
A Additional Related Work

In this section, we discuss additional related works.

We first discuss work with regards to policy gradient methods and incremental policy optimization;
we then discuss work with regards to exploration in the context of explicit (or implicit) assumptions
on the MDP (which permit sample complexity that does not explicitly depend on the number of
states); and then “on-policy” exploration methods. Finally, we discuss the recent and concurrent work
of Cai et al. [17], Efroni et al. [24], which provide an optimistic policy optimization approach which
uses off-policy data.

Our line of work seeks to extend the recent line of provably correct policy gradient methods [1, 3,
8, 12, 25, 26, 41, 45] to incorporate exploration. As discussed in the intro, our focus is that policy
gradient methods, and more broadly “incremental” methods — those methods which make gradual
policy changes such as Conservative Policy Iteration (CPI) [34, 53, 54], Policy Search by Dynamic
Programming (PSDP) [10], and MD-MPI [27] — have guarantees with function approximation
that are stronger than the more abrupt approximate dynamic programming methods, which rely on
the boundedness of the more stringent concentrability coefficients [6, 44, 63]; see Agarwal et al.
[3], Chen and Jiang [18], Geist et al. [27], Scherrer [53], Shani et al. [58] for further discussion.
Our main agnostic result shows how PC-PG is more robust than all extant bounds with function
approximation in terms of both concentrability coefficients and distribution mismatch coefficients; as
such, our results require substantially weaker assumptions, building on the recent work of Agarwal
et al. [3] who develop a similar notion of robustness in the policy optimization setting without
exploration. Specifically, when specializing to linear MDPs and tabular MDPs, our algorithm is
PAC while algorithms such as CPI and NPG are not PAC without further assumption on the reset
distribution [3].

We now discuss results with regards to exploration in the context of explicit (or implicit) assumptions
on the underlying MDP. To our knowledge, all prior works only provide provable algorithms, under
either realizability assumptions or under well specified modelling assumptions; the violations tolerated
in these settings are, at best, in an `1-bounded, worst case sense. The most general set of results are
those in [30], which proposed the concept of Bellman Rank to characterize the sample complexity
of value-based learning methods and gave an algorithm that has polynomial sample complexity in
terms of the Bellman Rank, though the proposed algorithm is not computationally efficient. Bellman
rank is bounded for a wide range of problems, including MDPs with small number of hidden states,
linear MDPs, LQRs, etc. Later work gave computationally efficient algorithms for certain special
cases [21, 23, 32, 43, 69]. Recently, Witness rank, a generalization of Bellman rank to model-based
methods, was proposed by [61] and was later extended to model-based reward-free exploration by
[28]. We focus on the linear MDP model, studied in [32, 69]. We note that Yang and Wang [69] also
prove a result for a type of linear MDPs, though their model is significantly more restrictive than the
model in Jin et al. [32]. Another notable result is due to Wen and Van Roy [67], who showed that in
deterministic systems, if the optimal Q-function is within a pre-specified function class which has
bounded Eluder dimension (for which the class of linear functions is a special case), then the agent
can learn the optimal policy using a polynomial number of samples; this result has been generalized
by [23] to deal with stochastic rewards, using further assumptions such as low variance transitions
and strictly positive optimality gap.

With regards to “on-policy” exploration methods, to our knowledge, there are relatively few provable
results which are limited to the tabular case. These are all based on Q-learning with uncertainty
bonuses in the tabular setting, including the works in [31, 60]. More generally, there are a host of
results in the tabular MDP setting that handle exploration, which are either model-based or which
re-use data (the re-use of data is often simply planning in the empirical model), which include
[5, 9, 14, 20, 29, 35, 36, 38, 39, 64].

Cai et al. [17], Efroni et al. [24] recently study algorithms based on exponential gradient updates
for tabular MDPs, utilizing the mirror descent analysis first developed in [25] along with idea of
optimism in the face of uncertainty. Both approaches use a critic computed from off-policy data and
can be viewed as model-based, since the algorithm stores all previous off-policy data and plans in
what is effectively the empirically estimated model (with appropriately chosen uncertainty bonuses);
in constrast, the model-free approaches such as Q-learning do not store the empirical model and have
a substantially lower memory footprint (see [31] for discussion on this latter point). Cai et al. [17]

15

further analyze their algorithm in the linear kernel MDP model [72], which is a different model from
what is referred to as the linear MDP model Jin et al. [32]. Notably, neither model is a special case
of the other. It is worth observing that the linear kernel MDP model of [72] is characterized by at
most d parameters, where d is the feature dimensionality, so that model-based learning is feasible; in
contrast, the linear MDP model of Jin et al. [32] requires a number of parameter that is S · d and so it
is not describable using a small number of parameters (and yet, sample efficient RL is still possible).
See Jin et al. [32] for further discussion.

B NPG Analysis (Algorithm 3)

In this section, we analyze Algorithm 3 for a particular episode n.

In order to carry out our analysis, we first set up some auxiliary MDPs which are needed in our
analysis. Throughout this section, we focus on episode n.

B.1 Set up of Augmented MDPs

Denote
K

n :=
n
(s, a) : �(s, a)> (⌃n

cov)
�1 �(s, a) �

o
. (5)

That is, Kn contains state-action pairs that obtain no reward bonuses. We abuse notation a bit by
denoting s 2 K

n if and only if (s, a) 2 K
n for all a 2 A.

