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Abstract

Recent theoretical and experimental results suggest that the dopamine system im-
plements distributional temporal difference backups, allowing learning of the entire
distributions of the long-run values of states rather than just their expected values.
However, the distributional codes explored so far rely on a complex imputation
step which crucially relies on spatial non-locality: in order to compute reward
prediction errors, units must know not only their own state but also the states of the
other units. It is far from clear how these steps could be implemented in realistic
neural circuits. Here, we introduce the Laplace code: a local temporal difference
code for distributional reinforcement learning that is representationally powerful
and computationally straightforward. The code decomposes value distributions
and prediction errors across three separated dimensions: reward magnitude (related
to distributional quantiles), temporal discounting (related to the Laplace transform
of future rewards) and time horizon (related to eligibility traces). Besides lending
itself to a local learning rule, the decomposition recovers the temporal evolution
of the immediate reward distribution, indicating all possible rewards at all future
times. This increases representational capacity and allows for temporally-flexible
computations that immediately adjust to changing horizons or discount factors.

1 Introduction

In the traditional Reinforcement Learning (RL) framework, agents make decisions by learning and
maximizing the scalar values of states, which quantify the expected sums of discounted future
rewards that will be encountered from those states [1]. Recently, several results have suggested
that humans and animals keep track of richer information about the distribution of future rewards,
besides just its expectation [2–5]. Indeed, recent machine learning advances suggest that, besides
providing more flexibility for decision-making, requiring the entire value distribution to be learned
leads to representations that support improved average performance, since the agent needs to represent
separately states with the same expected value but different value statistics [6–8].

These results naturally pose the question of how such distributional estimators are learned and repre-
sented by neural systems. A distributional RL algorithm called Expectile temporal difference (TD)
learning [9] has been recently proposed as a neurally plausible method that extends the conventional
temporal difference reward prediction error (RPE) theory of dopamine activity [10]. Expectile TD
algorithms learn a set of estimators that converge to the expectiles of the value distribution. Impor-
tantly, as we explain in the next section, the Expectile algorithms are non-local, which is a critical
problem when considering neurally-plausible implementations of distributional RL.

Here, we show that the non-locality of distributional TD algorithms is not required to learn the value
distribution. We show that an ensemble of independent units performing traditional and local TD
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backups can recover the value distribution. Units in the ensemble have selectivities that vary along
three dimensions: reward magnitude, temporal discount factors, and an explicit memory about past
outcomes. In addition to the value distribution, it is possible to recover the temporal evolution of the
immediate reward distribution from our code, by taking an inverse Laplace operator. The temporal
evolution indicates the probability of obtaining different reward magnitudes at every timestep in the
future. This additional information increases representational capacity and allows for a computation
of expected and distributional value that immediately adapts to changes in the temporal horizon of
the task. Finally, we illustrate a strong connection between our code and predictive representations,
by showing that our code can be linearly computed from an ensemble of successor representations
(SR) with different temporal discounts, a model recently proposed for the hippocampus [11].

2 Background

Traditional RL: TD Learning Consider state evaluation in a Markov Process (MP) (S,P,R),
where S is the set of states,R : S → R the reward function and P(st+1|st) the transition function.
After observing the transition st → st+1 and receiving a reward rt, the TD algorithm performs the
following backup on the value estimate of st:

V (st)← V (st) + αδ(t) (1)
δ(t) = rt + γV (st+1)− V (st)

where α is the learning rate, γ the temporal discount and δ(t) the RPE. Under fairly general conditions
[12], this backup leads the value estimate to converge to the expected value of state s:

V (s)→ E
[∑∞

τ=0
γτrt+τ

∣∣∣st = s
]

(2)

According to the traditional RPE dopamine theory [13, 14], the activity of dopaminergic neurons in
the Ventral Tegmental Area (VTA) encodes the RPE, δ(t). Note that Eq. 1 is local, in the sense that,
when there are multiple pairs of dopamine and value units (or population of units), each pair do not
need to communicate with other pairs (Fig. 1a).

