
Supplementary Material
A Proof of Paper Results

A.1 Proof of Proposition 1

Proof. We first consider the gradient of the KL divergence. It is given by

∇φKL(qφ(z) || p(z |x)) =

∫
∇φqφ(z) dz +

∫
log

(
qφ(z)

p(z |x)

)
∇φqφ(z) dz, (22)

where we can drop the first term since
∫
∇φqφ(z) dz = ∇φ

∫
qφ(z) dz = ∇φ(1) = 0.

We now consider the gradient of the log-variance loss. Using the definition from Eq. 5, we see that

∇φLr(qφ(z) || p(z |x)) =
1

2
∇φ
∫

log2

(
qφ(z)

p(z |x)

)
r(z) dz − 1

2
∇φ
(∫

log

(
qφ(z)

p(z |x)

)
r(z) dz

)2

=

∫
log

(
qφ(z)

p(z |x)

)
∇φqφ(z)

qφ(z)
r(z) dz −

(∫
log

(
qφ(z)

p(z |x)

)
r(z) dz

)(∫
∇φqφ(z)

qφ(z)
r(z) dz

)
.

When we evaluate the gradient at r(z) = qφ(z), the right-most term vanishes, since∫ ∇φqφ(z)
r(z) r(z) dz =

∫
∇φqφ(z) dz = 0. Thus, the gradient of the log-variance loss becomes

equal to the gradient of the KL divergence. �

A.2 Proof of Lemma 1

Proof. First, notice that Varqφ (∂φi log qφ) = Eqφ [(∂φi log qφ)2] since Eqφ [∂φi log qφ] = 0. We then
compute

a∗i =
Eqφ

[
fφ(∂φi log qφ)2

]
Eqφ

[
(∂φi log qφ)

2
] (23)

=
Eqφ

[
fφ(∂φi log qφ)2

]
− Eqφ [fφ]Eqφ

[
(∂φi log qφ)2

]
+ Eqφ [fφ]Eqφ

[
(∂φi log qφ)2

]
Eqφ

[
(∂φi log qφ)

2
] (24)

= Eqφ [f̄φ] + δCV
i . (25)

In the last line we have used the fact that Eqφ [fφ] = Eqφ [f̄φ]. �

A.3 Proof of Proposition 2

Proof. Note that∣∣∣∣ δCV
i

Eqφ [aVarGrad]

∣∣∣∣ =

∣∣∣∣∣∣
Covqφ

(
fφ, (∂φi log qφ)

2
)

Eqφ [fφ] Varqφ (∂φi log qφ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Eqφ

[
(fφ − Eqφ [fφ]) (∂φi log qφ)

2
]

Eqφ [fφ]Eqφ [(∂φi log qφ)2]

∣∣∣∣∣∣ , (26)

where we have used the fact that Eqφ [∂φi log qφ] = 0. From

E[fφ] = −ELBO(φ) = KL(qφ(z) || p(z|x))− log p(x),

and using the Cauchy-Schwarz inequality, Eq. 26 can be bounded from above by(
Varqφ

(
log

qφ(z)
p(z|x)

))1/2

|KL(qφ(z) || p(z|x))− log p(x)|

( Eqφ [(∂φi log qφ)4]

(Eqφ [(∂φi log qφ)2])2

)1/2

. (27)

The second factor equals
√

Kurt[∂φi log qφ]. To bound the first factor, notice that(
Varqφ

(
log

qφ(z)

p(z|x)

))1/2

≤
(
Eqφ

[
log2 qφ(z)

p(z|x)

])1/2

=

(
Eqφ

[
log2 p(z|x)

qφ(z)

])1/2

(28)

≤
(

2Eqφ
[
exp

(∣∣∣∣log
p(z|x)

qφ(z)

∣∣∣∣)− 1−
∣∣∣∣log

p(z|x)

qφ(z)

∣∣∣∣])1/2

, (29)
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where we have used the estimate

ex − 1− x =

∞∑
n=0

xn

n!
− 1− x =

∞∑
n=2

xn

n!
≥ 1

2
x2, x ≥ 0, (30)

with x =
∣∣∣log p(z|x)

qφ(z)

∣∣∣. We now use [Ghosal et al., 2000, Lemma 8.3] to bound Eq. 29 from above by

2
√
Ch(qφ(z) || p(z|x)), (31)

where

h(qφ(z) || p(z|x)) =

√∫ (√
qφ(z)−

√
p(z|x)