We also add an extra action denoted as a† in M
n. For any s 62 K

n, we add a† to the set of available
actions one could take at s. We set rewards and transitions as follows:
rn(s, a) = r(s, a) + bn(s, a) + 1{a = a†}; Pn(·|s, a) = P (·|s, a), 8(s, a), Pn(s|s, a†) = 1,

(6)

where r(s, a†) = bn(s, a†) = 0 for any s.

Note that at this point, we have three different kinds of MDPs that we will cross during the analysis:

1. the original MDP M—the one that PC-PG is ultimately optimizing;
2. the MDP with reward bonus bn(s, a)—the one is optimized by NPG in each episode n in

the algorithm, which we denote as Mbn = {P, r(s, a) + bn(s, a)} with P and r being the
transition and reward from M;

3. the MDP M
n that is constructed in Eq. (6) which is only used in analysis but not in

algorithm.

The relationship between Mbn (item 2) and M
n (item 3) is that NPG Algorithm 3 runs on Mbn

(NPG is not even aware of the existence of Mn) but we use Mn to analyze the performance of NPG
below.

Additional Notations. We are going to focus on a fixed comparator policy e⇡ 2 ⇧. We denote e⇡n

as the policy such that e⇡(·|s) = e⇡n(·|s) for s 2 K
n, and e⇡n(a†|s) = 1 for s 62 K

n. This means that
the comparator policy e⇡n will self-loop in a state s 62 K

n and collect maximum rewards. We denote
edMn as the state-action distribution of e⇡n under Mn, and V ⇡

Mn , Q⇡

Mn , and A⇡

Mn as the value, Q,
and advantage functions of ⇡ under Mn. We also use Q⇡

bn
(s, a) in as a shorthand forQ⇡(s, a; r+bn),

similarly A⇡

bn
(s, a) for A⇡(s, a; r + bn), and V ⇡

bn
(s) for V ⇡(s; r + bn).

Remark B.1. Note that policies used in the algorithm do not pick a† (i.e., algorithms does not
even aware of Mn). Hence for any policy ⇡ that we would encounter during learning, we have
V ⇡

Mn(s) = V ⇡

bn
(s) for all s, Q⇡

Mn(s, a) = Q⇡

bn
(s, a) and A⇡

Mn(s, a) = A⇡

bn
(s, a) for all s with

a 6= a†. This fact is important as our algorithm is running on Mbn while the performance progress
of the algorithm is tracked under Mn.

B.2 Performance of NPG (Algorithm 3) on the Augmented MDP M
n

In this section, we focus on analyzing the performance of NPG (Algorithm 3) on a specific episode n.
Specifically we leverage the Mirror Descent analysis similar to Agarwal et al. [3] to show that regret

16

between the sequence of learned policies {⇡t
}
T

t=1 and the comparator e⇡n on the constructed MDP
M

n.

Via performance difference lemma [35], we immediately have:

V e⇡n

Mn � V ⇡

Mn =
1

1� �
E(s,a)⇠edMn

[A⇡

Mn(s, a)] .

For notation simplicity below, given a policy ⇡ and state s, we use ⇡s to abbreviate ⇡(·|s).

Lemma B.1 (NPG Convergence). Consider any episode n. Setting ⌘ =
q

log(A)
W 2T

, assume NPG
updates policy as:

⇡t+1(·|s) /

(
⇡t(·|s) exp

⇣
⌘ bAt

bn
(s, a)

⌘
, s 2 K

n,

⇡t(·|s), else,

where bAt

bn
(s, a) is an arbitrary advantage estimator, and with ⇡0 initialized as:

⇡0(·|s) =

⇢
Uniform(A) s 2 K

n

Uniform({a 2 A : (s, a) 62 K
n
}) else.

Assume that sup
s,a

��� bAt

bn
(s, a)

��� W and Ea0⇠⇡t
s
bAt

bn
(s, a0) = 0 for all t. Then the NPG outputs a

sequence of policies {⇡t
}
T

t=1 such that on M
n, when comparing to e⇡n:

1

T

TX

t=1

⇣
V e⇡n

Mn � V t

Mn

⌘
=

1

T

TX

t=1

⇣
V e⇡n

Mn � V t

bn

⌘

1

1� �

2W

r
log(A)

T
+

1

T

TX

t=1

⇣
E(s,a)⇠edMn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
}

⌘!
,

Proof. First consider any policy ⇡ which uniformly picks actions among {a 2 A : (s, a) 62 K
n
} at

any s 62 K
n. Via performance difference lemma, we have:

V e⇡n

Mn � V ⇡

Mn =
1

1� �

X

(s,a)

edMn(s, a)A⇡

Mn(s, a)
1

1� �

X

(s,a)

edMn(s, a)A⇡

Mn(s, a)1{s 2 K
n
},

where the last inequality comes from the fact that A⇡

Mn(s, a)1{s 62 K
n
} 0. To see this, first note

that that for any s 62 K
n, e⇡n will deterministically pick a†, and Q⇡

Mn(s, a†) = 1 + �V ⇡

Mn(s) as
taking a† leads the agent back to s. Second, since ⇡ uniformly picks actions among {a : (s, a) 62 K

n
},

we have V ⇡

Mn
� 1/(1 � �) as the reward bonus bn(s, a) on (s, a) 62 K

n is 1/(1 � �). Hence, we
have

A⇡

Mn(s, a†) = Q⇡

Mn(s, a†)� V ⇡

Mn(s) = 1� (1� �)V ⇡

Mn(s) 0, 8s 62 K
n.

