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Abstract

Kernel methods augmented with random features give scalable algorithms for
learning from big data. But it has been computationally hard to sample random
features according to a probability distribution that is optimized for the data, so as
to minimize the required number of features for achieving the learning to a desired
accuracy. Here, we develop a quantum algorithm for sampling from this optimized
distribution over features, in runtime O(D) that is linear in the dimension D of
the input data. Our algorithm achieves an exponential speedup in D compared
to any known classical algorithm for this sampling task. In contrast to existing
quantum machine learning algorithms, our algorithm circumvents sparsity and
low-rank assumptions and thus has wide applicability. We also show that the
sampled features can be combined with regression by stochastic gradient descent to
achieve the learning without canceling out our exponential speedup. Our algorithm
based on sampling optimized random features leads to an accelerated framework
for machine learning that takes advantage of quantum computers.

1 Introduction

Random features [} 2] provide a powerful technique for scaling up kernel methods [3]] applicable
to various machine learning tasks, such as ridge regression [4], kernel learning [5], and principle
component analysis [6]. Recently, Bach [7] has shown an optimized probability distribution of
random features, and sampling features from this optimized distribution would drastically improve
runtime of learning algorithms based on the random features. However, this sampling task has been
computationally “hard in practice” [7] due to inversion of a high-dimensional operator. In contrast,
the power of quantum computers to process data in quantum superposition attracts growing attention
towards accelerating learning tasks, opening a new field: quantum machine learning (QML) [8-
10]. In this work, we develop a framework of QML that accelerates a supervised learning task, by
constructing an efficient quantum algorithm for sampling from this optimized distribution.

Learning with random features: Supervised learning deals with the problem of estimating an
unknown function y = f(x). We will consider D-dimensional input z € R” and real-valued output
y € R. Given NV input-output pairs of examples, we want to learn f to a desired accuracy € > 0. To
model f, kernel methods use reproducing kernel Hilbert space (RKHS) associated with a symmetric,
positive semidefinite function k(x’, z), the kernel [3]]. Typical kernel methods that compute an
N x N Gram matrix may not be scalable as IV gets large, but random features [l 2], along with other
techniques via low-rank matrix approximation [11H13[], enable scalable kernel-based algorithms.
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Algorithms using random features are based on the fact that we can represent any translation-invariant
kernel k as expectation of a feature map (v, x) = e~2™¥"% gver a probability measure d7(v)
corresponding to the kernel. Conventional algorithms using random features [1} 2] sample M D-
dimensional parameters vy, . ..,vy—1 € RP from the distribution d7(v) to determine M features
©(Um, +) in time O(M D). For a class of kernels such as Gaussian, this runtime may be reduced to
O(M log D) [14,[15]). We learn the function f using a linear combination of the M features, i.e.,

M-1
f@) Y am@Vm: ) = fato,0 (@), (D
m=0

To achieve the learning to accuracy O(e), we need to sample a sufficiently large number M of features.
Once we fix M features, we calculate coefficients o, by linear (or ridge) regression to minimize an

error between f and f M,v,,0, Using the N given examples [2| 4, [16]]. The sampling of features and
the regression of coefficients can be performed simultaneously via doubly stochastic gradients [17]].

Problem: These conventional algorithms using random features sampled from the data-independent
distribution d7(v) require a large number M of features to learn the function f, which slows down
the decision of all M features and the regression over M coefficients. To improve this, we aim to
minimize M required for the learning. Rather than sampling from d7(v), we will sample features
from a probability distribution that puts greater weight on important features optimized for the data
via a probability density function g(v) for d7(v). To minimize M achieving the accuracy O(e),
Bach [7] provides an optimized probability density function ¢ (v) for d7(v) (see (3), Sec.[2.2). This
optimized ¢ (v) achieves minimal M up to a logarithmic gap among all algorithms using random
features for accuracy e [7. It significantly improves M compared to sampling from d7(v) [4}[7}[18];
e.g., to achieve learning with the Gaussian kernel from data given according to a sub-Gaussian
distribution, compared to sampling from the data-independent distribution dr(v) in Refs. [1} 2],
the required number M of features sampled from the optimized distribution ¢*(v)d7(v) can be
exponentially small in € [[7]]. We call features sampled from ¢’ (v)d7(v) optimized random features.

However, the sampling from ¢*(v)dr(v) has been “hard in practice” [[7]] for two reasons. First, the
definition (3) of ¢ (v) includes an infinite-dimensional operator (% + €1)~! on the space of functions
f : RP — R with D-dimensional input data, which is intractable to calculate by computer without
approximation. Second, even if we approximate 3 + €1 by an operator on a finite-dimensional space,
the inverse operator approximating (¥ + €1)~! is still hard to calculate; in particular, for achieving a
desired accuracy in the approximation, the required dimension of this finite-dimensional space can be
exponentially large in D, i.e., O(exp(D)) [18L[19], and no known algorithm can calculate the inverse
of the O(exp(D))-dimensional operator in general within sub-exponential time in D.

