The first gate acting on two quantum registers X and X ′ collectively represents CNOT gates acting
transversally on each of the qubits of these registers. A part of this circuit sandwiched by two vertical
dashed lines is the same as the corresponding part in Fig. 1. Additionally, the circuit performs a
preprocessing of the input state before performing the part corresponding to Fig. 1, which achieves the
transformation of quantum states shown in a chain starting from (87). Also, the circuit performs the
final gates Uθ2 and UR after the part corresponding to Fig. 1, which are followed by a measurement
described by the analysis starting from (90).

Define a unitary operator Uθ2 acting as

Uθ2 : |x〉 ⊗ |0〉 Uθ2−−→ |x〉 ⊗ |θ2(x)〉 . (85)

Let Uρ denote a unitary operator representing a quantum circuit for implementing the oracle Oρ.
Then, the unitary operator representing its inverse O†ρ is given by U†ρ. Define a unitary operator

UR =
(
1⊗ 1X′ ⊗ |0〉 〈0|A ⊗ 1B

)

+
(
1⊗

(
1
X′ − |0〉 〈0|X

′)
⊗ |1〉 〈1|A ⊗ σBx

)

+

(∑

θ

|θ〉 〈θ| ⊗ |0〉 〈0|X
′
⊗ |1〉 〈1|A ⊗RB

θ

)
, (86)

where the first quantum register may store a real number θ in the fixed-point number representation
with sufficient precision to achieve the overall precision ∆ in (63), the second quantum registerHX′
is isomorphic to the quantum register HX , i.e., is composed of the same number of qubits as HX ,
the third quantum registerHA is one auxiliary qubit, and the fourth quantum registerHB is another
auxiliary qubit. The operators σBx and RB

θ onHB are defined as (66) and (73), respectively. If the
state of A is |0〉A, the first term of (86) does not change the state on B, and if |1〉A, the second and
third terms of (86) act as follows: unless the state of X ′ is |0〉X

′
, σBx in the second term of (86) flips

|0〉B to |1〉B , and if the state of X ′ is |0〉X
′
, RB

θ in the third term of (86) acts in the same way as (80).

Using these notations, we show a quantum circuit representing U in Fig. 2. While a part of the
circuit in Fig. 2 sandwiched by two vertical dashed lines is the same as the corresponding part in
Fig. 1, this circuit additionally performs a preprocessing of the input state before performing the part
corresponding to Fig. 1, and the final gates Uθ2 and UR in Fig. 2 after the part corresponding to
Fig. 1 are also different. This preprocessing implements the following transformation with sufficient
precision O(∆) to achieve the overall precision ∆

|ψ〉X ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉X
′
⊗ |0〉A ⊗ |0〉B (87)

CNOT−−−→
∑

x̃∈X̃
αx̃ |x̃〉X ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |x̃〉X

′
⊗ |0〉A ⊗ |0〉B (88)

F†D⊗O†ρ⊗Rθ3(ε)−−−−−−−−−−→
∑

x̃∈X̃
αx̃F

†
D |x̃〉

X ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗U†ρ |x̃〉X
′
⊗

14






√√√√ ε/Q
(τ)
max

1 +
(
ε/Q

(τ)
max

) |0〉A +

√√√√ 1

1 +
(
ε/Q

(τ)
max

) |1〉A

⊗ |0〉B . (89)

In (88), we use O (D log (G)) CNOT gates acting on each of the O (D log (G)) qubits of the
quantum registers X and X ′. In (89), F†D is implemented by O

(
D log (G) log

(
logG

∆

))
gates as

shown in (61),O†ρ takes time Tρ, and a fixed one-qubit rotation Rθ3(ε) defined as (73) is implemented
with precision O(∆) using O

(
polylog

(
1
∆

))
gates [1].

Then, after performing the same part as in Fig. 1, which is dominant, the circuit in Fig. 2 performs Uθ2
defined as (85) and UR defined as (86). We can implement Uθ2 in the same way as (79), i.e., Uθ1 in
Lemma 1, using O

(
polylog

(
1
∆

))
gates. We can implement UR using O

(
D log (G) polylog

(
1
∆

))

gates since |θ〉 is stored in O
(
polylog

(
1
∆

))
qubits andHX′ consists of O (D log (G)) qubits.