Recall Algorithm 3, ⇡t chooses actions uniformly randomly among {a : (s, a) 62 K
n
} for s 62 K

n,
thus we have:

(1� �)
⇣
V e⇡n

Mn � V t

Mn

⌘

X

(s,a)

edMn(s, a)At

Mn(s, a)1{s 2 K
n
} =

X

(s,a)

edMn(s, a)At

bn(s, a)1{s 2 K
n
},

where the last equation uses the fact that At

bn
(s, a) = At

Mn(s, a) for a 6= a† and the fact that for
s 2 K

n, e⇡n never picks a† (i.e., edMn(s, a†) = 0 for s 2 K
n).

Recall the update rule of NPG,

⇡t+1(·|s) / ⇡t(·|s) exp
⇣
⌘
⇣
bAt

bn(s, ·)
⌘

1{s 2 K
n
}

⌘
, 8s,

which is equivalent to updating s 2 K
n while holding ⇡(·|s) fixed for s 62 K

n, i.e.,

⇡t+1(·|s) /

(
⇡t(·|s) exp

⇣
⌘ bAt

bn
(s, ·)

⌘
, s 2 K

n,

⇡t(·|s), else.

17

Now let us focus on any s 2 K
n. Denote the normalizer zt =

P
a
⇡t(a|s) exp

⇣
⌘ bAt

bn
(s, a)

⌘
. Note

that we sum over all the actions as the state is known, so that for all the actions a, we have (s, a) 2 K
n.

We have that:

KL(e⇡n

s
,⇡t+1

s
)� KL(e⇡n

s
,⇡t

s
) = Ea⇠e⇡n

s

h
�⌘ bAt

bn(s, a) + log(zt)
i
,

where we use ⇡s as a shorthand for the vector of probabilities ⇡(·|s) over actions, given the state s.
For log(zt), using the assumption that ⌘ 1/W , we have that ⌘ bAt

bn
(s, a) 1, which allows us to

use the inequality exp(x) 1 + x+ x2 for any x 1 and leads to the following inequality:

log(zt) = log

X

a

⇡t(a|s) exp(⌘ bAt

bn(s, a))

!

 log

X

a

⇡t(a|s)

✓
1 + ⌘ bAt

bn(s, a) + ⌘2
⇣
bAt

bn(s, a)
⌘2◆

!

= log
�
1 + ⌘2W 2

�
 ⌘2W 2,

where we use the fact that
P

a
⇡t(a|s) bAt

bn
(s, a) = 0.

Hence, for s 2 K
n we have:

KL(e⇡n

s
,⇡t+1

s
)� KL(e⇡n

s
,⇡t

s
) �⌘Ea⇠e⇡n

s
bAt

bn + ⌘2W 2.

Adding terms across rounds, and using the telescoping sum, we get:
TX

t=1

Ea⇠e⇡n
s
bAt

bn(s, a)
1

⌘
KL(e⇡n

s
,⇡1

s
) + ⌘TW 2

log(A)

⌘
+ ⌘TW 2, 8s 2 K

n.

Add E
s⇠edMn

, we have:

TX

t=1

E(s,a)⇠edMn

h
bAt

bn(s, a)1{s 2 K
n
}

i

log(A)

⌘
+ ⌘TW 2

 2W
p
log(A)T .

Hence, for regret on Mn, we have:
TX

t=1

⇣
V e⇡n

Mn � V t

Mn

⌘

TX

t=1

E(s,a)⇠edMn

h
bAt

bn(s, a)1{s 2 K
n
}

i
+

TX

t=1

⇣
E(s,a)⇠edMn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
}

⌘

 2W
p
log(A)T +

TX

t=1

⇣
E(s,a)⇠edMn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
}

⌘
.

Now using the fact that ⇡t never picks a†, we have V t

Mn = V t

bn
. This concludes the proof.

Note that the second term of the RHS of the inequality in the above lemma measures the average
estimation error of bAt

bn
. Below, for PC-PG’s analysis, we bound the critic prediction error under

edMn .

C Relationship between M
n and M

We need the following lemma to relate the probability of a known state being visited by e⇡n under
M

n and the probability of the same state being visited by e⇡ under Mbn . Note that intuitively as e⇡n

always picks a† outside K
n, it should have smaller probability of visiting the states inside K

n (once
e⇡n escapes, it will be absorbed and will never return back to K

n). Also recall that Mbn and M share
the same underlying transition dynamics. So for any policy, we simply have d⇡

Mbn
= d⇡ .

The following lemma formally states this.

18

Lemma C.1. Consider any state s 2 K
n, we have:

edMn(s, a) de⇡(s, a), 8a 2 A,

where recall edMn is the state-action distribution of e⇡n under Mn.

Proof. We prove by induction. Recall edMn is the state-action distribution of e⇡n under Mn, and de⇡

is the state-action distribution of e⇡ under both Mbn and M as they share the same dynamics. For
any h, let edMn,h further denote the state-action distribution of e⇡n under Mn after taking h steps,
starting from s0, and let de⇡

h
refer to the same quantity in the original MDP M.

Starting at h = 0, we have:

edMn,0(s0, a) = de⇡0 (s0, a),

as s0 is fixed and s0 2 K
n, and e⇡n(·|s0) = e⇡(·|s0).

Now assume that at time step h, we have that for all s 2 K
n, we have:

edMn,h(s, a) de⇡
h
(s, a), 8a 2 A.