Note that Refs. [20}21]] propose probability density functions similar to ¢’ (v), from which the samples
can be obtained in polynomial time [20H22]]; however, in contrast to sampling from ¢*(v)dr(v),
sampling from the distributions in Refs. [20l 21]] does not necessarily minimize the required number
M of features for the learning. In particular, ¢’ (v)d7(v) in Ref. [7] and the distribution in Ref. [20]
are different in that the former is defined using an integral operator as shown in (3)), but the latter
is defined using the Gram matrix; even if we discretize the integral operator, we do not obtain the
Gram matrix. The distribution in Ref. [21] does not use the integral operator either. Bach [7] proves
optimality of ¢*(v)dr(v) in minimizing M required for approximating function f, but this proof of
the optimality is not applicable to the distributions in Refs. [20} 21]]. Similarly, whereas sampling
from an importance-weighted distribution may also be used in column sampling for scaling-up kernel
methods via low-rank matrix approximation, algorithms in the setting of the column sampling [23H25]]
are not applicable to our setting of random features, as discussed in Ref. [7]. Quasi-Monte Carlo
techniques [26,27] also improve M, but it is unknown whether they can achieve minimal M.

Our contributions: As discussed above, the bottleneck in using random features sampled from the
optimized distribution ¢ (v)dr(v) is each sampling step that works with inversion of O(exp(D))-
dimensional matrices for D-dimensional input data. To overcome this bottleneck and the difficulties in
sampling from ¢* (v)d7(v), we discover that we can use a quantum algorithm, rather than conventional
classical algorithms that run on existing computers. Our contributions are as follows.

* (Theorem [I)) We construct a quantum algorithm for sampling a feature from the data-
optimized distribution ¢ (v)dr(v) in as fast as linear runtime O(D) in the data di-
mension D. The best existing classical algorithm for sampling each single feature from



data-optimized q* (v)dr(v) requires exponential runtime O(exp(D)) [[Z,18}[19]. In contrast,
our quantum algorithm can sample the feature from ¢ (v)dr(v) in runtime O(D), which
is as fast as the conventional algorithms using random features [[1, 2. We emphasize that
the conventional algorithms perform an easier task, i.e., sampling from a data-independent
distribution d7(v). Advantageously over the conventional algorithms sampling from dr(v),
we can use our algorithm sampling from ¢*(v)dr(v) to achieve learning with a significantly
small number M of features, which is proven to be minimal up to a logarithmic gap [7].
Remarkably, we achieve this without assuming sparsity or low rank of relevant operators.

* (Theorem [2) We show that we can combine M features sampled by our algorithm with
regression by stochastic gradient descent to achieve supervised learning in time O(M D),
i.e., without canceling out our exponential speedup. This M is minimal up to a logarithmic
gap [[7] since we use optimized random features. Thus, by improving the computational
bottleneck faced by classical algorithms for sampling optimized random features, we provide
a promising framework of quantum machine learning that leverages our O(D) sampling
algorithm to achieve the optimal M among all algorithms using random features.

Comparison with previous works on quantum machine learning (QML): The novelty of our
contributions is that we construct a QML algorithm that is exponentially faster than any existing
classical algorithm sampling from ¢ (v)dr(v) [, [L8L[19], yet is still free from sparsity and low-rank
assumptions on operators. Despite major efforts to apply QML to kernel methods [28]], super-
polynomial speedups like Shor’s algorithm for prime factoring [29] are rare in QML. In fact, it has
been challenging to find applications of quantum algorithms with super-polynomial speedups for
practical problems [30]. Typical QML algorithms such as Refs. [31H34] may achieve exponential
speedups over classical algorithms only if matrices involved in the algorithms are sparse; in particular,
n X n matrices can have only polylog(n) nonzero elements in each row and column. Another class
of QML algorithms such as Refs. [35H38]] do not require sparsity but may attain large speedups only
if the n x n matrices have low rank polylog(n). This class of quantum algorithms are polynomially
faster than recent “quantum-inspired” classical algorithms such as Refs. [39-H41]], which also assume
low rank. Quantum singular value transformation (QSVT) [42] has recently emerged as a fundamental
subroutine to implement these quantum algorithms in a unified way. However, power and applicability
of these QML algorithms are restricted by the extreme assumptions on sparsity and low rank [43].