Distributional RL: Expectile TD Learning In distributional RL, agents learn to approximate the
distribution of values starting from state s: P (

∑∞
τ=0 γ

τrt+τ |st = s). The Expectile TD algorithm
consists of N estimates. The TD backup for estimate i is:

Vi(st)← Vi(st) + α+
i δi(t) if δi(t) > 0 (3)

Vi(st)← Vi(st) + α−i δi(t) if δi(t) < 0

δi(t) = rt + γṼ (st+1)− Vi(st)
where Ṽ (st+1) is a random sample from the value distribution of st+1. Estimate Vi(s) converges to
the τi = (α+

i )/(α
+
i + α−i ) expectile of the value distribution. For readers unfamiliar with expectiles,

note that the 0.5 expectile is the mean (as the 0.5 quantile is the median). Recently, Dabney et al. [10]
proposed that dopaminergic activity in the VTA corresponded to the δi’s in Eq. 3.

δ
V

δi

Vi
(a) (b)

Figure 1: (a) Local TD circuit. (b) Non-local TD circuit required for learning an Expectile code.
The units encoding the expectiles (Vi) must communicate stochastically with all the RPE units (δi).

Importantly, in order for the backups to converge, the RPE δi(t) needs to receive the random sample
Ṽ (st+1). To take this sample, the agent first needs to find a probability distribution consistent with
the current set of expectiles {V1,...,N (st+1)}. This is called the imputation step, and consists of a
high-dimensional, convex optimization problem that must be solved every time that dopamine neurons
compute RPEs [9]. This code is therefore non-local, in the sense that each dopamine unit effectively
needs to communicate with all other units, and must do so in a stochastic way through a complex
imputation step (Fig. 1b). The non-local stochastic connectivity, in addition to the imputation step,
makes the minimal circuitry required by the Expectile code significantly more complicated than
under the traditional RPE dopamine theory. Although it is possible to modify the Expectile code
to make it local (i.e. δi(t) = rt + γVi(st+1)− Vi(st) in Eq. 3), this local version does not always
converge to the correct value distribution, as shown in [9] and in the Appendix E.1 of this paper.

2



3 The Laplace code

3.1 TD learning with varying temporal discount

Consider state evaluation in the MP (S,P,R) introduced in the previous section and an ensemble of
traditional TD units with different temporal discounts γ. The backup on estimate Vγ is:

Vγ(st)← Vγ(st) + αδγ(t) (4)

δγ(t) = rt + γVγ(st+1)− Vγ(st)
Under the same conditions as in traditional TD learning [12], estimate Vγ(st) converges to:

Vγ(st)→ E
[∑∞

τ=0
γτrt+τ

∣∣∣st] =∑∞

τ=0
γτE[rt+τ |st] (5)

This reveals a critical property: Vγ(st) is the unilateral Z-transform of E[rt+τ |st], with real-valued
parameter γ−1 (this is, the discrete-time equivalent of the Laplace transform). Since the Z-transform
is invertible, in the limit of infinite γ’s we can recover {E[rt+τ |st]}∞τ=0 from {Vγ(st)}γ∈(0,1):

Z−1{Vγ(st)}γ∈(0,1) = {E[rt+τ |st]}∞τ=0 (6)

This insight generalizes to the continuous time limit. Using that γτ ≡ e−τ(− log γ), Eq. 5 becomes:

Vγ(st)→
∫ ∞
0

e−τ(− log γ) E[rt+τ |st] dτ (7)

which shows that Vγ(st) is the Laplace transform of E[rt+τ |st] with parameter − log γ. Therefore:

L−1{Vγ(st)}γ∈(0,1) = {E[rt+τ |st]}τ>0 (8)

Thus the converging points of the TD backups in Eq. 4 (i.e. {Vγ(st)}γ) encode not only the expected
sum of discounted rewards, as in traditional RL, but also the expected reward at all future timesteps
(i.e. {E[rt+τ |st]}τ ), though the latter lies in a different space, analogous to the frequency and
temporal spaces of the Fourier transform. We name the two spaces γ-space and τ -space, such that
applying L−1 (or Z−1) to the γ-space returns the τ -space.