Now we proceed to prove that this holds for h+ 1. By definition, we have that for s 2 K
n,

edMn,h+1(s) =
X

s0,a0

edMn,h(s
0, a0)PMn(s|s0, a0)

=
X

s0,a0

1{s0 2 K
n
}edMn,h(s

0, a0)PMn(s|s0, a0) =
X

s0,a0

1{s0 2 K
n
}edMn,h(s

0, a0)P (s|s0, a0)

as if s0 62 K
n, e⇡n will deterministically pick a† (i.e., a0 = a†) and PMn(s|s0, a†) = 0.

On the other hand, for de⇡
h+1(s, a), we have that for s 2 K

n,

de⇡
h+1(s, a) =

X

s0,a0

de⇡
h
(s0, a0)P (s|s0, a0)

=
X

s0,a0

1{s0 2 K
n
}de⇡

h
(s0, a0)P (s|s0, a0) +

X

s0,a0

1{s 62 K
n
}de⇡

h
(s0, a0)P (s|s0, a0)

�

X

s0,a0

1{s0 2 K
n
}de⇡

h
(s0, a0)P (s|s0, a0)

�

X

s0,a0

1{s0 2 K
n
}edMn,h(s

0, a0)P (s|s0, a0) = edMn,h+1(s).

Using the fact that e⇡n(·|s) = e⇡(·|s) for s 2 K
n, we conclude that the inductive hypothesis holds at

h+ 1 as well. Thus it holds for all h. Using the definition of average state-action distribution, we
conclude the proof.

We now establish a standard simulation lemma-style result to link the performance of policies on
M

n to the performance on the real MDP M, before bounding the error in the lemma using a linear
bandits potential function argument as sketched above. These arguments allow us to translate the
error bounds from Appendix B from the augmented MDP M

n to the actual MDP M.
Lemma C.2 (Policy performance on M

n, Mbn M). At each episode n, denote {⇡t
}
T

t=1 as the
sequence of policies generated from NPG (Algorithm 3) in that episode. We have that for e⇡n and ⇡t

for any t 2 [T]:

V e⇡n

Mn � V e⇡
M
,

V t

M
� V t

bn �
1

1� �

0

@
X

(s,a) 62Kn

dt(s, a)

1

A .

19

Proof. Note that when running e⇡n under Mn, once e⇡n visits s 62 K
n, it will be absorbed into s and

keeps looping there and receiving the maximum reward 1. Note that e⇡ receives reward no more than
1 and in M we do not have reward bonus.

Recall that ⇡t never takes a†. Hence dt(s, a) = dt
Mbn

(s, a) for all (s, a). Recall that the reward
bonus is defined as 1

1��
1{(s, a) 62 K

n
}. Using the definition of bn(s, a) concludes the proof.

The lemma below relates the escaping probability to an elliptical potential function and quantifies the
progress made by the algorithm by the maximum information gain quantity.
Lemma C.3 (Potential Function Argument). Consider the sequence of policies {⇡n

}
N

n=1 generated
from Algorithm 2. We have:

N�1X

n=0

V ⇡
n+1

�

N�1X

n=0

V ⇡
n+1

bn �
2IN (�)

�(1� �)

Proof. Denote the eigen-decomposition of ⌃n

cov as U⇤U> and ⌃n = E(s,a)⇠dn��>. We have:

tr
⇣
⌃n+1 (⌃n

cov)
�1
⌘
= E(s,a)⇠dn+1 tr

⇣
�(s, a)�(s, a)> (⌃n

cov)
�1
⌘

= E(s,a)⇠dn+1�(s, a)> (⌃n

cov)
�1 �(s, a)

� E(s,a)⇠dn+1

h
1{(s, a) 62 K

n
}�(s, a)> (⌃n

cov)
�1 �(s, a)

i
� �E(s,a)⇠dn+11{(s, a) 62 K

n
}

together with Lemma C.2, which implies that

V ⇡
n+1

bn � V ⇡
n+1

tr
⇣
⌃n+1 (⌃n

cov)
�1
⌘

�(1� �)
.

Now using Lemma H.2, we have:
NX

n=0

⇣
V ⇡

n+1

bn � V ⇡
n+1
⌘

2 log(det
�
⌃N

cov
�
/ det(�I))

�(1� �)

2IN (�)

�(1� �)

where we use the definition of information gain IN (�).

D Analysis of PC-PG for the Agnostic Setting (Theorem 4.3)

In this section, we analyze the performance of PC-PG using the NPG results we derived from the
previous section. We begin with an assumption and a theorem statement which is the most general
sample complexity result for PC-PG and from which all the statements of Section 4 follow.

We recall Assumption 4.1 which is assumed as the only structural assumption throughout this section.

The following theorem states the detailed sample complexity of PC-PG (a detailed version of
Theorem 4.3).
Theorem D.1 (Main Result: Sample Complexity of PC-PG). Fix � 2 (0, 1/2) and ✏ 2 (0, 1

1��
).

Setting hyperparameters as follows:

T =
4W 2 log(A)

(1� �)2✏2
, � = 1, � =

✏2(1� �)2

4W 2
, N �

4W 2
IN (1)

(1� �)3✏3
,

M =
144W 4

IN (1)2 ln(NT/�)

✏6(1� �)10
, K = 32N2 log

N bd
�

!
,

Under Assumption 4.1, with probability at least 1� 2�, we have:

max
n2[N]

V ⇡
n

� V e⇡
�

2
p
A"bias
1� �

� 4✏,

20

for any comparator e⇡ 2 ⇧linear, with at most total number of samples:

c⌫W 8
IN (1)3 ln(A)

✏11(1� �)15
,

where c is a universal constant, and ⌫ contains only log terms:

⌫ = ln

✓
4AW 2

I
2
N
(1)

(1� �)4✏3�c20

◆
+ ln

✓
16W 4 ln(A)IN (1)

✏5(1� �)5�

◆
.