Our key technical contribution is to develop an approach for circumventing the sparsity and low-rank
assumptions in our QML algorithm, broadening the applicability of QML. We achieve this by
combining the QSVT with another fundamental subroutine, quantum Fourier transform (QFT) [44,
435]). QFT and QSVT are commonly used in quantum computation (46} 47]; however, it is nontrivial
to use these subroutines for developing a QML algorithm that exponentially outperforms existing
classical algorithms under widely applicable assumptions. To achieve the speedup, our technique
decomposes the O(exp(D))-dimensional non-sparse and full-rank operator representing > + €1 in
the definition (3)) of ¢} (v) into diagonal (i.e., sparse) operators using Fourier transform. QSVT and
QFT may make our algorithm hard to simulate by classical computation, and hard to perform even on
near-term quantum devices [48, 149]] that cannot implement universal quantum computation due to
noise. For this reason, this paper does not include numerical simulation, and we analytically prove the
runtime of our algorithm. In contrast to heuristic QML algorithms for noisy quantum devices such as
Ref. [48] where no proof bounds its runtime, our QML algorithm aims at applications on large scales;
to achieve this aim, our proof shows the exponential advantage of our quantum algorithm over the
existing classical algorithms in terms of the runtime. The wide applicability of our QML algorithm
makes it a promising candidate for “killer applications” of universal quantum computers in the long
run; after all, large-scale machine learning will be eventually needed in practice.

Also remarkably, since we exploit quantum computation for the sampling problem of ¢’ (v)d7(v), our
QML algorithm avoids overhead of repeating preparation of quantum states many times for estimating
expectation values from the states. The classical algorithm [7, [18] [19] calculates ¢} (v)dr(v) by
matrix inversion and then performs sampling; in contrast, our quantum algorithm never estimates
classical description of ¢*(v)dr(v), which is represented by amplitude of a quantum state, since the
overhead of such estimation would cancel out the speedup [43]. Instead, our exponential quantum
speedup is achieved by performing a quantum measurement of this state to sample a feature efficiently
per single preparation and measurement of the state. Our algorithm combined with stochastic gradient
descent provides classical description of an estimate of f to be learned, rather than a quantum state. In
this way, our results discover an application of sampling problems to designing fast QML algorithms.



2 Setting of learning with optimized random features

2.1 Notation on quantum computation

In Supplementary Material, we summarize basic notions and notations of quantum computation to
describe our quantum algorithms, referring to Refs. [46| 47] for more detail. An m-qubit quantum
register is represented as a 2"*-dimensional Hilbert space H = ((C2)®m. Following the conventional
bra-ket notation, we represent a quantum state on the quantum register as a ket (i.e., a vector) |¢)) € H.

2.2 Supervised learning with optimized random features

We introduce the supervised learning setting that we focus on in this paper, and we will formulate an
approximate version of it in Sec. Suppose that N input-output pairs of examples are given by
(0,90)s -+, (xN—-1,Yn—-1) € X X Y, where y,, = f(x,), f : X — Y is an unknown function to
be learned, X = R” is the domain for D-dimensional input data, )) = R is the range for output data.
Each z,, is an observation of an independently and identically distributed (IID) random variable on X
equipped with a probability measure dp(z) = ¢(*)(x)dz, on which we will pose a mild assumption
later in Sec. @ We choose a translation-invariant kernel, and such a kernel can be represented as [1]]

k(z',x) = /dT(v)<,9(v,x’)<p(v,x)7 (normalized by k(z, z) = k(0,0) = / dr(v)=1), 2

1%
where ~ is complex conjugation, ¢ : V x X — C is a feature map p(v,x) = e~ 2™v® ) = RP
is a parameter space equipped with a probability measure d7(v) = ¢(™) (v)dv, and dr(v) is given
by the Fourier transform of k. To specify a model of f, we use the RKHS F associated with the
kernel k [3]]. Following Ref. [[7], we assume that the norm || f|| = of f in the RKHS is bounded, in

particular, || f||z < 1. We aim to learn an estimate f of f from the N given examples of data, so that
the generalization error [ dp(z)|f(x) — f(z)|? can be bounded to a desired learning accuracy € > 0.

To achieve the learning to accuracy O(¢€) with the minimal number M of features, instead of sampling
from d7, Bach [7] proposes to sample features from an optimized probability density ¢’ for dr

G2 (0) o 0 (0 ) [(2 1) (0] 0 (normalized by [ g () dr() =1). )
v
where (f|9) 1,y = S dp(x) f(x)g(x), 1 is the identity operator, and ¥ : Ly (dp) — Lo (dp)
is the integral operator (X f) (') = [, dp(x) k (', ) f () [50]. The function ¢} (v) is called a
leverage score. Then, it suffices to sample M features from ¢*(v)d7(v) with M bounded by [7]