Importantly, for a finite ensemble of N units with discounts {γ1, . . . , γN}, both Z−1 and L−1 can
be approximated with a linear transformation L−1 : RN → RT+1, which takes as input a γ-space
vector with N components and returns as output a discrete τ -space vector until a horizon T:

L−1
[
Vγ1(st), . . . , VγN(st)

]
=
[
E[rt+0|st], . . . , E[rt+T|st]

]
(9)

Approximating Z−1 and L−1 with the linear decoder L−1 makes them highly neurally-plausible
operations, which we exploit in the rest of the paper. We discuss various L−1 in Appendix A.

3.2 TD learning with varying temporal discount and reward sensitivity

Next, we assume that units have different reward sensitivities fh(r), in addition to having different
γ’s. Thus, instead of responding in proportion to r, unit h responds according to fh(r) (we use
the sigmoidal functions in Fig. 2a in the rest of the paper). The representation of value is now
two-dimensional, each unit being labeled by {h, γ} (Fig. 2b). The TD backups are given by:

Vh,γ(st)← Vh,γ(st) + αδh,γ(t) (10)

δh,γ(t) = fh(rt) + γVh,γ(st+1)− Vh,γ(st)

0

1

r

fh(r)

θ1 θ2 θH

(a)

Sensitivity Tem
poral

disc
ount

(γ)
δh,γ

Vh,γ
(b)

(θh)

Figure 2: (a) Sigmoid reward sensitivities. (b) Local TD circuit required by the Laplace code.
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In the limit of infinitely steep sigmoidal functions, fh(r) becomes the Heaviside function H(r − θh),
which is 1 if r > θh and 0 otherwise. In this case, the estimate Vh,γ(st) in Eq. 10 converges to:

Vh,γ(st)→ E
[∑∞

τ=0
γτfh(rt+τ )

∣∣∣st] =∑∞

τ=0
γτE

[
fh(rt+τ )|st

]
(11)

=
∑∞

τ=0
γτE

[
H(rt+τ − θh)|st

]
=
∑∞

τ=0
γτP

(
rt+τ > θh|st

)
observing that the expectation of the Heaviside function is the definition of the cumulative probability.
Comparing this convergence point with Eq. 5, we can proceed as in the previous section and apply,
for each h, the linear decoder L−1 to the γ-space vector, obtaining the corresponding τ -space vector.
This gives, for each h:

L−1[Vh,γ1(st), . . . , Vh,γN(st)] = [P (rt+0 > θh|st), . . . , P (rt+T > θh|st)] (12)

Equivalently, applying L−1 to the γ-space vector with components Vh−1,γi(st)− Vh,γi(st) returns
the τ -space vector with components P (θh−1 < rt+τ < θh|st). Thus if the resolution along the
h-dimension is high enough, applying L−1 to the converging points of the TD backups in Eq. 10
recovers {P (rt+τ |st)}Tτ=0, the set of probability distributions of immediate rewards at all future
timesteps until T, given that the current state is st. In the rest of the paper, we will refer to the code
provided by {Vh,γ} as a Laplace code for value. In Fig. 3 we illustrate the behaviour of the Laplace
code in a specific MP, using the smooth sigmoidal functions in Fig. 2a as reward sensitivities.

v

v

v−2

1
0

0.5−1
0

2

1
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−Vh,γ(s)
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1
0

1
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eSensitivity(θh )
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r = 2
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r = 2
r = − 2

r = 1
r = − 1

r = 1
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s

L−1

TD learning (Eq . 10)
τ = 0 τ = 1 τ = 2 τ = 3

Figure 3: Laplace code applied to a specific MP. (Top) Starting from s, at timesteps τ = 0 and τ = 1
the agent obtains with 50% probability r = 2 and with 50% probability r = −2, then at τ = 2 and
τ = 3 it obtains r = 1 or r = −1. (Left) Applying the TD backups from Eq. 10 to the MP converges
to the set of Vh,γ(s) shown in the γ-space, where we plot Vh−1,γ(s)−Vh,γ(s) as a function of the θh
and γ of the unit. (Right) The linear decoder L−1 is applied across the γ-dimension of the γ-space
(see Eq. 12). The same decoding is done for all θh’s, filling the τ -space column by column. Using
sigmoid fh’s, the final τ -space at time τ is a smooth approximation to P (rτ = θh|s), the probability
that the immediate reward in τ timesteps from the present will be equal to θh, given that the current
state is s. The true (smoothed) immediate reward distributions are shown with thin black lines.