)2

dz (32)

is the Hellinger distance. From [Reiss, 2012, Lemma A.3.5] we have the bound h(qφ(z) || p(z|x)) ≤√
KL(qφ(z) || p(z|x)). Combining these estimates we arrive at the claimed result. �

A.4 Proof of Proposition 3

Proof. We start by defining the short-cuts

A = fφ(z), B = (∂φi log qφ) (z). (33)

Let us compute the difference of the variances of the estimators to leading order in S, namely

Var(ĝReinforce,i)−Var(ĝVarGrad,i) =
1

S
Var(AB) +

S − 2

S(S − 1)
E [(A− E[A])(B − E[B])]

2 (34a)

− Var(A) Var(B)

S(S − 1)
− 1

S
E
[
(A− E[A])2(B − E[B])2

]
(34b)

=
1

S

(
E
[
A2B2

]
− E[AB]2

)
+

S − 2

S(S − 1)
E[AB]2 (34c)

− 1

S

(
E
[
A2B2

]
− 2E[A]E

[
AB2

]
+ E[A]2 E

[
B2
])

+O
(

1

S2

)
(34d)

= − 1

S(S − 1)
E[AB]2 − 1

S
E[A]

(
E[A]E

[
B2
]
− 2E

[
AB2

])
+O

(
1

S2

)
(34e)

=
1

S
E[A]

(
2E
[
AB2

]
− E[A]E

[
B2
])

+O
(

1

S2

)
(34f)

=
1

S
E[A]E

[
B2
] (

2δCV
i + E[A]

)
+O

(
1

S2

)
(34g)

and we note that with E
[
B2
]
> 0 the leading term is positive if

E[A]δCV
i +

1

2
E[A]2 > 0, (34h)

which is equivalent to the statement in the proposition. �

A.5 Proof of Corollary 1

Proof. Note that with Proposition 2 we have∣∣∣∣ δCV
i

Eqφ [aVarGrad]

∣∣∣∣→ 0 (35)

for D → ∞, assuming that KL(qφ(z) || p(z |x)) is strictly increasing in D. Therefore, for large
enough D, the condition from Proposition 3 (see Eq. 19), is fulfilled and the statement follows
immediately. �

14



A.6 Results on the Kurtosis of the Score for Exponential Families

Here we provide a more explicit expression for Kurt[∂φi log qφ] in the case when qφ(z) is given
by an exponential family, i.e. qφ(z) = h(z) exp

(
φ>T (z)−A(φ)

)
, where T (z) is the vector of

sufficient statistics and A(φ) denotes the log-partition function. As an application, we show that in
the Gaussian case, Kurt[∂φi log qφ] is uniformly bounded across the whole variational family.

Lemma 2. Let qφ(z) = h(z) exp
(
φ>T (z)−A(φ)

)
. Then

Kurt[∂φi log qφ] =
Eqφ

[
(Ti(z)−mi)

4
]

Eqφ [(Ti(z)−mi)2]
2 , (36)

where mi = Eqφ [Ti(z)] denotes the mean of the sufficient statistics. In particular, Kurt[∂φi log qφ]
does not depend on h(z) or A(φ).

Proof. The claim follows by direct calculation. Indeed,

∂φi log qφ(z) = Ti(z)−
∂A

∂φi
(φ). (37)

It is left to show that ∂A
∂φi

(φ) = µi. For this, notice that the normalisation condition∫
h(z) exp

(
φ>T (z)−A(φ)

)
dz = 1 (38)

implies ∫
h(z)

(
Ti(z)−

∂A(φ)

∂φi

)
exp

(
φ>T (z)−A(φ)

)
dz = 0 (39)

by taking the derivative w.r.t. φi. The left-hand side equals Eqφ [Ti(z)]− ∂A
∂φi

(φ), and so the claim
follows. �

Lemma 3. Let qφ(z) be the family of one-dimensional Gaussian distributions. Then there exists a
constant K > 0 such that

Kurt[∂φi log qφ] < K (40)

for all i and all φ ∈ Φ. In fact, it is possible to take K = 15.