Remark D.1. Note that in the above theorem, we require that the number of iterations N to satisfy
the constraint N � 4W 2

IN (1)/((1 � �)3✏3). The specific N thus depends on the form of the
maximum information gain IN (1). For instance, when �(s, a) 2 Rd with k�k2 1, we have
IN (1) d log(N + 1). Hence setting N � 8W 2

d

(1��)3✏3 ln
⇣

4W 2
d

(1��)3✏3

⌘
suffices. Another example is

when � lives in an RKHS with RBF kernel. In this case, we have IN (1) = O(log(N)ds,a) ([59]),
where ds,a stands for the dimension of the concatenated vector of state and action. In this case, we

can set N = O

✓
W

2

(1��)3✏3

⇣
ln
⇣

W
2

(1��)3✏3

⌘⌘ds,a
◆

.

In the rest of this section, we prove the theorem. Given the analysis of Appendix B, proving the
theorem requires the following steps at a high-level:

1. Bounding the number of outer iterations N in order to obtain a desired accuracy ✏. Intuitively,
this requires showing that the probability with which we can reach an unknown state with a
positive reward bonus is appropriately small. We carry out this bounding by using arguments
from the analysis of linear bandits [19]. At a high-level, if there is a good probability of
reaching unknown states, then NPG finds them based on our previous analysis as these
states carry a high reward. But every time we find such states, the covariance matrix of the
resulting policy contains directions not visited by the previous cover with a large probability
(or else the quadratic form defining the unknown states would be small). In a d-dimensional
linear space, the number of times we can keep finding significantly new directions is roughly
O(d) (or more precisely based on the intrinsic dimension), which allows us to bound the
number of required outer episodes.

2. Bounding the prediction error of the critic in Lemma B.1. This can be done by a standard
regression analysis and we use a specific result for stochastic gradient descent to fit the
critic.

3. Errors from empirical covariance matrices instead of their population counterparts have
to be accounted for as well, and this is done by using standard inequalities on matrix
concentration [65].

D.1 Proof of Theorem D.1

We recall that we perform linear regression from �(s, a) to Q⇡

bn
(s, a)� bn(s, a), and set bAt

bn
(s, a) as

bAt

bn(s, a) =
�
bn(s, a) + ✓t · �(s, a)

�
� Ea0⇠⇡t

s
[bn(s, a0) + ✓t · �(s, a0)]

:= b̄n,t(s, a) + ✓t · �̄t(s, a),

where for notation simplicitly, we denote centered bonus b̄n,t(s, a) = bn(s, a) � Ea0⇠⇡t
s
bn(s, a0),

and centered feature �̄t(s, a) = �(s, a)� Ea0⇠⇡t
s
�(s, a0).

Lemma D.1 (Variance and Bias Tradeoff). Assume that at episode n we have
�(s, a)> (⌃n

cov)
�1 �(s, a) � for (s, a) 2 K

n. At iteration t inside episode n, let us
denote a best on-policy fit as

✓t
?
2 argmin

k✓kW

E(s,a)⇠⇢n
cov

�
(Qt

bn(s, a)� bn(s, a))� ✓ · �(s, a)
�2

.

Assume the following condition is true for all t 2 [T]:

L
�
✓t; ⇢ncov, Q

t

bn � bn
�
 min

✓:k✓kW

L
�
✓; ⇢ncov, Q

t

bn � bn
�
+ "stat,

21

where "stat 2 R+. Then under Assumption 4.1 (with e⇡ as the comparator policy here), we have that
for all t 2 [T]:

E(s,a)⇠edMn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
} 2

p
A"bias + 2

p
��W 2 + 2

p
�n"stat.

Proof. We first show that under the condition involving "stat above,
E(s,a)⇠⇢n

cov
(✓t

?
· �(s, a)� ✓t · �(s, a))

2 is bounded by "stat.

E(s,a)⇠⇢n
cov

�
Qt

bn(s, a)� bn(s, a)� ✓t · �(s, a)
�2
� E(s,a)⇠⇢n

cov

�
Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

�2

= E(s,a)⇠⇢n
cov

�
✓t
?
· �(s, a)� ✓t · �(s, a)

�2
+ 2E(s,a)⇠⇢n

cov

�
Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

�
�(s, a)>

�
✓t
?
� ✓t

�
.

Note that ✓? is one of the minimizers of the constrained square loss E(s,a)⇠⇢n
cov
(Qt

bn
(s, a)�bn(s, a)�

✓ · �(s, a))2, via first-order optimality, we have:

E(s,a)⇠⇢n
cov

�
Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

�
(��(s, a)>)

�
✓ � ✓t

?

�
� 0,

for any k✓k W , which implies that:

E(s,a)⇠⇢n
cov

�
✓t
?
· �(s, a)� ✓t · �(s, a)

�2

 E(s,a)⇠⇢n
cov

�
Qt

bn(s, a)� bn(s, a)� ✓t · �(s, a)
�2
� E(s,a)⇠⇢n

cov

�
Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

�2
 "stat.

Recall that ⌃n

cov =
P

n

i=1 E(s,a)⇠dn�(s, a)�(s, a)> + �I = n
�
E(s,a)⇠⇢n

cov
�(s, a)�(s, a)> + �/nI

�
.