As illustrated in Fig. 3, the Laplace code recovers a temporal map of the problem, indicating all the
possible rewards at all future times. We now ask what can we do with this information. If the goal of
the agent is to maximize rewards, it needs to be able to compute the expected Bellman value of st for
some particular γ̃ defined by the problem. The value of st can be computed in the τ -space by:

E
[∑∞

τ=0
γ̃τrt+τ

∣∣∣st] =∑∞

τ=0
γ̃τ
∑

r
rP (rt+τ = r|st) (13)

The value of st can also be computed linearly in the γ-space, without the need for the L−1 operator:
Lemma 3.1. For infinitely narrowly spaced θh’s, the expected Bellman value of st satisfies:

E
[∑∞

τ=0
γ̃τrt+τ

∣∣∣st] =∑H

h=1

(
Vh−1,γ̃(st)− Vh,γ̃(st)

)
θh (14)

Proof. See Appendix B.
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In addition to the expected value of states, the τ -space can recover the value distribution of states in
environments with a single reward per episode.
Lemma 3.2. In MPs with non-zero rewards only in transitions to absorption, if absorption happens
in less than T timesteps from all states, the value distribution satisfies:

P
(∑T

τ=0
γ̃τrt+τ = V

∣∣∣st) = (1− δ(V,0))
∑T

τ=0
P
(
rt+τ = γ̃−τV

∣∣st) (15)

where δ(V,0) is the Kronecker delta.

Proof. See Appendix C.

Examples of this class of environments are Chess, Go, Pong, Mountain Car, Capture the Flag,
navigation tasks with one goal per episode, etc. Also, most neuroscience experiments have a single
goal per episode. In these environments, our local code recovers not only the value distribution but
also the temporal evolution of rewards {P (rt+τ |st)}τ . As we illustrate in section 4, this greatly
increases the representational capacity of the code and allows for temporally flexible learning. For
example, if the time horizon of the problem shortens from T to T ′, the agent can immediately
recompute the new value distribution using Eq. 15, by simply summing until T ′ instead of T .

3.3 TD learning with varying temporal discount, reward sensitivity and memory

The temporal evolution of rewards recovered by the Laplace code (i.e. {P (rt+τ |st)}τ ) is essentially
a different object from the value distribution (i.e. P (

∑∞
τ=0 γ

τrt+τ |st)). In environments with one
reward per episode, the temporal evolution contains the value distribution, as shown by Lemma 3.2.
However, in environments with multiple rewards per episode, the temporal evolution may not contain
the value distribution. This is because the temporal evolution recovers the reward distribution at
each future time, but not their correlations across time. If rewards are temporally correlated, the
distribution of the sum of rewards across time cannot be recovered from the distribution at each time.
A first approach to solve this problem is to deliver the cumulative return obtained in the episode only
after termination. Although this indeed allows to recover the value distribution from the temporal
evolution in any environment using Lemma 3.2, it loses the temporal flexibility. For instance, the
agent would no longer be able to immediately adapt to a change in the time horizon.

To approach this problem while preserving temporal flexibility, we extend the ensemble in one more
direction, endowing units with different lengths of memory n. Each estimate Vh,γ,n(t) is updated
at time t + n with a 1-step TD backup using fh(Rnt ), where Rnt = rt + . . . + γ̃nrt+n (for now,
considering only the single γ̃ defined by the problem). The backups at time t+ n are:

Vh,γ,n(st)← Vh,γ,n(st) + αδh,γ,n(t+ n) (16)
δh,γ,n(t+ n) = fh(R

n
t ) + γVh,γ,n(st+1)− Vh,γ,n(st)

The backups continue for n+1 steps after reaching a terminal state, implemented in a computationally
efficient way similar to the reverse replay observed in hippocampal place cells [15] (see Appendix
D.1 for details). Following the same steps as before, if fh(Rnt ) is a Heaviside function:

L−1
[
Vh,γ1,n(st), . . . , Vh,γN,n(st)

]
=
[
P (Rnt+0 > θh|st), . . . , P (Rnt+T > θh|st)