After performing UR, we perform a measurement of the last qubit HB in the computational basis
{|0〉B , |1〉B}. To calculate the probability of obtaining the outcome 0 in this measurement ofHB ,
suppose that we performed a measurement of the one-qubit registerHA in the computational basis{
|0〉A , |1〉A

}
. Then, we would obtain the outcome |0〉A with probability ε/Q(τ)

max

1+
(
ε/Q

(τ)
max

) , and the

outcome |1〉A with probability 1

1+
(
ε/Q

(τ)
max

) . Conditioned on the outcome |0〉A, the measurement of

HB yields the outcome |0〉B with probability 1 correspondingly to the first term of (86). Conditioned
on |1〉A, owing to the third term of (86), the measurement of HB yields the outcome |0〉B with
probability

∑

x̃′∈X̃

∣∣∣∣∣∣
∑

x̃∈X̃
αx̃

〈
x̃′
∣∣∣F†D

∣∣∣ x̃
〉 〈

0
∣∣U†ρ

∣∣ x̃
〉
√

1

Q
(τ)
max

Q(τ)

(
x̃′

G

)∣∣∣∣∣∣

2

=
∑

x̃′∈X̃

1

Q
(τ)
max

Q(τ)

(
x̃′

G

) ∣∣∣∣∣∣
∑

x̃∈X̃
αx̃

〈
x̃′
∣∣∣F†D

∣∣∣ x̃
〉 〈

0
∣∣U†ρ

∣∣ x̃
〉
∣∣∣∣∣∣

2

. (90)

Note that the second term of (86) has no contribution in (90) because σBx flips |0〉B to |1〉B . Due to∣∣〈0
∣∣U†ρ

∣∣ x̃
〉∣∣ =

∣∣∣〈x̃|
(∑

x̃′
√
q̂(ρ) (x̃′) |x̃′〉

)∣∣∣ =
√
q̂(ρ)(x̃), we have

(90) =
∑

x̃′∈X̃

1

Q
(τ)
max

Q(τ)

(
x̃′

G

) ∣∣∣∣∣∣
∑

x̃∈X̃
αx̃

〈
x̃′
∣∣∣F†D

∣∣∣ x̃
〉√

q̂(ρ) (x̃)

∣∣∣∣∣∣

2

=
∑

x̃′∈X̃

1

Q
(τ)
max

Q(τ)

(
x̃′

G

) ∣∣∣∣∣∣
∑

x̃∈X̃
αx̃

〈
x̃′
∣∣∣F†D

√
q̂(ρ)

∣∣∣ x̃
〉
∣∣∣∣∣∣

2

. (91)

By definition (82) of |ψ〉, we have

(91) =
∑

x̃′∈X̃

1

Q
(τ)
max

Q(τ)

(
x̃′

G

) ∣∣∣
〈
x̃′
∣∣∣F†D

√
q̂(ρ)

∣∣∣ψ
〉∣∣∣

2

=
∑

x̃′∈X̃

1

Q
(τ)
max

Q(τ)

(
x̃′

G

)〈
x̃′
∣∣∣F†D

√
q̂(ρ) |ψ〉 〈ψ|

√
q̂(ρ)FD

∣∣∣ x̃′
〉

=
1

Q
(τ)
max

Tr


F†D

√
q̂(ρ) |ψ〉 〈ψ|

√
q̂(ρ)FD


∑

x̃′∈X̃
Q(τ)

(
x̃′

G

)
|x̃′〉 〈x̃′|




 . (92)

By definition (24) of Q(τ), we obtain

(92) =
1

Q
(τ)
max

Tr
[
F†D
√

q̂(ρ) |ψ〉 〈ψ|
√

q̂(ρ)FDQ(τ)
]
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=
1

Q
(τ)
max

Tr
[
|ψ〉 〈ψ|

√
q̂(ρ)FDQ(τ)F†D

√
q̂(ρ)