Denote ⌃̄n

cov = ⌃n

cov/n. We have:

�
✓t
?
� ✓t

�> �E(s,a)⇠⇢n
cov
�(s, a)�(s, a)> + �/nI

�
(✓t

?
� ✓t) "stat +

�

n
W 2.

Hence for any (s, a) 2 K
n, we must have the following point-wise estimation error:

���(s, a)>
�
✓t
?
� ✓t

��� k�(s, a)k(⌃n
cov)

�1k✓t
?
� ✓tk⌃n

cov

p
�n"stat + ��W 2. (7)

Now we bound E(s,a)⇠edMn

⇣
At

bn
(s, a)� bAt

bn
(s, a)

⌘
1{s 2 K

n
} as follows.

E(s,a)⇠edMn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
}

= E(s,a)⇠edMn

�
At

bn(s, a)� (b̄n,t(s, a) + ✓t
?
· �̄t(s, a))

�
1{s 2 K

n
}

| {z }
term A

+ E(s,a)⇠edMn

�
(b̄n,t(s, a) + ✓t

?
· �̄t(s, a))� (b̄n,t(s, a) + ✓t · �̄t(s, a))

�
1{s 2 K

n
}

| {z }
term B

.

We first bound term A above.

E(s,a)⇠edMn

�
At

bn(s, a)� b̄n,t(s, a)� ✓t
?
· �̄t(s, a)

�
1{s 2 K

n
}

= E(s,a)⇠edMn

�
Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

�
1{s 2 K

n
}

+ E
s⇠edMn ,a⇠⇡t

s

�
�Qt

bn(s, a) + bn(s, a) + ✓t
?
· �(s, a)

�
1{s 2 K

n
}

q
E(s,a)⇠edMn

(Qt

bn
(s, a)� bn(s, a)� ✓t

?
· �(s, a))2 1{s 2 Kn}

+
q
E
s⇠edMn ,a⇠⇡t

s
(Qt

bn
(s, a)� bn(s, a)� ✓t

?
· �(s, a))2 1{s 2 Kn}

q
E(s,a)⇠de⇡ (Qt

bn
(s, a)� bn(s, a)� ✓t

?
· �(s, a))2 1{s 2 Kn}

+
q
Es⇠de⇡,a⇠⇡t

s
(Qt

bn
(s, a)� bn(s, a)� ✓t

?
· �(s, a))2 1{s 2 Kn}

q
E(s,a)⇠de⇡ (Qt

bn
(s, a)� bn(s, a)� ✓t

?
· �(s, a))2 +

q
Es⇠de⇡,a⇠⇡t

s
(Qt

bn
(s, a)� bn(s, a)� ✓t

?
· �(s, a))2

 2
p
A✏bias,

22

where the first inequality uses CS inequality, the second inequality uses Lemma C.1 for s 2 K
n, and

the last inequality uses the change of variable over action distributions and Assumption 4.1.

Now we bound term B above. We have:

E(s,a)⇠edMn

�
✓t
?
· �̄t(s, a)� ✓t · �̄t(s, a)

�
1{s 2 K

n
}

= E(s,a)⇠edMn

�
✓t
?
�(s, a)� ✓t · �(s, a)

�
1{s 2 K

n
}

� E
s⇠edMn

Ea⇠⇡t1{s 2 K
n
}
�
✓t
?
�(s, a)� ✓t · �(s, a)

�
 2
p
��W 2 + 2

p
�n✏stat,

where we use the point-wise estimation guarantee from inequality (7).

Combine term A and term B together, we conclude the proof.

Combine the the above lemma and Lemma B.1, we can see that as long as the on-policy critic
achieves small statistical error (i.e., ✏stat is small), and our features �(s, a) are sufficient to represent
Q functions in a linear form (i.e., ✏bias is small), then we can guarantee inside episode n, NPG
succeeds by finding a policy that has low regret with respect to the comparator e⇡n:

max
t2[T]

V t

bn � V e⇡n

Mn �
1

1� �

2W

r
log(A)

T
+ 2
p
A"bias + 2

p
��W 2 + 2

p
�n"stat

!
. (8)

The term that contains ✏stat comes from the statistical error induced from constrained linear regression.
Note that in general, ✏stat decays at a rate of O(1/

p
M) with M being the total number of data

samples used for linear regression (line 6 in Algorithm 3), and ✏stat usually does not polynomially
depend on dimension of �(s, a) explicitly. See Lemma H.1 for an example where linear regression is
solved via stochastic gradient descent.

Using Lemma C.3, now we can transfer the regret we computed under the sequence of models
{Mbn} to regret under M. Recall that V ⇡ denotes V ⇡(s0) and V n is in short of V ⇡

n

.
Lemma D.2. Assume the condition in Lemma D.1 and Assumption 4.1 hold. For the sequence of
policies {⇡n

}
N

n=1, we have:

max
n2[N]

V n
� V e⇡

�
1

1� �

2W

r
log(A)

T
+ 2
p
A"bias + 2

p
��W 2 + 2

p
�N"stat +

2IN (�)

N�

!
.

Proof. First combine Lemma B.1 and Lemma D.1, we have:

1

N

N�1X

n=0

V n+1
bn

�
1

N

N�1X

n=0

V e⇡n

Mn �
1

1� �

2W

r
log(A)

T
+ 2
p
A"bias + 2

p
��W 2 + 2

p
�N"stat

!
.