]
(17)

We illustrate the recovery of {P (Rn=2
τ |s)}τ for a specific MP in Fig. 4.

r = 1
r = 2

r = 1 r = 1
r = 1
r = 2 r = 2 r = 2

r = 1

r = 2
r = 1
r = 2

s
1 3 40 2 5 6 1 3 40 2 5 6

P(Rn=2
τ≈1 |s) P(Rn=2

τ≈3 |s)
τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Figure 4: After applying L−1 to the set of {Vh,γ,n=2(s)}, reading across the τ dimension looks closer
or further away into the future (τ ≈ 1 and τ ≈ 3 are shown, the ‘≈’ comes from the regularization
factor in L−1, which decreases the precision of the τ -space as τ increases). Then, reading from
n = 2 recovers the distribution of the discounted sum of n = 2 consecutive rewards starting at τ .

The {h, γ, n} code can adapt to changes in the temporal horizon simply by reading from a different
n, but it can only recover the value distribution for the temporal discount γ̃ in Rn. In Appendix D.2
we discuss the forward view of a continuous representation of the memory dimension, similar to
eligibility traces, that recovers the value distribution for any γ̃ without increasing dimensionality.
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4 Representational power and temporal flexibility of the Laplace code

The Laplace code has a cost: it requires order N3 units compared to order N for the Expectile code
(see Appendix E.2 for a more detailed complexity analysis). As we have seen, however, the Laplace
code has the advantage of being learnable with a simple and local variation of the traditional TD
learning rule. In this section we discuss two additional advantages. The first is representational power:
by coding for the entire temporal evolution of rewards, the code represents separately states with
the same value distribution but different temporal evolution. The second is a form of model-based
temporal flexibility, allowing for immediate adaptation to changes in the environment.
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Future tim
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Figure 5: (a) MP with parameters r1, r2 and T . (b) Value distribution at s. (c) Laplace code
estimation of the τ -space for r1 = 0.6, r2 = 1 and T = 5. (d) Quadratic error between the estimates
of the Expectile code (red) or the Laplace code (black) and the true estimates at s (true expectiles and
true γ-space, respectively). In the trial 1500 the horizon of the task changed from T to T ′ < T .

Consider the MP shown in Fig. 5a. From the starting state s, the agent can obtain a temporally
close reward r1, or a temporally far reward r2 at T . In Fig. 5b we show the value distribution at s.
Importantly, the value distribution alone cannot disambiguate the parameters r1, r2 and T . In other
words, it is not possible to recover the value of the parameters from the value distribution, since there
exist multiple parameter values that lead to the same value distribution. For example, shortening T
to T − 1 while decreasing r2 to γ̃r2 has no effect on the value distribution. Thus an agent that only
learns the value distribution at s cannot recover the values of r1, r2 and T in this MP. On the other
hand, the Laplace code learns the temporal evolution of immediate rewards, as shown in Fig. 5c2.
The temporal evolution separately represents reward magnitude and reward timing, allowing the code
to recover the parameters r1, r2 and T . Although parameter recovery is evidently not required to
infer the value distribution, future work can explore whether the increased representational power is
advantageous in the context of function approximation, rather like distributional TD itself.

The temporal evolution of immediate rewards in Fig. 5c can also be used in model-based computations
to provide flexibility to changes in the task. For example, imagine that the temporal discount that
defines optimal prediction and control in the MP from Fig. 5a changes from γ̃ to γ̃′, or the temporal
horizon shortens from T to T ′ < T , withdrawing the reward r2. The Laplace code (without the
memory extension) can immediately recompute the new expected value of s after these changes using
Eq. 13 (note that this is true for any MP, and not only for MPs with one reward per episode). Also, it
can compute the new value distribution of s after these changes using Eq. 15 (this would require the
memory extension in problems with multiple rewards per episode). In Fig. 5d we compare flexibility
to a horizon change between the Laplace code (black) and the Expectile code (red), whose estimates
need to re-converge to the new value distribution at s under the new horizon T ′.