]

=
1

Q
(τ)
max

Tr
[
|ψ〉 〈ψ|

√
q̂(ρ)k

√
q̂(ρ)

]
, (93)

where the last equality follows from the perfect reconstruction of the kernel k shown in Proposition 1.
Therefore, since a measurement of the auxiliary qubitHA in the computational basis

{
|0〉A , |1〉A

}

yields outcome 0 and 1 with probability ε/Q(τ)
max

1+
(
ε/Q

(τ)
max

) and 1

1+
(
ε/Q

(τ)
max

) respectively, the circuit in

Fig. 2 yields the outcome 0 with probability

ε/Q
(τ)
max

1 +
(
ε/Q

(τ)
max

) × 1 +
1

1 +
(
ε/Q

(τ)
max

) ×
(

1

Q
(τ)
max

Tr
[
|ψ〉 〈ψ|

√
q̂(ρ)k

√
q̂(ρ)

])

=
1

1 +
(
ε/Q

(τ)
max

) × Tr

[
|ψ〉 〈ψ|

(
ε

Q
(τ)
max

1

)]

+
1

1 +
(
ε/Q

(τ)
max

) × Tr

[
|ψ〉 〈ψ|

(
1

Q
(τ)
max

√
q̂(ρ)k

√
q̂(ρ)

)]

=
1

1 +
(
ε/Q

(τ)
max

) × Tr

[
|ψ〉 〈ψ|

(
1

Q
(τ)
max

√
q̂(ρ)k

√
q̂(ρ) +

ε

Q
(τ)
max

1

)]

= Tr


|ψ〉 〈ψ|


 1

1 +
(
ε/Q

(τ)
max

)Σ̂ε




 , (94)

where the last equality follows from the definition (45) of Σ̂ε, which achieves (63) for Λ =
1

1+
(
ε/Q

(τ)
max

)Σ̂ε within a claimed runtime.

Using the block encodings in Lemmas 1 and 2, we prove Theorem 1 as follows.

Proof of Theorem 1. We prove that Algorithm 1 has the claimed runtime guarantee. The dominant
step of Algorithm 1 is Step 5, as shown in the following.

In Step 2, after the initialization of |0〉X⊗|0〉X
′
, we prepare

∑
x̃∈X̃ |0〉

X⊗
√

q̂(ρ) |x̃〉X
′

by one query
to the oracle Oρ defined as (5), followed by O (D log (G)) CNOT gates to prepare

∑
x̃∈X̃ |x̃〉

X ⊗√
q̂(ρ) |x̃〉X

′
, sinceHX consists ofO (D log (G)) qubits. Step 3 performs F†D, which is implemented

using O
(
D log (G) log

(
logG

∆

))
gates as shown in (61). Step 4 is implemented by the block

encoding of
√

1

Q
(τ)
max

Q(τ) within time O
(
D log (G) log log (G) polylog

(
1
∆

)
+ Tτ

)
as shown in

Lemma 1. The runtime at this moment is O
(
D log (G) log log (G) polylog

(
1
∆

)
+ Tρ + Tτ

)
. After

applying the block encoding of
√

1

Q
(τ)
max

Q(τ), we obtain a quantum state represented as a linear

combination including a term

∑

x̃∈X̃
|x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ) |x̃〉X
′
, (95)

and the norm of this term is
∥∥∥∥∥∥
∑

x̃∈X̃
|x̃〉X ⊗

√
1

Q
(τ)
max

Q(τ)F†D
√

q̂(ρ) |x̃〉X
′

∥∥∥∥∥∥
2
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=

√√√√Tr
[√

q̂(ρ)FDQ(τ)F†D
√

q̂(ρ)
]

Q
(τ)
max

=

√√√√Tr
[
FDQ(τ)F†Dq̂(ρ)

]