Use Lemma C.2 and Lemma C.3, we have:

1

N

NX

n=1

V n
� V e⇡

�
1

1� �

2W

r
log(A)

T
+ 2
p
A"bias + 2

p
��W 2 + 2

p
�N"stat +

IN (�)

N�

!
,

which concludes the proof.

The following theorem shows that setting hyperparameters properly, we can guarantee to learn a near
optimal policy.
Theorem D.2. Assume the conditions in Lemma D.1 and Assumption 4.1 hold. Fix ✏ 2 (0, 1/(4(1�
�))). Setting hyperparameters as follows:

T =
4W 2 log(A)

(1� �)2✏2
, � = 1, � =

✏2(1� �)2

4W 2
,

N �
4W 2

IN (1)

(1� �)3✏3
, ✏stat =

✏3(1� �)3

4IN (1)
,

23

we have:

max
n2[N]

V n
� V e⇡

�
2
p
A"bias
1� �

� 4✏.

Proof. The theorem can be easily verified by substituting the values of hyperparameters
into Lemma D.2.

The above theorem indicates that we need to control the "stat statistical error from linear regression
to be small in the order of eO

�
✏3(1� �)3

�
. Recall that M is the total number of samples we used for

each linear regression. If "stat = eO
⇣
1/
p
M
⌘

, then we roughly will need M to be in the order of
e⌦
�
1/(✏6(1� �)6)

�
. Note that we do on-policy fit in each iteration t inside each episode n, thus we

will pay total number of samples in the order of M ⇥ (TN).

Another source of samples is the samples used to estimate covariance matrices ⌃n. As � could be
infinite dimensional, we need matrix concentration without explicit dependency on dimension of �.
Leveraging matrix Bernstein inequality with matrix intrinsic dimension, the following lemma shows
concentration results of b⌃n on ⌃n, and of b⌃n

cov on ⌃n

cov.

Lemma D.3 (Estimating Covariance Matrices). Set � = 1. Define bd as the maximum possible
intrinsic dimension:

bd = max
⇡

tr (⌃⇡) /k⌃⇡
k,

i.e., the maximum intrinsic dimension of the covariance matrix from a mixture policy. For K �

32N2 ln
⇣
bdN/�

⌘
(a parameter in Algorithm 2), with probability at least 1� �, for any n 2 [N], we

have for all x with kxk 1,

(1/2)x> (⌃n

cov)
�1 x x>

⇣
b⌃n

cov

⌘�1
x 2x> (⌃n

cov)
�1 x

Proof. The proof of the above lemma is simply Lemma H.4.

We are now ready to prove Theorem D.1.

Proof of Theorem D.1. Assume the event in Lemma D.3 holds. In this case, we have for all n 2 [N],

(1/2)x> (⌃n

cov)
�1 x x>

⇣
b⌃n

cov

⌘�1
x 2x> (⌃n

cov)
�1 x,

for all kxk 1 and the total number of samples used for estimating covariance matrices is:

N ⇥K = N ⇥
⇣
32N2 ln

⇣
bdN/�

⌘⌘
= 32N3 ln

⇣
bdN/�

⌘
(9)

=
(32⇥ 64)IN (1)3W 6

✏9(1� �)9
ln

4bdW 2

IN (1)

(1� �)3✏3�

!
=

c1⌫1IN (1)3W 6

✏9(1� �)9
, (10)

where c1 is a constant and ⌫1 contains log-terms, ⌫1 := ln
⇣

4bdW 2
IN (1)

(1��)3✏3�

⌘

Since we set known state-action pair as �(s, a)>
⇣
b⌃n

cov

⌘�1
�(s, a) �, then we must have that for

any (s, a) 2 K
n, we have:

�(s, a)> (⌃n

cov)
�1 �(s, a) 2�,

24

and any (s, a) 62 K
n, we have:

�(s, a)> (⌃n

cov)
�1 �(s, a) �

1

2
�.

This allows us to call Theorem D.2. From Theorem D.2, we know that we need to set M (number of
samples for linear regression) large enough such that

"stat =
✏3(1� �)3

4IN (1)
,

Using Lemma H.1 for linear regression, we know that with probability at least 1� �, for any n, t,
"stat scales in the order of:

"stat =

s
9W 4 log(NT/�)

(1� �)4M
,

where we have taken union bound over all episodes n 2 [N] and all iterations t 2 [T]. Now solve for
M , we have:

M =
144W 4

IN (1)2 ln(NT/�)

✏6(1� �)10

Considering every episode n 2 [N] and every iteration t 2 [T], we have the total number of samples
needed for NPG is:

NT ·M =
4W 2

IN (1)

✏3(1� �)3
⇥

4W 2 log(A)

(1� �)2✏2
⇥

144W 4
IN (1)2 ln(NT/�)

✏6(1� �)10

=
c2W 8

IN (1)3 ln(A)

✏11(1� �)15
· ln

✓
16W 4 ln(A)IN (1)

✏5(1� �)5�

◆
=

c2⌫2W 8
IN (1)3 ln(A)

✏11(1� �)15
,

where c2 is a positive universal constant, and ⌫2 only contains log terms:

⌫2 = ln

✓
16W 4 ln(A)IN (1)

✏5(1� �)5�

◆
.