Proof. For the Gaussian family, the sufficient statistics are given by T1(z) = z and T2(z) = z2. We
have that

EN (µ,σ2)

[
(T1(z)−m1)4

]
EN (µ,σ2) [(T1(z)−m1)2]

2 =
EN (µ,σ2)

[
(z − µ)4

]
EN (µ,σ2) [(z − µ)2]

2 = 3, (41)

by the well-known fact the standard kurtosis of any univariate Gaussian is 3. A lengthy but straight-
forward computation shows that

EN (µ,σ2)

[
(T2(z)−m2)4

]
EN (µ,σ2) [(T2(z)−m2)2]

2 =
3(4µ4 + 20µ2σ2 + 5σ4)

(2µ2 + σ2)2
, (42)

which is maximised for µ = 0, taking the value 15. �

Lemma 3 shows that the kurtosis term in our bound Eq. 16 can be bounded for Gaussian families.
This result is expected to extend to the multivariate cases as well. We note that we observe in our
experiments that the bound is finite in a variety of cases.

A.7 Dimension-dependence of the KL-divergence

The following lemma shows that the KL-divergence increases with the number of dimensions. This
result follows from the chain-rule of KL divergence, see, e.g., Cover and Thomas [2012].
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Lemma 4. Let u(D)(z1, . . . , zD) and v(D)(z1, . . . , zD) be two arbitrary probability distributions on
RD. For J ∈ {1 . . . , D} denote their marginals on the first J coordinates by u(J) and v(J), i.e.

u(J)(z1, . . . , zJ) =

∫
· · ·
∫
u(D)(z1, . . . , zD) dzJ+1 . . . dzD, (43)

and
v(J)(z1, . . . , zJ) =

∫
· · ·
∫
v(D)(z1, . . . , zD) dzJ+1 . . . dzD. (44)

Then
KL(u(1) || v(1)) ≤ KL(u(2) || v(2)) ≤ . . . ≤ KL(u(D) || v(D)), (45)

i.e. the function J 7→ KL(u(J) || v(J)) is increasing.
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B Details of Experimental Setup and Additional Results

B.1 Details of the Experiments

B.1.1 Logistic Regression

This section describes the experimental setup of the Bayesian logistic regression example which was
discussed in the main text in Section 6.

Data. We use a synthetic dataset with N = 100, where input-output pairs are generated as follows:
we sample a design matrix X ∈ RN×D for the inputs uniformly on [−1, 1], random weights w ∈ RD
fromN (0, 25 IdD×D) and a random bias b ∈ R fromN (0, 1). We set p = σ(Xw+ b1), where 1 is
an N -dimensional vector of ones and σ(x) = 1

1+exp(−x) is the logistic sigmoid applied elementwise.
Finally, we sample the outputs Y ∼ Bernoulli(p).

Approximate Posterior. For this model, we set the approximate posterior to a diagonal Gaussian
with free mean and log standard deviation parameters.

Training. For all the experiments listed in the main text, we use the VarGrad estimator for the
gradients of the logistic regression models. We train the models using stochastic gradient descent
[Robbins and Monro, 1951] with a learning rate of 0.001.

Estimation of intractable quantities. To estimate the intractable quantities in Figure 1, we use
Monte Carlo sampling with 2000 samples for δCV and Eqφ [aVarGrad]. We estimate the KL divergence
with the identity KL(qφ(z)‖p(z|x)) = log p(x) − ELBO(φ), where log p(x) is estimated using
importance sampling with 10000 samples and ELBO(φ) using standard Monte Carlo sampling with
2000 samples.

For the variance estimates in Figure 3, we use 1000 Monte Carlo samples. As explained in the main
text, to estimate the control variate coefficients, we use either 2 samples for the sampled estimator or
1000 samples for the oracle estimator.

B.2 Discrete VAEs

This section describes the experimental setting for the Discrete VAE, where we closely follow the
setup in Maddison et al. [2017], which was also replicated in Tucker et al. [2017] and Grathwohl et al.
[2018]. As we are comparing the usefulness of different estimators in the optimisation and time their
run-times, we opted to re-implement the various methods using JAX [Bradbury et al., 2018, Hennigan
et al., 2020]. Extra care was taken to be as faithful as possible to the implementation description in
the respective papers as well as in optimising the run-time of the implementations.

Data. We use a fixed binarisation of Omniglot [Lake et al., 2015], where we binarise at the standard
cut-off of 0.5. We use the standard train/test splits for this dataset.