Q
(τ)
max

=

√
Tr Σ̂

Q
(τ)
max

, (96)

where the last equality uses Σ̂ = kq̂(ρ) = FDQ(τ)F†Dq̂(ρ) obtained from Proposition 1. For any
translation-invariant kernel k̃ (x′, x) = k̃TI (x′ − x), we can evaluate Tr Σ̂ as

Tr Σ̂ = Tr
[
kq̂(ρ)

]
= k̃TI (0) Tr q̂(ρ) = k̃(0, 0) = Ω(1), (97)

where we use the assumption k̃(0, 0) = Ω(k(0, 0)) = Ω(1). Thus, to obtain the normalized quantum
state proportional to the term (95), Step 4 is followed by amplitude amplification [6] that repeats

the above steps O
(√

Q
(τ)
max

Tr Σ̂

)
= O

(√
Q

(τ)
max

)
times. Therefore, at the end of Step 4 including the

amplitude amplification, the runtime is

O

((
D log (G) log log (G) polylog

(
1

∆

)
+ Tρ + Tτ

)
×
√
Q

(τ)
max

)
. (98)

Step 5 is performed by implementing a block encoding of Σ̂
− 1

2
ε , which is obtained from quan-

tum singular value transformation (QSVT) [5] of the block encoding of 1

1+(ε/Q
(τ)
max)

Σ̂ε con-

structed in Lemma 2. The block encoding of 1

1+(ε/Q
(τ)
max)

Σ̂ε can be implemented in time

O
(
D log (G) log log (G) polylog

(
1
∆

)
+ Tρ + Tτ

)
as shown in Lemma 2. Then, the QSVT

combined with variable-time amplitude amplification [4, 22, 23] yields a block encoding of(
1

1+(ε/Q
(τ)
max)

Σ̂ε

)− 1
2

, which can be applied to any given quantum state up to ∆ precision using

the block encoding of 1

1+(ε/Q
(τ)
max)

Σ̂ε repeatedly Õ
((

Q(τ)
max

ε + 1
)

polylog
(

1
∆

))
times [5]. This rep-

etition includes the runtime required for the amplitude amplification, and Q(τ)
max

ε + 1 is the condition
number of 1

1+(ε/Q
(τ)
max)

Σ̂ε since it holds that

1

1 + (ε/Q
(τ)
max)

ε

Q
(τ)
max

1 5
1

1 + (ε/Q
(τ)
max)

Σ̂ε 5 1. (99)

Thus, Step 5 including amplitude amplification can be implemented in time

O

(
D log (G) log log (G) polylog

(
1

∆

)
+ Tρ + Tτ

)
× Õ

((
Q

(τ)
max

ε
+ 1

)
polylog

(
1

∆

))

= O (D log (G) log log (G) + Tρ + Tτ )× Õ
(
Q

(τ)
max

ε
polylog

(
1

∆

))
. (100)

Therefore from (98) and (100), we obtain the total runtime at the end of Step 5 including amplitude
amplification

O (D log (G) log log (G) + Tρ + Tτ )× Õ
((√

Q
(τ)
max +

Q
(τ)
max

ε

)
polylog

(
1

∆

))

= O (D log (G) log log (G) + Tρ + Tτ )× Õ
(
Q

(τ)
max

ε
polylog

(
1

∆

))
, (101)

which yields the conclusion.
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F Overall runtime of learning with optimized random features

In this section, we show the algorithm for the learning with optimized random features and bound its
runtime.

Algorithm 2 shows the whole algorithm that achieves the learning using the optimized random features.
In Algorithm 2, we sample the optimized random features efficiently by Algorithm 1, and then perform
stochastic gradient descent (SGD) [24] shown in Algorithm 3. As explained in the main text, the SGD
achieves linear regression to obtain coefficients of the estimate f̂M,vm,αm =

∑M−1
m=0 αmϕ(vm, ·) ≈ f ,

i.e.,

α =




α0

...
αM−1


 ∈ RM , (102)

where the optimal coefficient α minimizes the generalization error

I (α) :=
∑

x̃∈X̃
p(ρ)(x̃)

∣∣∣f(x̃)−
M−1∑

m=0

αmϕ (vm, x̃)
∣∣∣
2

, (103)

and the examples of data are IID sampled according to p(ρ)(x̃) :=
∫

∆x̃
dρ(x).