5 Comparison with the Expectile code

One of strongest piece of evidence in support of the Expectile code in Dabney et al.’s study [10]
comes from the decoding of the reward distribution from VTA responses with a decoder designed for

2To ease intuition we show the τ -space in Fig. 5c, but the γ-space has the same representational capacity.
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an Expectile code. At first, this result would seem to rule out the Laplace code we have presented
here. Indeed, if the VTA uses a Laplace code, a decoder that wrongly assumes an Expectile code
would be expected to perform poorly. We show in this section that, in fact, an expectile decoder
applied to the Laplace code does recover a good approximation to the encoded distribution, provided
the tuning curves of the neurons that code for reward magnitude are adapted to the reward distribution.
The idea that the distribution of tuning curves should be adapted to the stimulus distribution is central
to several theories of optimal coding [16–18]. We assume here a simple model in which the steep
part of the sigmoidal curves in Fig. 2a are positioned around the rewards that are often received.
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Figure 6: (a) The true (smoothed) reward distribution from [19] is shown in shaded grey. In the
upper plot value was coded with an Expectile code, in the lower one with an adaptive Laplace code.
Thin blue lines show individual decoded distributions assuming an Expectile code, thick blue line
shows their mean. The thick black line shows the decoded distribution assuming a Laplace code (the
edges are missing due to the adaptive nature of the θh). (b) Illustration of the correlation between
the reversal point and the reward asymmetry for the Laplace code. Left plot shows Vh’s before
(transparent) and after (opaque) learning, right plots show RPE as a function of reward magnitude
for two units, before and after learning. (c) Each line corresponds to the RPE of a single unit, at the
expected reward time (crosses) and τ time steps before the expected reward time (triangles). In the
Laplace code color is θh and, in the Expectile code, τi.

In Dabney et al. [20], the decoder relies on assigning a specific expectile to each unit/neuron.
Using the RPE response as a function of reward magnitude, expectile τi corresponds to the reward
asymmetry of the RPE (i.e. α+

i /(α
+
i + α−i ), see Eq. 3); and the value of that expectile Vi is given

by the reversal point, i.e. reward magnitude at which the RPE changes its sign. Classifying units
like this, the authors were able to decode with reasonable accuracy the reward distribution from
[19], where the animals receive random rewards whose amplitude can take one of 7 equally probable
values (tick marks in Fig. 6a). To be precise, Dabney et al. did not decode the original distribution
but the original distribution smoothed through a Gaussian kernel (shown in shaded gray in Fig. 6a).
An example of this decoding from expectile simulations is shown in Fig. 6a (blue lines, upper plot).

However, similar decoding results can be obtained from a Laplace code3. We trained an ensemble of
Laplace units to encode the same reward distribution and decoded the smoothed reward distribution
assuming that the units actually code for expectiles. As in Dabney et al., we assumed that the reward
asymmetry of the RPE codes for expectile τi; and the reversal point of that unit codes for Vi, the
value of that expectile. The results (blue line, lower plot, Fig. 6a) show that we can decode the reward
distribution from [19] with an accuracy comparable to what is obtained when decoding an actual
Expectile code for the same distribution (blue line, upper plot, Fig. 6a). Note also that the distribution
decoded under the wrong assumption of an Expectile code is only marginally worse than the one
recovered by a decoder that rightly assumes a Laplace code (black line, lower plot, Fig. 6a) (see
Appendix E.5 for details). We observed similar results for the variable-probability task from [19]
(shown in Appendix E.4), that varies reward probability instead of reward magnitude.

This result is due to the correlation between reversal point and reward asymmetry, which is shared by
the Laplace and Expectile codes. In the left plot of Fig. 6b, we show the Vh’s before and after learning.
After learning, Vh converges to Er∼D[fh(r)], which is a smooth approximation to PD(r > θh). In

3Since in this task RPEs are studied at reward time, dopamine predictions for Vh,γ,n are independent of n
and γ (in a notionally absorbing MP), so we note Vh,γ,n simply as Vh.
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the upper-right plot of Fig. 6b, we show the RPE of a low-θh unit before and after learning. For a
reward magnitudeR, the RPE is δh(R) = fh(R)−Vh. Since Vh for this unit is high, the tuning curve
moves down a large amount, which causes a low reward asymmetry (α− > α+, compare positive
and negative slopes of the linear fit) and a low reversal point (cross on x-axis). On the other hand,
the high-θh unit in the lower-right plot ends up having high reward asymmetry (α+ > α−) and high
reversal point. Thus the Laplace code has a similar correlation between reversal point and reward
asymmetry as the Expectile code. Furthermore, the reversal points end up being close to the θh of the
unit. Since adaptive coding leads to the distribution of θh to resemble the reward distribution, which
also resembles the expectile distribution, we see the similar decoding behaviour in Fig. 6a.