Model Architectures. For the DVAE experiments we use the two layers linear architecture, which
has 2 stochastic binary layers with 200 units each, which was used in Maddison et al. [2017]. For this
model, the decoders mirror the corresponding encoders. We use a Bernoulli(0.5) prior on the latent
space and fix its parameters throughout the optimisation.

Approximate Posterior. We use an amortised mean-field Bernoulli approximation for the posterior.

Training. For training the models, we use the Adam optimiser [Kingma and Ba, 2015] with learning
rates 0.001, 0.0005 and 0.0001.

Estimation of intractable quantities . We use Monte Carlo sampling with 2000 samples for δCV

and Eqφ [aVarGrad]. Due to the high memory requirements of these computations and sparsity of the
weight gradients, we only compute them for the biases. To estimate the gradient variances we use
1000 Monte Carlo samples.
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B.3 Additional Results for DVAEs

B.3.1 Variance Reduction

In Figure B.5 we present additional results on the practical variance reduction that VarGrad induces
in the two layer linear DVAE. Here, we compare with various other estimators from the literature.
VarGrad achieves considerable variance reduction over the adaptive (RELAX) and non-adaptive
(Controlled Reinforce) model-agnostic estimators. Structured adaptive estimators such as Dynamic
REBAR and RELAX + REBAR start with a higher variance at the beginning of optimisation, which
reduces towards the end. ARM, which uses antithetic sampling, achieves the most reduction; however,
it is only applicable to models with Bernoulli latent variables. Notably, the extra variance reduction
seen in some of the methods does not translate to better optimisation performance on this example as
seen in Appendix B.3.2.
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Figure B.5. Estimates of the gradient variance of the DVAE at 4 points during the optimisation for
different gradient estimators. The plot compares VarGrad to Reinforce with score function control
variates [Ranganath et al., 2014], dynamic REBAR [Tucker et al., 2017], RELAX, RELAX + REBAR
[Grathwohl et al., 2018] and ARM [Yin and Zhou, 2019]. The number of samples used to compute
each gradient estimator is given in the figure legend.

B.3.2 Performance in Optimisation

In this section we present additional results on training the DVAE with VarGrad. Figure B.6 replicates
Figure 4 with a longer run-time. Figure B.7 and Figure B.8 show the optimisation traces for different
Adam learning rates.
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Figure B.6. Optimisation trace versus epoch (left) and wall-clock time (right) for a two-layer linear
DVAE on a fixed binarisation of Omniglot, trained with Adam with a learning rate of 0.001. The
plot compares VarGrad to Reinforce with score function control variates [Ranganath et al., 2014],
dynamic REBAR [Tucker et al., 2017], RELAX, RELAX + REBAR [Grathwohl et al., 2018] and
ARM [Yin and Zhou, 2019]. The number of samples used to compute each gradient estimator is
given in the figure legend. The results here are identical to the ones in Figure 4 but with a longer
run-time.
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Figure B.7. Optimisation trace versus epoch (left) and wall-clock time (right) for a two-layer linear
DVAE on a fixed binarisation of Omniglot, trained with Adam with a learning rate of 0.0005. The
plot compares VarGrad to Reinforce with score function control variates [Ranganath et al., 2014],
dynamic REBAR [Tucker et al., 2017], RELAX, RELAX + REBAR [Grathwohl et al., 2018] and
ARM [Yin and Zhou, 2019]. The number of samples used to compute each gradient estimator is
given in the figure legend.
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Figure B.8. Optimisation trace versus epoch (left) and wall-clock time (right) for a two-layer linear
DVAE on a fixed binarisation of Omniglot, trained with Adam with a learning rate of 0.0001. The
plot compares VarGrad to Reinforce with score function control variates [Ranganath et al., 2014],
dynamic REBAR [Tucker et al., 2017], RELAX, RELAX + REBAR [Grathwohl et al., 2018] and
ARM [Yin and Zhou, 2019]. The number of samples used to compute each gradient estimator is
given in the figure legend.
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C Gaussians

In the case when q(z) and p(z|x) are (diagonal) Gaussians we can gain some intuition on the
performance of VarGrad by computing the relevant quantities analytically. The principal insights
obtained from the examples presented in this section can be summarised as follows: Firstly, in certain
scenarios the Reinforce estimator does indeed exhibit a lower variance in comparison with VarGrad
(although the advantage is very modest and only materialises for a restricted set of parameters). This
finding illustrates that the conditions in Eq. 19 and Eq. 20 (the latter referring to S ≥ S0) cannot be
dropped without replacement from the formulation of Proposition 3. Secondly, in line with the results
from Section 6, the relative error δCV

i /E[aVarGrad] decreases with increased dimensionality. Moreover,
the variance associated to computing the optimal control variate coefficients a∗ is significant and
increases considerably with the number of latent variables.