M = O(d (€) log (4)/s)), )

so as to achieve the learning to accuracy O(e) with high probability greater than 1 — ¢ for any f
satisfying || f|| = < 1, in formula, min,, { [ dp(2)| Fat.v,, o, (1) — F(2)]2} < e, where faro,, a0,
is the estimate (1)) of f, and d (¢) :== Tr (X + e]l)_1 is the degree of freedom representing effective
dimension of data. In this paper, features sampled from ¢ (v)dr(v) up to approximation are called
optimized random features, which achieve the learning with minimal M up to a logarithmic gap [7].
In kernel methods, kernel & should be chosen suitably to learn from the data given according to
the distribution dp; otherwise, it is impossible for the kernel methods to achieve the learning with
reasonable runtime and accuracy. In the case of random features, f must have a polynomial-size
description in terms of the features, i.e., M = O(poly(D, !/¢)). To guarantee this, the degree of

freedom d (€) must satisfy

d(e) = O(poly(D, 1/c)), (5)
where d (¢) depends on X and hence on both dp and k that is to be chosen suitably to satisfy (3).
2.3 Discretized representation of real number

To clarify our setting of digital quantum computation, we explain discretized representation of real
number used in our quantum algorithm. We assume that the input data domain is bounded; in

particular, the data distribution dp () is nonzero only on a bounded domain [0, xmax]D (Tmax > 0).



Table 1: Rescaling data by r > 1. Table 2: Discretized representation (&', & € X).

Original Rescaled by 7 > 1 Function / operator on X  Vector / operator on H~
Gofinterval [0,G] G, =rG fix=cC If) =225 f(@)|2)
i / / ’
Kernel k(z', z) kr(ra’,rz) = k(z', x) ov,"): X > C lo(v,)) = > ¢(v,2)|Z)
Input z rT k HE. ) |7 (@
k:XxX R k=37 k(@ 2)|2) (
Outputy = f(z) y = fr(rz) = f(x) ®.x¥ SR ) = (D) (A 15\ [
(p) — (p) — 4(P) a4 47 =2 (@)D (@
q 7 (z)de = dp(z) ¢ (rz) = q"(z)/r Yactingon f: X - C 3 :=kq”
f(@)sLC LY L = 19y, Sf:X 5 C /)
, 0) 9 (» T
¢¥ (z)sLC L@ L) = 1@y G X > R(Sec.p4) 4 =3, 4" (1) [2) (3]

If the kernel k(2’, x), such as Gaussian, decays to 0 sufficiently fast as 2’ and z deviate from 0, then
we can approximate k(x’, ) using a periodic function k with a sufficiently large period G' >> yax

k(z',x) ~ Z k(z',xz + Gn) = k(a',z), Vi',ze [O,xmaX]D. 6)

neZb

We will use k as a kernel in place of k. In computation, it is usual to represent a real number using
a finite number of bits; e.g., fixed-point number representation with small precision A > 0 uses
a finite set {0, A, 2A, ..., G — A} to represent a real interval [0, G]. Equivalently, to simplify the
presentation, we use the fixed-point number representation rescaled by a parameter = 1/A as shown
in Table so that we can use a set of integers Z = {0, 1, ..., G, — 1} to discretize the interval. We
represent the data domain X = RP as X = IP. Discretization of the data range ) is unnecessary
in this paper. For any real-valued point x € X', we write its closest grid point as £ € X, and let
A, C RP denote a D-dimensional unit hypercube whose center is the closest grid point Z to .

To justify this discretization, we assume that functions in the learning, such as the function f to
be learned and the probability density ¢'#) () of input data, are L-Lipschitz continuous for some
Lipschitz constant (LC) LE] Then, errors caused by the discretization, i.e., |f(z) — f(Z)| and

|¢P) (x) — ¢\P)(%)), are negligible in the limit of small (but still nonzero) L, in particular, Lv/D — 0.

As the data dimension D gets large, to reduce L+/D to a fixed error threshold, we rescale the data to
a larger domain (see Table|[I); in particular, we rescale G representing the interval [0, G] to G, = rG

with » = Q(L+/D). The rescaling in Table |1{keeps the accuracy and the model in the learning

invariant.

We focus on asymptotic runtime analysis of our algorithm as G, gets larger, i.e., G,, — oo, which
reduces the errors in the discretization. We henceforth omit the subscript r and write G, as G for
brevity. An error analysis of discretization for finite G is out of the scope of this paper; for such an
analysis, we refer to established procedures in signal processing [51].

As we can represent X’ using D [log, G| bits, where [z] is the least integer greater than or equal to ,
we similarly represent X’ using a quantum register ¥ := span{|Z) : & € X'} of D[log, G] qubits.
This quantum register is composed of D sub-registers, i.e., HX = (HI)®D, where each [log, G-
qubit sub-register Hz = (C?)®M1°22 ¢1 corresponds to Z. To represent # = (&™), ..., #(PNHT € X,
we use a quantum state |#)~ = ®dD:1 ’:i(d)> € HY, where |i(d)> € Hr.