We remark that rather than the linear regression based on least-squares of I in (103), Bach [25]
analyzes regularized least-squares regression exploitingQ∗ε , but it may be hard to compute description
of Q∗ε . To circumvent this hardness of using Q∗ε in regularization, we could replace the regularization
in Ref. [25] withL2 regularizationR(α) = λ‖α‖22. Then, due to strong convexity [24], SGD reducing
I +R to O(ε) terminates after O( 1

ελ ) iterations, while further research is needed to clarify how the
L2 regularization affects the learning accuracy compared to minimizing I without this regularization.
In this paper, we consider the linear regression minimizing I to simplify the analysis of the required
runtime for achieving the desired learning accuracy.

We prove the following theorem that bounds the runtime of Algorithm 2. The sketch of the proof is
as follows. To bound the runtime of Algorithm 2, we show that the required number T of iterations
for the SGD [24], i.e., Algorithm 3, to return α minimizing I to accuracy O(ε) with high probability
greater than 1− δ is

T = O

(
1

ε2Q2
min

log

(
1

δ

))
, (104)

where Qmin is the minimum of Q(v0), . . . , Q(vM−1) in Theorem 1

Qmin := min {Q(vm) : m ∈ {0, . . . ,M − 1}} , (105)

and the parameter region W of α in Algorithm 3 is chosen as an M -dimensional ball of center
0 and of radius O

(
1√

MQmin

)
. Note that step sizes used for SGD [24] shown in Algorithm 3 are

chosen depending on the number T of iterations so as to achieve (104), but we can also use step sizes
independent of T at expense of as small as poly-logarithmic slowdown in terms of ε, Qmin compared
to (104) [26]. In the tth iteration of the SGD for each t ∈ {1, . . . , T}, we calculate an unbiased
estimate ĝ(t) of the gradient ∇I . Using the tth IID sampled data (x̃t, yt) and a uniformly sampled
random integer m ∈ {0, . . . ,M − 1}, we show that we can calculate ĝ(t) within time O(MD) in
addition to one query to each of the classical oracles

Ox̃(n) = x̃n, Oy(n) = yn (106)

to get (x̃t, yt) in time Tx̃ and Ty, respectively; that is, the runtime per iteration of the SGD is
O(MD+ Tx̃ + Ty). Combining Algorithm 1 with this SGD, we achieve the learning by Algorithm 2
within the following overall runtime.
Theorem 2 (Overall runtime of learning with optimized random features). The runtime T2 of
Algorithm 2 for learning with optimized random features is

T2 = O (MT1) +O

(
(MD + Tx̃ + Ty)

1

ε2Q2
min

log

(
1

δ

))
,

where T1 appears in Theorem 1, the first term is the runtime of sampling M optimized random
features by Algorithm 1, and the second term is runtime of the SGD.

18



Remark 2 (Omission of some parameters from the informal statement of Theorem 2 in the main
text). In the informal statement of Theorem 2 in the main text, we omit the dependency on Qmin

and 1
δ from the runtime. In the parameter region of sampling optimized random features that are

weighted by importance and that nearly minimize the required number M of features, the minimal
weight Qmin of these features is expected to be sufficiently large compared to ε, not dominating the
runtime, while we include Qmin in our runtime analysis in Supplementary Material to bound the
worst-case runtime. In addition, the dependency on 1

δ is logarithmic in Theorem 2. For these reasons,
we simplify the presentation in the main text by omitting Qmin and 1

δ .

Algorithm 2 Algorithm for learning with optimized random features.
Input: Inputs to Algorithms 1 and 3, required number M of features for achieving the learning to

accuracy O(ε).
Output: Optimized random features v0, . . . , vM−1 and coefficients α0, . . . , αM−1 for∑

m αmϕ(vm, ·) to achieve the learning to accuracy O(ε) with probability greater than
1− δ.

