Supplementary Material: Memory-Efficient Learning of Stable Linear Dynamical Systems for Prediction and Control

Giorgos Mamakoukas

Northwestern University
giorgosmamakoukas@u.northwestern.edu

Orest Xherija
University of Chicago
orest.xherija@uchicago.edu

Todd Murphey

Northwestern University
t-murphey@northwestern.edu

A Gradient Descents for SOC algorithm

Here we derive the gradient descents for the SOC algorithm, shown in equations (7) through (10) in the main paper. Let

$$
f=\frac{1}{2}\left\|Y-S^{-1} O C S X-B U\right\|_{F}^{2}
$$

Using the identity

$$
\|X\|_{F}^{2}=\operatorname{Tr}\left(X^{T} X\right)
$$

and expanding the product $\left(Y-S^{-1} O C S X-B U\right)^{T}\left(Y-S^{-1} O C S X-B U\right)$, we rewrite the optimization problem as

$$
\begin{aligned}
f= & \frac{1}{2} \operatorname{Tr}\left(Y^{T} Y-Y^{T} S^{-1} O C S X-Y^{T} B U\right. \\
& -X^{T} S^{T} C^{T} O^{T} S^{-T} Y+X^{T} S^{T} C^{T} O^{T} S^{-T} S^{-1} O C S X+X^{T} S^{T} C^{T} O^{T} S^{-T} B U \\
& \left.-U^{T} B^{T} Y+U^{T} B^{T} S^{-1} O C S X+U^{T} B^{T} B U\right)
\end{aligned}
$$

To calculate the gradients of f, we use the identities

$$
\begin{align*}
\frac{\partial}{\partial X} \operatorname{Tr}(A X B) & =A^{T} B^{T} \tag{12}\\
\frac{\partial}{\partial X} \operatorname{Tr}\left(A X^{T} B\right) & =B A \tag{13}\\
\frac{\partial}{\partial X} \operatorname{Tr}\left(B^{T} X^{T} C X B\right) & =\left(C^{T}+C\right) X B B^{T} \tag{14}
\end{align*}
$$

The gradient of f with respect to C is

$$
\begin{align*}
\frac{\partial}{\partial C} f= & \frac{1}{2}\left(-O^{T} S^{-T} Y X^{T} S^{T}-O^{T} S^{-T} Y X^{T} S^{T}+\left(2 O^{T} S^{-T} S^{-1} O\right) C S X X^{T} S^{T}\right. \\
& \left.+O^{T} S^{-T} B U X^{T} S^{T}+O^{T} S^{-T} B U X^{T} S^{T}\right) \\
= & -O^{T} S^{-T}\left(Y-S^{-1} O C S X-B U\right) X^{T} S^{T} \tag{15}
\end{align*}
$$

Similarly, the gradient of f with respect to O is

$$
\begin{align*}
\frac{\partial}{\partial O} f= & \frac{1}{2}\left(-S^{-T} Y X^{T} S^{T} C^{T}-S^{-T} Y X^{T} S^{T} C^{T}+\left(2 S^{-T} S^{-1}\right) O C S X X^{T} S^{T} C^{T}\right) \\
& \left.+S^{-T} B U X^{T} S^{T} C^{T}+S^{-T} B U X^{T} S^{T} C^{T}\right) \\
= & -S^{-T}\left(Y-S^{-1} O C S X-B U\right) X^{T} S^{T} C^{T} \tag{16}
\end{align*}
$$

The gradient of f with respect to B is

$$
\begin{align*}
\frac{\partial}{\partial B} f & =\frac{1}{2}\left(-Y U^{T}+S^{-1} O C S X U^{T}-Y U^{T}+S^{-1} O C S X U^{T}+2 B U U^{T}\right) \\
& =-\left(Y-S^{-1} O C S X-B U\right) U^{T} \tag{17}
\end{align*}
$$

Last, the gradient of f with respect to S is calculated as follows:

$$
\frac{1}{2}\left\|Y-S^{-1} O C S X-B U\right\|_{F}^{2} .=\langle R-Y \mid R-Y\rangle
$$

where $R=S^{-1} O C S X+B U$. Then, using the property

$$
\frac{\partial X^{-1}}{\partial q}=-X^{-1} \frac{\partial X}{\partial q} X^{-1}
$$

we calculate

$$
\dot{R}=-S^{-1} \dot{S} S^{-1} O C S X+S^{-1} O C \dot{S} X
$$

such that

$$
\begin{aligned}
\dot{f} & =\frac{1}{2}\langle\dot{R} \mid R-Y\rangle+\langle R-Y \mid \dot{R}\rangle \\
& =\langle R-Y \mid \dot{R}\rangle \\
& =\left\langle R-Y \mid-S^{-1} \dot{S} S^{-1} O C S X+S^{-1} O C \dot{S} X\right\rangle \\
& =\left\langle-S^{-T}(R-Y) X^{T} S^{T} C^{T} O^{T} S^{-T}+C^{T} O^{T} S^{-T}(R-Y) X^{T} \mid \dot{S}\right\rangle
\end{aligned}
$$

Thus, the gradient of f with respect to S is

$$
\begin{align*}
\frac{\partial}{\partial S} f= & S^{-T}\left(Y-S^{-1} O C S X-B U\right) X^{T} S^{T} C^{T} O^{T} S^{-T} \\
& -C^{T} O^{T} S^{-T}\left(Y-S^{-1} O C S X-B U\right) X^{T} \tag{18}
\end{align*}
$$

To simplify the notations, we use $E=Y-S^{-1} O C S X-B U$ and rewrite the gradients (15) through (18) as

$$
\begin{aligned}
& \nabla_{C} f=-O^{T} S^{-T} E X^{T} S^{T} \\
& \nabla_{O} f=-S^{-T} E X^{T} S^{T} C^{T} \\
& \nabla_{B} f=-E U^{T} \\
& \nabla_{S} f=S^{-T} E X^{T} S^{T} C^{T} O^{T} S^{-T}-C^{T} O^{T} S^{-T} E X^{T}
\end{aligned}
$$

where we use the notation $\nabla_{X}(\cdot) \equiv \frac{\partial}{\partial X}(\cdot)$.