C.1 Comparing the Variances of Reinforce and VarGrad

In order to understand when the variance of VarGrad is smaller than the variance of the Reinforce
estimator we first consider the one-dimensional Gaussian case q(z) = N (z;µ, σ2) and p(z|x) =
N (z; µ̃, σ̃2) and analyse the derivative w.r.t. µ. A lengthy calculation shows that

∆Var(µ, µ̃, σ
2, σ̃2, S) := Var(ĝReinforce,µ)−Var(ĝVarGrad,µ) (46a)

=
1

4Sσ4σ̃2

(
(µ− µ̃)4 + 2(µ− µ̃)2

(
3S − 7

S − 1
σ2 − 3σ̃2

)
+

5S − 7

S − 1

(
σ2 − σ̃2

)2)
(46b)

≈ 1

4Sσ4σ̃2

(
∆4
µ + 6∆2

µ∆σ2 + 5∆2
σ2

)
, (46c)

where the last line holds for large S with ∆µ := µ− µ̃ and ∆σ2 := σ2 − σ̃2.

For an illustration, let us vary the above parameters. First, let us fix σ2 = σ̃2 = 1. We note from
Eq. 46c that in this case we expect VarGrad to have lower variance regardless of ∆µ as long as S
is large enough. In Figure C.9 we see that this is in fact the case, however a different result can be
observed for small S, which is again in accordance with Eq. 46b.

Next, we consider arbitrary σ2 and σ̃2, but fixed µ = 1, µ̃ = 2. In Figure C.10 we observe that
the variance of VarGrad is smaller for most values of σ2 and σ̃2. However, even for large S there
remains a region where the Reinforce estimator is superior. In fact, one can compute the condition
for this to happen to be ∆σ2 ∈

[
−∆2

µ,− 1
5∆2

µ

]
, which can be compared with the condition in Eq. 19

in Proposition 3.

In Figure C.11 we display the variance differences ∆Var as functions of ∆µ and ∆σ2 , approximated
according to Eq. 46c, for the same fixed values as before and see that they are bounded from below,
but not from above.

For a D-dimensional Gaussian it is hard to compute the condition from Eq. 19 in full generality, but
we can derive the following stronger criterion that can guarantee better performance of VarGrad when
assuming that ELBO(φ) ≤ 0 (which for instance holds in the discrete-data setting).
Lemma 5. Assume ELBO(φ) ≤ 0 and

Cov
(
fφ, (∂φi log qφ)

2
)
> 0. (47)

Then there exists S0 ∈ N such that

Var (ĝVarGrad,i(φ)) ≤ Var (ĝReinforce,i(φ)) , for all S ≥ S0. (48)

Proof. With ELBO(φ) ≤ 0 we have

Cov
(
fφ, (∂φi log qφ)

2
)
≤ Eqφ

[
fφ (∂φi log qφ)

2
]
− 1

2
Eqφ [fφ]Eqφ

[
(∂φi log qφ)

2
]

(49)

= Eqφ
[
(∂φi log qφ)

2
](

δCV
i −

1

2
ELBO(φ)

)
. (50)

If now
Cov

(
fφ, (∂φi log qφ)

2
)
> 0, (51)
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Figure C.9. We compare the variance of the reinforce estimator with the variance of VarGrad. VarGrad
is often better even for small S – for large S this can be guaranteed with Proposition 3.

then also
δCV
i −

1

2
ELBO(φ) > 0, (52)

and the statement follows by Proposition 3. �

The condition from Eq. 47 gives another guarantee for VarGrad having smaller variance than the
Reinforce estimator. However, we note that the converse statement is not necessarily true, i.e. if the
condition does not hold, VarGrad can still be better. The advantage of Eq. 47, however, is that it can
be verified more easily in certain settings, as for instance done for D-dimensional diagonal Gaussians
in the following lemma.
Lemma 6 (Covariance term for diagonal Gaussians). Let q(z) and p(z|x) be diagonal D-
dimensional Gaussians with means µ and µ̃ and covariance matrices Σ = diag(σ2