1: for m ∈ {0, . . . ,M − 1} do
2: vm ← quOptRF. {by Algorithm 1.}
3: end for
4: Minimize I(α) to accuracy O(ε) by SGD to obtain α0, . . . , αM−1. {by Algorithm 3.}
5: Return v0, . . . , vM−1, α0, . . . , αM−1.

Algorithm 3 Stochastic gradient descent (SGD).
Input: A function I : W → R, a projection Π to a convex parameter regionW ⊂ RM specified

by Qmin in (105), number of iterations T ∈ N specified by (104), an initial point α(1) ∈ W ,
T -dependent hyperparameters representing step sizes

(
η(t) : t = 1, . . . , T

)
given in Ref. [24],

classical oracle functions Ox̃,Oy in (106) for calculating ĝ(t).
Output: Approximate solution α minimizing I(α).

1: for t ∈ {1, . . . , T} do
2: Calculate an unbiased estimate ĝ(t) of the gradient of I satisfying E

[
ĝ(t)
]

= ∇I(α(t)).
3: α(t+1) ← Π(α(t) − η(t)ĝ(t)).
4: end for
5: Return α← α(T+1).

Proof. We bound the runtime of each step of Algorithm 2. In Step 2, using Algorithm 1 repeatedly
M times, we obtain M optimized random features within time

O(MT1), (107)

where T1 is the runtime of Algorithm 1 given by Theorem 1. As for Step 4, we bound the runtime
of the SGD in Algorithm 3. In the following, we show that the runtime of each iteration of the
SGD is O (MD + Tx̃ + Ty), and the required number of iterations in the SGD is upper bounded by

O
(

1
ε2Q2

min
log
(

1
δ

))
.

We analyze the runtime of each iteration of the SGD. The dominant step in the tth iteration for each
t ∈ {0, . . . , T − 1} is the calculation of an unbiased estimate ĝ(t) of the gradient ∇I , where I is
given by (103). The gradient of I is given by

∇I (α) =
∑

x̃∈X̃
p(ρ) (x̃)




2<
[
e−2πiv0·x̃

(
f (x̃)−∑M−1

m=0 αme2πivm·x̃
)]

...
2<
[
e−2πivM−1·x̃

(
f (x̃)−∑M−1

m=0 αme2πivm·x̃
)]




=

M−1∑

m=0

1

M

∑

x̃∈X̃
p(ρ) (x̃)




2<
[
e−2πiv0·x̃ (f (x̃)−Mαme2πivm·x̃)]

...
2<
[
e−2πivM−1·x̃

(
f (x̃)−Mαme2πivm·x̃)]


 , (108)
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where < represents the real part. In the tth iteration, Algorithm 3 estimates the gradient at a point
denoted by

α(t) =




α
(t)
0
...

α
(t)
M−1


 ∈

{
α(1), . . . , α(T )

}
. (109)

Using a pair of given data points (x̃t, yt = f (x̃t)) ∈ {(x̃0, y0) , (x̃1, y1) , . . . , } sampled with proba-
bility p(ρ) (x̃) as observations of an independently and identically distributed (IID) random variable,
and an integer m ∈ {0, . . . ,M − 1} uniformly sampled with probability 1

M , we give an unbiased
estimate ĝ(t) of this gradient at each point α(t) by

ĝ(t) =




2<
[
e−2πiv0·x̃t

(
yt −Mα

(t)
m e2πivm·x̃t

)]

...
2<
[
e−2πivM−1·x̃t

(
yt −Mα

(t)
m e2πivm·x̃t

)]


 . (110)

By construction, we have
E
[
ĝ(t)
]

= ∇I
(
α(t)

)
. (111)

We obtain x̃t using the classical oracle Ox̃ within time Tx̃, and yt = f (x̃t) using the classical oracle
Oy within time Ty. As for m, since we can represent the integer m using dlog2 (M)e bits, where
dxe is the least integer greater than or equal to x, we can sample m from a uniform distribution
using a numerical library for generating a random number within time O (polylog (M)). Note that
even in case it is expensive to use randomness in classical computation, quantum computation can
efficiently sample m of dlog2 (M)e bits from the uniform distribution within time O(log (M)). In
this quantum algorithm, dlog2 (M)e qubits are initially prepared in |0〉⊗dlog2(M)e, and the Hadamard
gate H = 1√