We represent a function on the continuous space X’ as a vector on finite-dimensional %, and an

operator acting on functions on X’ as a matrix on X, as shown in Table[2} Under our assumption
that the rescaling makes the Lipschitz constants sufficiently small, we can make an approximation

qmmwwuﬁﬁmmfmwuxq@quzwuy )

With this discretization, we can represent the optimized probability density function ¢} in (3) as

i (0) o o )] @) (2 -+ 1) o (0.) . (nommalized by [ G2 (0)dr(v) = 1) )

'For any z, 2’ € X, afunction ¢ : X — C is L-Lipschitz continuous if |¢ (z) — ¢ (z') | £ Lz — '||2.



2.4 Data in discretized representation

To represent real-valued input data x,, € X that is IID sampled according to the probability measure
dp(z), we use discretization. We represent x,, using its closest (i.e., rounded) grid point &,, € X, [ID
sampled with probability [ A dp(x), where A, is the D-dimensional unit hypercube centered at

Z,. This rounding may cause some error in learning but does not significantly ruin the performance
of our QML algorithm; after all, any implementation of kernel methods by computer with bits
requires rounding, and in our setting, a cluster of points that would be represented as the same grid
point after the rounding are resolved by rescaling, which is equivalent to increasing precision of
rounding without rescaling. Then under standard assumptions in signal processing [51]] where such
implementation works well, it should be straightforward to show our algorithm also works well. In

the following, the N given examples are (Zo, yo), - - -, (Tn—1,YynN—1) € X x Y, where y,, = f(&n).

The true probability distribution dp of the input data is unknown in our setting, and our algorithm
uses the N given examples of data to approximate dp(z) = ¢'#) (x)dz up to a statistical error. For
any T € X, we approximate the distribution dp near = by an empirical distribution counting the
data: §(¥) (Z) := n(#)/N, where n(Z) denotes the number of given examples of input data that are
included in the D-dimensional unit hypercube Az;. We also represent §(”) as an operator () shown
in Table 2| In the same way as ¥ = kq”) in Table [2 an empirical integral operator is given by

3 =kg. 9)

We aim to analyze the asymptotic runtime of our algorithm when the number /N of examples becomes
large, as with analyzing the cases of large G in the rescaling. In the limit of N — oo, statistical errors
in the empirical distribution caused by the finiteness of N vanish. Analysis of statistical errors for
finite NV is out of the scope of this paper; for such an analysis, see Ref. [7].

3 Learning with optimized random features

We now describe our efficient quantum algorithm for sampling an optimized random feature in
the setting of Sec.[2] As we show in Sec. [3.1] the novelty of our algorithm is to achieve this
without assuming sparsity and low rank by means of the perfect reconstruction of the kernel, which
decomposes the kernel by Fourier transform into a finite sum of the feature map ¢ weighted over a
finite set of features. In Sec. we clarify assumptions on our quantum algorithm, bound its runtime
(Theorem [T)), and also show that we can achieve the learning as a whole without canceling out our
quantum speedup by combining our quantum algorithm with stochastic gradient descent (Theorem [2)).

Compared to existing works [20H22]] on sampling random features from weighted probability dis-
tributions for acceleration, the significance of our results is that our algorithm in the limit of good
approximation (as N, G — o0) is provably optimal in terms of a gap from a lower bound of the
required number of random features for achieving learning [7]], and yet its runtime is as fast as linear
in D and poly-logarithmic in G (and N )E] Our algorithm is constructed so as to converge to sampling
from the optimized distribution (3] in Ref. [7] as N, G — oo whereas the algorithms in Refs. [20-22]]
do not converge to sampling from (3) in any limit. Although the algorithms in Refs. [20-H22] can
achieve learning, the optimality of Refs. [20-22] is unknown in general; in contrast, Ref. [7] proves
the optimality up to a logarithmic gap, and our algorithm based on Ref. [7] achieves this optimality
in the limit of N, G — cc.

3.1 Main idea of quantum algorithm for sampling an optimized random feature

The crucial technique in our quantum algorithm is to use the perfect reconstruction of the kernel
(See Proposition 1 in Supplementary Material). In the same way as representing the kernel k as the
expectation (Z)) of (v, x) = e~ 2™ gver the probability distribution d7 = ¢(7) (v)dv, we represent
our kernel k using Shannon’s sampling theorem [52]] in signal processing as

k(' )= Y («DCe)ar)p(Ffa, )p(7c, x). (10)

vezp

The runtime shown in Theorems andis constant time in /V except that classical and quantum oracles
that abstract devices for accessing data may have runtime O(1) or O(polylog(XV)), as discussed in Sec.