1 , . . . , σ
2
D) and

Σ̃ = diag(σ̃2
1 , . . . , σ̃

2
D). Then

Covqφ

(
fφ, (∂φk log qφ)

2
)

=
1

σ̃2
k

− 1

σ2
k

(53)

for k ∈ {1, . . . , D} and

Covqφ

(
fφ, (∂φk log qφ)

2
)

=
1

σ2
k

(
1

σ̃2
k

− 1

σ2
k

)
(54)

for k ∈ {D + 1, . . . , 2D} with φ = (µ1, . . . , µD, σ
2
1 , . . . , σ

2
D)> and

Covqφ

(
fφ, (∂φk log qφ)

2
)

=
1

σ̃2
k

− 1

σ2
k

(55)

for k ∈ {D + 1, . . . , 2D} with φ = (µ1, . . . , µD, log σ2
1 , . . . , log σ2

D)>.

Proof. We compute

fφ = −1

2

D∑
i=1

log

(
σ2
i

σ̃2
i

)
− 1

2

D∑
i=1

(zi − µi)2

σ2
i

+
1

2

D∑
i=1

(zi − µ̃i)2

σ̃2
i

(56)
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Figure C.10. Variance comparison with varying σ2 and σ̃2. VarGrad only wins outside a certain
region, however, if so, then potentially by orders of magnitude.
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Figure C.11. Variance differences of the reinforce estimator and VarGrad with varying ∆µ and ∆σ2

for different sample sizes S.

and

∂µk log qφ =
zk − µk
σ2
k

. (57)

We again use the short-cuts

A = fφ(z), B = (∂µk log qφ) (z), (58)

and obtain
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Covqφ(A,B2) = Eqφ
[
AB2

]
− Eqφ [A]Eqφ

[
B2
]

(59)

= Eqφ

[(
−1

2

D∑
i=1

log

(
σ2
i

σ̃2
i

)
− 1

2

D∑
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i

+
1

2

D∑
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(zi − µ̃i)2

σ̃2
i

)(
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σ2
k

)2
]

(60)

− Eqφ

[(
−1

2

D∑
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log

(
σ2
i

σ̃2
i

)
− 1

2

D∑
i=1

(zi − µi)2

σ2
i

+
1

2

D∑
i=1

(zi − µ̃i)2

σ̃2
i

)]
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[(
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σ2
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)2
]

(61)

= −1

2

(
3

σ2
k

+
D − 1

σ2
k

)
+

1

2

 1

σ2
k

D∑
i=1
i 6=k

σ2
i + (µi − µ̃i)2

σ̃2
i

+
1

σ2
kσ̃

2
k

(
3σ2

k + (µk − µ̃k)2
) (62)

−

(
−D

2
+

1

2

D∑
i=1

σ2
i + (µi − µ̃i)2

σ̃2
i

)
1

σ2
k

(63)

= − 1

σ2
k

+
1

2σ2
kσ̃

2
k

(
3σ2

k + (µ− µ̃)2
)
− 1

2σ2
kσ̃

2
k

(
σ2
k + (µ− µ̃)2

)
(64)

=
1

σ̃2
k

− 1

σ2
k

. (65)

For the terms with the partial derivative w.r.t. σ2
k we first note that

∂σ2
k

log qφ = − 1

2σ2
k

+
(zk − µk)2

2σ4
k

=
1

σ2
k

∂log σ2
k

log qφ. (66)

We compute

Eqφ
[
AB2

]
= Eqφ

[
(zk − µk)2

4σ6
k

D∑
i=1

(zi − µi)2

σ2
i

− (zk − µk)4

8σ8
k

D∑
i=1

(zi − µi)2

σ2
i

(67)

− (zk − µk)2

4σ6
k

D∑
i=1

(zi − µ̃i)2

σ̃2
i

+
(zk − µk)4

8σ8
k

D∑
i=1

(zi − µ̃i)2

σ̃2
i

]
(68)

= − 1

8σ4
k

(D + 8) +
1

8σ4
kσ̃

2
k

(9σ2
k + (µk − µ̃k)2) +

1

8σ4
k

d∑
i=1
i6=k

σ2
i + (µi − µ̃i)2

σ̃2
i

, (69)

and similarly

Eqφ [A]Eqφ
[
B2
]

= − D

8σ4
k

+
1

8σ4
kσ̃

2
k

(
σ2
k + (µk − µ̃k)2

)
+

1

8σ4
k

D∑
i=1
i 6=k

σ2
i + (µi − µ̃i)2

σ̃2
i

. (70)

We therefore get the result by again computing Covqφ(A,B2) = Eqφ
[
AB2

]
− Eqφ [A]Eqφ

[
B2
]
.

