
We thank the reviewers for their comments and will do our best to address them in our paper.1

R1, comparison to RL with communications as actions. We agree that the multi-agent communication problem can2

be formulated as an MDP where decisions about which agents to communicate with is part of the action. We performed3

additional experiments to compare to this approach. As seen in the plots below, this approach performs poorly compared4

to ours. We believe this is because of the combinatorial blowup in the action space—i.e., there is a binary communication5

decision for each pair of agents, so the number of communication actions is 2N(N−1) (whereN is the number of agents).6
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Since the action space now7

includes discrete actions,8

we use the policy gradi-9

ent algorithm to train the10

policy. We tuned several11

hyperparameters including12

(i) weights for balancing13

the reward term with the14

communication cost, (ii)15

whether to use a shaped16

reward function, and (iii)17

whether to initialize the policy with the pretrained transformer policy. In the figure, rl1 corresponds to the base-18

line policy that achieves the lowest loss across all hyperparameters we tried; however this policy has a very high19

communication degree. In addition, rl2 corresponds to the policy with lowest communication degree, but this policy20

has very high loss. In summary, learning the communication policy directly using RL is challenging due to the large21

discrete action space, and our proposed approach addresses this challenge by using the transformer as a teacher.22

R1, “manually picked” rules. The communication rules used to solve each benchmark are not chosen manually.23

Instead, they are automatically learned by the search algorithm (based on MCMC) in Section 3.4. The search space is24

encoded by the domain-specific language (DSL) in Section 3.2. In particular, this search space consists of programs25

composed of arbitrary combinations of deterministic rules (with the argmax operator) and stochastic rules (with the26

random operator). In addition, the search algorithm must determine (i) what predicateB to use in each filter operator, (ii)27

what function F to use in each map operator, and (iii) the weights β in each predicate/function. Finally, programs can28

contain more than two rules. The number of rules is a hyperparameter; we choose this parameter using cross-validation.29

R1: program synthesis terminology. We uses the term “program” since the rules rely on map/filter operators that30

cannot be captured by if-then-else rules. Also, our DSL is similar to the ones used in prior work—e.g.:31

Verma, A. et al. Programmatically interpretable reinforcement learning. ICML, 2018.32

R1, Figure 2. In Figure 2c in our paper, the loss is computed as (10− reward). We will clarify this in our paper.33

R3, full communication. In our approach, the number of rules in the program is a hyperparameter K. Given K,34

our algorithm learns a program that optimizes performance while communicating with at most K other agents (in35

terms of in-degree). In our experiments, the range for this hyperparameter is K ∈ {2, 3, 4, 5}. When we set this36

hyperparameter to be large, we empirically observe that each agent communicates with many other agents, so we expect37

that it would learn the full-communication policy as long as K is sufficiently large. Our algorithm uses cross-validation38

to automatically choose an appropriate K in the given range of possibilities.39

R3, noisy communication. We have added a new benchmark based on the existing random grid40

task, but where the communications between any two pairs of agents has a 50% probability of failing.41
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The results are shown in the adjacent figure. As can be seen, the programmatic42

communication policy has similar loss as the transformer policy while simultaneously43

achieving lower communication degree. Here, the best performing policy has four44

rules (i.e., hyperparameter K = 4), whereas for the existing random grid task, the45

programmatic policy has 2 rules. Intuitively, agents are attempting to communicate46

with more of the other agents to compensate for lost communications.47

R3, non-navigation domains. We note that the unlabeled goals task in the paper is48

not just a navigation task. In this task, the agents are not pre-assigned goals, so there is49

a combinatorial aspect where they must communicate to assign themselves to different50

goals. The main difference between this task and capture the flag is that the goals are51

static, whereas they are moving (typically adversarially) in capture the flag. We believe52

our approach can be applied even in adversarial settings, and will do our best to add an53

additional task along these lines to our paper.54