Table 3: Distribution Q™) (Ug) for the Gaussian kernel (top) and the Laplacian kernel (bottom),

where vg = (vél), . ng)) and 9 (u;q) =1+2> 7, q" cos (2nu) is the theta function.

k(z', x) Q" (ve)

Gaussian kernel: exp(— ||z’ — a:||§) I, 19(7rU(Gd);exp(—*y))
Laplacian kernel: exp(— [|z" — z||,)  [T5_, 5i"h(0)/(cosh(v)—cos(2rv’))

Moreover, we show that to represent k exactly on our discrete data domain X, it suffices to use a
finite set V¢ of features and a distribution function Q') over the finite set V¢

Q' (vg) Z ¢ (g + 1), wva€Va=1{0,c,...,1-1c}", (11)

o' EeLP

where we give examples of Q(7) in ”l:able In particular, for all 7', % € X, we show the following
perfect reconstruction of our kernel k(i', Z) from the function Q(™) using D-dimensional discrete
Fourier transform F p and its inverse F

R@3) = Y (QV06)eP)ple 7 )p(ve, F) (: (@ |FLQMFp |7) = (7| FpQTFY, \@)
va€Va

(12)
where Q(7) == died Q) (ve) |Z) (#| with vg = #/c is a diagonal operator representing Q7).
Thus, similarly to conventional random features using Fourier transform [1f], if we sampled a
sufficiently large number M of features in Vg from the probability mass function P(T)(Ug) =
QM wa)/( St eve Q" (v,)) corresponding to dr, then we could combine the M features with the
discrete Fourier transform F 1, to achieve the learning with the kernel k(Z’, 7). However, P(™) (vg) is
not optimized for the data, and our quantum algorithm aims to minimize M by sampling an optimized
random feature. To achieve this, in place of the optimized density ¢* defined as (8] for d7 on the set
V of real-valued features, we define an optimized probability density function @} (vs) for weighting
the probability distribution P(™) (v) on the finite set V¢ of our features as

* ~ < -1 . * T
Q: (va) < (p(va,)|a? (£ +€l) |p(vg, ), (normalizedby D Qf(vs)P(vg) =1).
vgEVa
(13)
To sample from optimized Q*(vg)P(™) (vg), we show that we can use a quantum state on two
registers HX @ HX " of the same number of qubits (See Proposition 2 in Supplementary Material)

VXN B0 18 0 \/(1en)QOFL /i @) 1) (14)
Fex
where QSIQX = max{Q) (vg) : vg € V(;} is the maximum of Q™) (vg), 3. is a positive

semidefinite operator 3. = (1/Q(7),)/aPk\/q® + (¢, )1, and f(A) for an operator A
denotes an operator given by applymg fto the smgular values of A while keeping the singular vectors,

e.g. Va» =3 sq |x az| We show that if we perform a quantum measurement of
the register " for the state |\I/> "in the computational basis {|Z)™ } we obtain a measurement
outcome & with probability Q¥ (2/c) P{™) (/G). Our quantum algorithm prepares |0 XY efficiently,
followed by the measurement to achieve the sampling from Q (vg) P(") (vg), where vg = #/G.

The difficulty in preparmg the state |\I/> X arises from the fact that |¥) in (T4) includes a GP-
dimensional operator 3.2, ie. onan exponentially large space in D and 3. may not be sparse
or of low rank. One way to use a linear operator, such as . and 2. 2, in quantum computation is
to use the technique of block encoding [42]]. In conventional ways, we can efficiently implement
block encodings of sparse or low-rank operators [42]], such as the diagonal operator /(1/Q(7),)Q(™)

max

in (T4). If we had an efficient implementation of a block encoding of 3., quantum singular value

3With F denoting a unitary operator of (one-dimensional) discrete Fourier transform, we define Fp := F®P,



transformation (QSVT) [42]] would give an efficient way to implement a block encoding of > H to
prepare | U). However, it has not been straightforward to discover such an efficient implementation for
3. without sparsity and low rank. Recent techniques for “quantum-inspired” classical algorithms [39]
are not applicable either, since the full-rank operator 3. does not have a low-rank approximation.
Remarkably, our technique does not directly use the conventional ways that require sparsity or low
rank, yet implements the block encoding of 3. efficiently.