Therefore, decoding neural activity in this reward magnitude experiment [19] does not allow us to
discriminate between Expectile and Laplace codes. However, these codes can be distinguished with a
different type of test. For the Expectile code, reward asymmetry is a neuron-specific feature which
specifies the expectile encoded by that neuron, which is the same at all times. By contrast, for the
Laplace code, the reward asymmetry is not an intrinsic property of the neuron but a consequence
of the downward displacement of the response curve (see Fig. 6b), which depends on Vh through
δh(R) = fh(R)− Vh. For the Laplace code, any manipulation of Vh only moves the function δh(R)
vertically, affecting the reward asymmetry; but for the Expectile code it changes the functional form
of δi(R), such that it maintains its reward asymmetry while changing its reversal point Vi. Thus,
unlike the Expectile code, the Laplace code predicts that the RPE tuning curve δh(R) should have the
same functional form fh(R) for expected and unexpected rewards, but shifted vertically an amount
Vh (with possible small changes due to adaptive coding). This prediction was indeed present in the
experimental results from [19]. Another test for this prediction is presenting a one-off reward earlier
than it is normally expected, say at time T − τ where T is the usual delivery time. In this case,
Vh(sT−τ ) = γτVh(sT ). For the Expectile code, this has no impact on the reward asymmetry (Fig.
6c, upper). For the Laplace code, the reward asymmetry increases (Fig. 6c, lower). Note that the
nearly reverse predictions hold for the reversal point if one uses the fh’s of Fig. 2a.

6 Recovering the Laplace code from the successor representation

The Laplace code has non-interacting representations for the reward magnitude h and the temporal
discount γ. As we are about to see, this allows us to think of the {Vh,γ} (considering n = 0 for now)
as a set of linear projections from an ensemble of systems computing the SR with different temporal
discounts. The SR measures the discounted frequency with which all states will be visited given that
one starts at a given state [21]. Formally, the SRγ(s) ∈ R|S| vector has s′ component equal to:

[SRγ(s)]s′ = E
[∑∞

τ=0
γτδ(s′,st+τ )

∣∣∣st = s
]
=
∑∞

τ=0
γτP

(
st+τ = s′|st = s). (18)

Consider the convergence points of Vh,γ in Eq. 11. Marginalizing over states each term of the sum:

Vh,γ(st)→
∑∞

τ=0
γτ
∑

s
P
(
st+τ = s|st)P

(
rt+τ > θh|st, st+τ = s

)
(19)

For Markovian states, the last term is time-independent, equal to P
(
r > θh|s

)
. Therefore:

Vh,γ(st)→
∑

s

(∑∞

τ=0
γτP

(
st+τ = s|st)

)
P
(
r > θh|s

)
= SRγ(st) · rh (20)

where the vector rh ∈ R|S| has components [P (r > θh|s)]s. Thus the set of {Vh,γ(s)} can be
computed by a set of linear projections from an ensemble of vectors computing SRγ(s) with different
γ’s, as illustrated in Fig. 7. The same computation can be done for memory n > 0, recovering
{Vh,γ,n(s)} by projecting SRγ(s) onto the vector rh,n with components [P (Rn > θh|s)]s.