2

(
1 1
1 −1

)
is applied to each qubit to obtain

1√
2dlog2(M)e

(|0〉+ |1〉)⊗dlog2(M)e
, (112)

followed by a measurement of this state in the computational basis to obtain a dlog2 (M)e-bit outcome
sampled from the uniform distribution. Given x̃t, yt, and m, we can calculate each of the M element
of ĝ in (110) within time O(D) for calculating the inner product of D-dimensional vectors, and hence
the calculation of all the M elements takes time O(MD). Therefore, each iteration takes time

O (Tx̃ + Ty + polylog(M) +MD) = O (MD + Tx̃ + Ty) . (113)

Note that without sampling m, we would need O(M2D) runtime per iteration because each of the M
elements of the gradient in (108) includes the sum over M terms; thus, the sampling of m is crucial
for achieving our O(MD) runtime.

To bound the required number of iterations, we use an upper bound of the number of iterations in
Algorithm 3 given in Ref. [24], which shows that if we have the following:

• for any α ∈ W ,

‖∇I(α)‖2 5 L, (114)

• the unbiased estimate ĝ for any point α ∈ W almost surely satisfies

‖ĝ‖2 5 L, (115)

• the diameter ofW is bounded by

diamW 5 d, (116)

then, after T iterations, with high probability greater than 1− δ, Algorithm 3 returns α satisfying

ε = O


dL

√
log
(

1
δ

)

T


 , (117)
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where we write
ε = I(α)− min

α∈W
{I(α)} . (118)

In the following, we bound d and L in (117) to clarify the upper bound of the required number of
iterations T in our setting.

To show a bound of d, recall the assumption that we are given a sufficiently large number M of
features for achieving the learning in our setting. Then, Bach [25] has shown that with the M features
sampled from the weighted probability distribution Q(vm)P (τ)(vm) by Algorithm 1, the learning to
the accuracy O(ε) can be achieved with coefficients satisfying

‖β‖22 = O

(
1

M

)
, (119)

where β = (β0, . . . , βM−1)
T is given for each m by

βm =
√
Q(vm)αm. (120)

This bound yields
M−1∑

m=0

Q(vm)α2
m = O

(
1

M

)
. (121)

In the worst case, a lower bound of the left-hand side is
M−1∑

m=0

Q(vm)α2
m = Qmin ‖α‖22 . (122)

From (121) and (122), we obtain an upper bound of the norm of α minimizing I

‖α‖22 = O

(
1

MQmin

)
. (123)

Thus, it suffices to choose the parameter regionW of α as an M -dimensional ball of center 0 and of
radius O

(
1√

MQmin

)
, which yields the diameter

d = O

(
1√

MQmin

)
. (124)

As for a bound of L, we obtain from (110) and (123)

‖ĝ‖2 = O
(
M ‖α‖2 +

√
M
)

= O

(√
M

Qmin
+
√
M

)
= O

(√
M

Qmin

)
, (125)

where we take the worst case of small Qmin, and we use bounds√√√√
M−1∑

m=0

|Mαme2πivm·x̃t |2 = O(M‖α‖2), (126)

√√√√
M−1∑

m=0

y2
t = O(

√
M). (127)

Since the upper bound of ‖ĝ‖2 is larger than ‖∇I(α)‖2, we have

L = O

(√
M

Qmin

)
. (128)

Therefore, using (124) and (128), we bound the right-hand side of (117)

ε = O


dL

√
log
(

1
δ

)

T


 = O


 1

Qmin

√
log
(

1
δ

)

T


 . (129)

Thus, it follows that

T = O

(
1

ε2Q2
min

log

(
1

δ

))
. (130)

Combining (107), (113), and (130), we obtain the claimed overall runtime.
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