Our significant technical contribution is to overcome the above difficulty by exploiting quantum
Fourier transform (QFT) for efficient implementation of the block encoding of 3. In our algorithm,
QFTs are used for implementing the block encoding of 3. and for applying FL in preparing |¥)
in (T4). The sparse and low-rank assumptions can be avoided because we explicitly decompose
the (non-sparse and full-rank) operator 3. in (T4) into addition and the multiplication of diagonal
(i.e., sparse) operators and QFTs. We could efﬁc1ent1y implement 3. by addition and multiplication
of block encodings of these diagonal operators and QFTs, but presentation of these additions and
multiplications may become complicated since we have multiple block encodings to be combined.
For simplicity of the presentation, we use the block encoding of the POVM operator [42] at the
technical level to represent how to combine all the block encodings and QFTs as one circuit, as
shown in Figs. 1 and 2 of Supplemental Material. In particular, by the perfect reconstruction (12)),
we decompose 3. into diagonal operators +/(1/Q¢). )Q(7), 1/q(» (whose block encodings are
efficiently implementable) and unitary operators Fp, FL representing D-dimensional discrete
Fourier transform and its inverse. The QFT provides a quantum circuit implementing F' p (and FE)
with precision A within time O(D log(G) log(los G/a)) [44]. We combine these implementations to
obtain a quantum circuit that efficiently implements the block encoding of ... The QSVT of our

. .1
block encoding of X yields a block encoding of ¥, ? with precision A, using the block encoding
of 3. repeatedly O((Qfﬂx/ ) polylog(1/a)) times [42], where the factor Qi2/e is obtained from the
condition number of 3., and 0] may ignore poly-logarithmic factors. Using these techniques, we

achieve the sampling from Q? (vg) P(") (vg) within a linear runtime in data dimension D under the
assumption that we show in the next section. See Algorithm 1 in Supplementary Material for detail.

3.2 Runtime analysis of learning with optimized random features

We bound the runtime of learning with optimized random features achieved by our quantum algorithm.
In our runtime analysis, we use the following model of accessing given examples of data. Abstracting
a device implementing random access memory (RAM) in classical computation, we assume access
to the nth example of data via oracle functions Oz(n) = Z, and O,(n) = y, mapping n €
{0,..., N — 1} to the examples. Analogously to sampling & € X with probability §(&), we allow
a quantum computer to use a quantum oracle (i.e., a unitary) O, to set a quantum register HX ina

quantum state Y 5 1/¢(?)(Z) |Z) so that we can sample & with probability ¢ (Z) by a measurement
of this state in the computational basis {|Z) }. This input model O, is implementable feasibly and
efficiently using techniques in Refs. [37,153|] combined with a quantum device called quantum RAM
(QRAM) [54}[55], as discussed in Supplemental Material. The oracle O, is the only black box in our
quantum algorithm; putting effort to make our algorithm explicit, we avoid any other use of QRAM.
Note that the time required for accessing data is indeed a matter of computational architecture and
data structure, and the focus of this paper is algorithms rather than architectures. The runtime for each
query to Oz, Oy, and O,, is denoted by T3, T, and T}, respectively. The runtime of our algorithm
does not explicitly depend on the number IV of given examples except that the required runtime 7%,
T, and T}, for accessing the data may depend on NV, which we expect to be O(1) or O(polylog(NN)).

Our algorithm can use any translation-invariant kernel k given in the form of (I2)), where QM) (vg)
can be given by any function efficiently computable by classical computation in a short time denoted

by T; = O(poly(D)), and the maximum Q) of Q) (vg) in (T4) is also assumed to be given.
We assume bounds %(0,0) = Q (k(0,0)) = Q(1) and Q=0 (poly (D)), which mean that the
parameters of the kernel function are adjusted appropriately, so that (0, 0) can reasonably approx-

imate k(0,0) = [, dr(v) = 1, and Qmax (= Q(1)) may not be too large (e.g., not exponentially
large) as D gets large. Remarkably, representative choices of kernels, such as the Gaussian kernel



and the Laplacian kernel in Table |3} satisfy our assumptions in a reasonable parameter regionE] and
not only these kernels, we can use any kernel satisfying our assumptions. Our algorithm does not
impose sparsity or low rank on k for the kernel and () for the data distribution. Note that the
requirement (3) of the upper bound of the degree of freedom d(€) does not imply low rank of k and
q?) while low-rank k or low-rank ¢(”) would conversely lead to an upper bound of d(¢). Hence, our
algorithm is widely applicable compared to existing QML algorithms shown in Sec.[I}

We prove that our quantum algorithm achieves the following runtime 7. Significantly, 77 is as fast
as linear in D whereas no existing classical algorithm achieves this sampling in sub-exponential time.
Note that the precision factor polylog(1/a) in T} of the following theorem is ignorable in practiceE]

Theorem 1. Given D-dimensional data discretized by G > 0, for any learning accuracy ¢ > 0 and
any sampling precision A > 0, the runtime T of our quantum algorithm for sampling each optimized
random feature ve € Vg from a distribution Q(vg)P\™) (vg) close to the optimized distribution

Q: (vg) P (vg) with precision Y e eVe |Q(va) P (va) — Qf (va) P (vg)| £ Ais
Ty = O(D1og(G)loglog(G) + T, + T;) x O((Q%x/c) polylog(1/a)).