=

=⋅ r1

..
.

rH

s1

s|S|

SRγ1(s)

. . .
⋅ =

=⋅ r1

..
.

rH

s1

SRγN(s)

⋅
V (s)h1 γ1,

V (s)hH γ1,

V (s)h1 γN,

V (s)hH γN,
s|S|

Figure 7: Recovery of the γ-space {Vh,γ} from an ensemble of SRs with multiple γ’s.
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7 Discussion

We developed a distributional RL code for value that has two major advantages over the one recently
proposed by Dabney et al. [10]: (1) it allows the agent to recover not only the value distributions but
also the temporal evolution of the reward distribution; and (2) it can be learned with a local learning
rule, as opposed to the rule of Dabney et al. which requires that a unit knows the states of other units
to update its parameters. The former property increases the representational capacity of the code and
allows for temporally flexible decision making, for example by immediately adapting to changes in
the temporal horizon. The latter property is appealing and realistic from a biological point of view
and leads to a significantly simpler convergence analysis compared to non-local codes, for which
convergence needs to be proven in a distributional sense (see for example [20]). Finally, we showed
that our distributional code can be computed linearly from an ensemble of systems computing the
successor representation with different temporal discounts, a model proposed for the hippocampus
[11, 22].

Our code decomposes value distributions and prediction errors across three separated dimensions:
reward magnitude, temporal discounting and time horizon. For the first two of these, dopamine
neurons in the VTA apparently code for varying reward magnitudes [19]; and it has been proposed
that value functions and/or TD prediction errors for different values of γ are arranged in a spatially
organized manner along the dorso-ventral axis of the striatum [23, 24] (with serotonergic activity
‘choosing’ which is relevant at a given time [25, 26]). Our work shows that such arrangement
is sufficient to recover distributional value information through the inverse Laplace projection.
Regarding the third dimension, it is still unclear if time horizon is separated from temporal discount
in the dopamine system, but some experimental results suggest a discrete coding of temporal horizon
[27].

Our code proposes an indirect approach to recover the statistics of the value distribution, by first
recovering the temporal evolution of the immediate reward distribution. Essentially, our code builds a
‘temporal map’ of possible future rewards, which can be used for model-based computations. This
approach could be generalized to other variables beside reward. For instance, if neurons were tuned
to spatial location, with tuning curves fh(x), the inverse Laplace operator would recover a temporal
map of future positions. Indeed, in a more general framework the convergence points of the Laplace
code are a form of General Value Function [28], which has been proposed as a unifying system
to learn about many different variables from the same line of experience [29]. This possibility is
consistent with recent results showing that dopamine neurons respond not only to predicted reward
but also to other variables such as distance to reward, movement and behavioural choices [30–33].

An important question is whether the reward sensitivities fh(r) measured in dopamine neurons
resemble the sigmoids that we used in our analysis. Dopamine neurons show Hill-like responses
to increasing reward magnitude [19], which are indeed sigmoid-like in the logarithmic space [34].
Beyond this similarity, it is important to note that the ideas used to develop the Laplace code are
not exclusive to sigmoidal reward sensitivities. For any fh(r), the Laplace code ends up learning
the temporal evolution of the expectation E[fh(r)] (namely, {E[fh(rτ )]}τ>0). As a simple example,
if rewards always occur at the same time, and they are distributed according to the distribution D
(as in the variable-reward magnitude task from [19]), then Vh in the Laplace code effectively learns
Er∼D[fh(r)], the expected value of fh(r) when rewards are distributed as D. Thus even if the fh(r)
are not sigmoids, the agent could still use the set of Vh’s to decode the distribution D, by solving the
inverse problem of recovering D from a set of expectations under D (namely, the set of Er∼D[fh(r)]
for different fh’s).

Rather like the Expectile code, our code can be implemented using function approximation methods
like Deep RL networks simply by adding it to the last layer. Combined with function approximators,
the additional error signals provided by our code could allow the system to learn richer representations
than traditional RL [7], and possibly even richer than those learnt using an Expectile code, since
hidden representations now must distinguish between states with the same value distribution but
different temporal evolution of the immediate reward distribution. The increased representational
power, even without the memory extension, together with our code’s locality, will likely give rise to
different dynamics of convergence in RL networks, a question we leave open for future work.
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8 Broader Impact

Understanding human decision-making in uncertain environments is critical not only for neuroscience
and psychology but also to address economic, social and medical problems. In various such contexts,
humans can benefit from recovering not only the probability distribution of possible events but also
the specific times at which they are likely to occur. Here we propose a framework to solve this
conundrum, showing how a distributional map of future events can be recovered from a simple
extension of traditional reinforcement learning neural models.
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