The partial derivative w.r.t. log σ2
k can be recovered from Eq. 66. �

C.2 Optimal Control Variates in the Gaussian Case

In the diagonal Gaussian case we can also easily analytically compute the optimal control variate
coefficients from Eq. 11, along the lines of the proof of Lemma 6. Our setting is again q(z) =

N (z;µ,Σ), p(z|x) = N (z; µ̃, Σ̃) with Σ = diag
(
σ2

1 , . . . , σ
2
D

)
, Σ̃ = diag

(
σ̃2

1 , . . . , σ̃
2
D

)
. In Figure

C.12 we plot the variances of four different gradient estimators with varying sample size S, namely
ĝReinforce, ĝVarGrad, as well as the Reinforce estimator augmented with the optimal control variate, once
computed analytically and once sampled using S samples. The variance depends on the mean and
the covariance matrix; here we choose µi = 3, σ2

i = 3, µ̃i = 1, σ̃2
i = 1 for all i ∈ {1, . . . , D}. We

observe that the VarGrad estimator is close to the analyitcal optimal control variate, and that the
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Figure C.12. Comparion of the variances of the different gradient estimators ĝReinforce, ĝVarGrad, as
well as the reinforce estimator with the optimal control variate coefficient, once computed analytically
and once sampled with S samples, for dimensions D = 3 and D = 30.
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Figure C.13. Mean, variance and relative errors associated to the two contributions to the optimal
control variate coefficient, δCV

i and aVarGrad = f̄φ.

sampled optimal control variate performs significantly worse in a small sample size regime. These
observations get more pronounced in higher dimensions and indicate that the variance of the sampled
optimal control variate can itself be high, showing that using it might not always be beneficial in
practice.

Let us additionally investigate the optimal control variate correction term δCV
i as defined in Eq. 13

for D-dimensional Gaussians q(z) and p(z|x) as considered above. In Figure C.13 we display the
variances, means and relative errors of δCV

i and aVarGrad = f̄φ and realise that indeed the ratio of
those two converges to zero when D gets larger. Furthermore we notice that the relative error of δCV

increases with the dimension, explaining the difficulties when estimating the optimal control variate
coefficients from samples. Finally, we plot a histogramm of δCV

i (varying across i) in Figure C.14,
showing that δCV

i is small in comparison to E
[
aVarGrad

]
and distributed around zero.

D Connections to Other Divergences

The Reinforce gradient estimator from Eq. 2 can as well be derived from the moment loss

Lmoment
r (qφ(z)‖p(z|x)) =

1

2
Er(z)

[
log2

(
qφ(z)

p(z|x)

)]
, (71)

namely

∇φLmoment
r (qφ(z)‖p(z|x))

∣∣∣
r=qφ

= Eqφ
[
log

(
qφ(z)

p(z|x)

)
∇φ log qφ(z)

]
. (72)

24



1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

70

80
Histogram of CV

i , diagonal Gaussian, D = 350

Figure C.14. The histogram of δCV
i shows that it is usually rather small in comparison to E

[
aVarGrad

]
,

which is roughly 700 here, and that it fluctuates around zero.

In the log-variance loss, one can omit the logarithm to obtain the variance loss

LVar
r (p(z|x)‖qφ(z)) =

1

2
Varr(z)

(
p(z|x)

qφ(z)

)
=

1

2
Er(z)

[(
p(z|x)

qφ(z)

)2

− 1

]
, (73)

which with r = qφ coincides with the χ2-divergence. The potential of using the latter in the context
of variational inference was suggested in Dieng et al. [2017]. We note that again one is in principle
free in choosing r(z), but that unlike the log-variance loss, this loss in not symmetric with respect to
qφ(z) and p(z|x). An analysis in Nüsken and Richter [2020] (for distributions on path space) however
suggests that the variance loss (unlike the log-variance loss) scales unfavourably in high-dimensional
settings in terms of the variance associated to standard Monte Carlo estimators.
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