Furthermore, using M optimized random features vy, . .., vy;—1 sampled efficiently by this quan-
tum algorithm, we construct an algorithm achieving the learning as a whole (See Algorithm 2 in
Supplementary Material), where this M is to be chosen appropriately to satisfy {@). To achieve the
learning, we need to obtain coefficients «y, ..., ap—1 of fM,Um}am = ZHA{;OI W@ (U, ) = f
that reduce the generalization error to O(¢). To perform regression for obtaining «y, ..., —1,
we use stochastic gradient descent (SGD) [56] (Algorithm 3 in Supplementary Material) as in the
common practice of machine learning. Note that the performance of SGD with random features is
extensively studied in Ref. [[16]], but our contribution is to clarify its runtime by evaluating the runtime
per iteration of SGD explicitly. As discussed in Sec.[2] we aim to clarify the runtime of the learning
in the large-scale limit; in particular, we assume that the number N of given examples of data is
sufficiently large N > T', where 7' is the number of iterations in the SGD. Then, the sequence of
given examples of data (Zg,yo) , (£1,%1) , - - - provides observations of an IID random variable, and
SGD converges to the minimum of the generalization error. Combining our quantum algorithm with
the SGD, we achieve the following runtime 75 of supervised learning with optimized random features,
which is as fast as linear in M and D, i.e., T, = O (M D). Significantly, the required number M of
features for our algorithm using the optimized features is expected to be nearly minimal, whereas it
has been computationally hard in practice to use the optimized features in classical computation.

Theorem 2. (Informal) Overall runtime Ts of learning with optimized random features is

To =O0O(MTy)+ O((MD +T; + T,) x (1)),
where Ty appears in Theorem[I} the first term is the runtime of sampling M optimized random
features by our quantum algorithm, and the second term is the runtime of the SGD.

4 Conclusion

We have constructed a quantum algorithm for sampling an optimized random feature within a linear
time O(D) in data dimension D, achieving an exponential speedup in D compared to the existing
classical algorithm [[7, |18, [19]] for this sampling task. Combining M features sampled by this quantum
algorithm with stochastic gradient descent, we can achieve supervised learning in time O(M D)
without canceling out the exponential speedup, where this M is expected to be nearly minimal since
we use the optimized random features. As for future work, it is open to prove hardness of sampling
an optimized random feature for any possible classical algorithm under complexity-theoretical
assumptions. It is also interesting to investigate whether we can reduce the runtime to O(M log D),
as in Refs. [14} [15] but using the optimized random features to achieve minimal M. Since our
quantum algorithm does not impose sparsity or low-rank assumptions, our results open a route to a
widely applicable framework of kernel-based quantum machine learning with an exponential speedup.

“For the kernels in Table Q(T) is a product of D special functions, computable in time T = O(D) if
each special function is computable in a constant time. It is immediate to give Qﬁ;ix = QW (0). We have
k(0,0) = 1 = Q (1) for these kernels. We can also fulfill Q) = (poly (D)) by reducing the parameter ~y
of the kernels in Table as D increases (the reduction of ~y enlarges the class of learnable functions).

’E.g., inner product of D-dimensional real vectors is calculable in time O(D polylog(/a)) with precision
A using O(log(1/a))-bit fixed-point number representation, but the factor polylog(1/a) is practically ignored.



Broader Impact

Quantum computation has recently been attracting growing attentions owing to its potential for
achieving computational speedups compared to any conventional classical computation that runs
on existing computers, opening the new field of accelerating machine learning tasks via quantum
computation: quantum machine learning. To attain a large quantum speedup, however, existing
algorithms for quantum machine learning require extreme assumptions on sparsity and low rank of
matrices used in the algorithms, which limit applicability of the quantum computation to machine
learning tasks. In contrast, the novelty of this research is to achieve an exponential speedup in quantum
machine learning without the sparsity and low-rank assumptions, broadening the applicability of
quantum machine learning.

Advantageously, our quantum algorithm eliminates the computational bottleneck faced by a class of
existing classical algorithms for scaling up kernel-based learning algorithms by means of random
features. In particular, using this quantum algorithm, we can achieve the learning with the nearly
optimal number of features, whereas this optimization has been hard to realize due to the bottleneck
in the existing classical algorithms. A drawback of our quantum algorithm may arise from the fact
that we use powerful quantum subroutines for achieving the large speedup, and these subroutines are
hard to implement on existing or near-term quantum devices that cannot achieve universal quantum
computation due to noise. At the same time, these subroutines make our quantum algorithm hard to
simulate by classical computation, from which stems the computational advantage of our quantum
algorithm over the existing classical algorithms. Thus, our results open a route to a widely applicable
framework of kernel-based quantum machine learning with an exponential speedup, leading to a
promising candidate of “killer applications” of universal quantum computers.
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