Combining the two sources of samples, we have that the total number of samples is bounded as:

c2⌫2W 8
IN (1)3 ln(A)

✏11(1� �)15
+

c1⌫2IN (1)3W 6

✏9(1� �)9
,

Lastly, we relate bd to the information gain as follows. Consider a policy ⇡ and denote the eigenvalues
of ⌃⇡ as �1 � �2, . . . , where we have �i 1.

tr(⌃⇡)/k⌃⇡
k =

X

i

�i/�1 2
1

�1

X

i

ln(1 + �i) =
2

�1
ln det (I + ⌃⇡)

2IN (1)

�1
.

We further lower bound �1 using our assumption on the norm �(s0, a) at the initial state s0, i.e.,
k�(s0, a)k2 � c0 for c0 2 (0, 1], for all a 2 A. For any x with kxk2 1, we have:

x>⌃⇡x � (1� �)Ea⇠⇡(·|s0)x
>�(s0, a)�(s0, a)

>x �
1� �

A
x>�(s0, a

0)�(s0, a
0)>x,

where in the last inequality we use the fact that there must exist an action a0 such that ⇡(a0|s0) � 1/A
due to ⇡(·|s0) is a distribution over A. Thus, we have:

�1 = max
x:kxk21

x>⌃⇡x �
1� �

A
max

x:kxk21
x>�(s0, a

0)�(s0, a
0)>x =

(1� �)c20
A

.

Thus we have:

bd = max
⇡

tr(⌃⇡)/k⌃⇡
k

2A

(1� �)c20
IN (1).

Plug in the above upper bound of bd into Eq. 9 concludes the proof.

25

E Analysis of PC-PG for Linear MDPs (Theorem 4.1)

For a linear MDP M, recall that we assume the following parameters’ norms are bounded:

kv>µk ⇠ 2 R+, k✓k ! 2 R+, 8v, s.t. kvk1 1.

With these bounds on linear MDP’s parameters, we can show that for any policy ⇡, we have
Q⇡(s, a) = w⇡

· �(s, a), with kw⇡
k ! + Vmax⇠, where Vmax = max⇡,s V ⇡(s) is the maximum

possible expected total value (Vmax is at most rmax/(1� �) with rmax being the maximum possible
immediate reward).

At every episode n, recall that NPG is optimizing the MDP Mbn = {P, r(s, a) + bn(s, a)} with P, r
being the true transition and reward of M which is linear under �(s, a).

Due to the reward bonus bn(s, a) in Mbn , Mbn is not necessarily a linear MDP under �(s, a) (P is
still linear under � but r(s, a) + bn(s, a) it not linear anymore). Here we leverage an observation that
we know bn(s, a) (as we designed it), and Q⇡(s, a; r + bn)� bn(s, a) is linear with respect to � for
any (s, a) 2 S ⇥A. The following claim state this observation formally.
Claim E.1 (Linear Property of (Q⇡(s, a; r + bn)� bn(s, a)) under �). Consider any policy ⇡ and
any reward bonus bn(s, a) 2 [0, 1/(1� �)]. We have that:

Q⇡(s, a; r + bn)� bn(s, a) = w · �(s, a), 8s, a.

Further we have kwk ! + ⇠/(1� �)2.

Proof. By definition of Q-function, we have:

Q⇡(s, a; r + bn) = r(s, a) + bn(s, a) + ��(s, a)>
X

s0

µ(s0)V ⇡(s0; r + bn)

= bn(s, a) + �(s, a) ·
�
✓ + �µ>V ⇡(·; r + bn)

�
:= bn(s, a) + �(s, a) · w,

where note that w is independent of (s, a). Rearrange terms, we prove that Q⇡(s, a; r + bn) �
bn(s, a) = w · �(s, a).

Further, using the norm bounds we have for ✓ and µ, and the fact that kV ⇡(·; r+bn)k1 1/(1��)2,
we conclude the proof.

The above claim supports our specific choice of critic bAt

bn
in the algorithm, where we recall that we

perform linear regression from �(s, a) to Q⇡

bn
(s, a)� bn(s, a), and set bAt

bn
(s, a) as

bAt

bn(s, a) =
�
bn(s, a) + ✓t · �(s, a)

�
� Ea0⇠⇡t

s
[bn(s, a0) + ✓t · �(s, a0)]

:= b̄n,t(s, a) + ✓t · �̄t(s, a),

where b̄n,t(s, a) = bn(s, a)� Ea0⇠⇡t
s
bn(s, a0), and �̄t(s, a) = �(s, a)� Ea0⇠⇡t

s
�(s, a0).

We now prove Theorem 4.1 by showing that ✏bias is zero.
Lemma E.1. Consider Assumption 4.1. For any episode n, iteration t, we have ✏bias = 0.

Proof. At iteration t, denote ✓t
?

as the linear parameterization of Q⇡
t

bn
(s, a)� bn(s, a), i.e.,

✓t
?
· �(s, a) = Q⇡

t

bn(s, a)� bn(s, a), 8s, a,

where the existence of ✓t
?

follows by Claim E.1. We know that

✓t
?
2 argmin

✓:k✓kW

L(✓; ⇢ncov, Q
t

bn � bn),

as L(✓t
?
; ⇢ncov, Q

t

bn
� bn) = 0. This indicates that ✓t

?
is one of the best on-policy fits. Now when

transfer ✓?
t

to a different distribution d⇡
?

� UnifA, we simply have:

E(s,a)⇠d⇡?
�UnifA

�
✓t
?
· �(s, a)�

�
Qt

bn(s, a)� bn(s, a)
��2

= 0.

This concludes the proof.

We can now conclude the proof of Theorem 4.1 by invoking Theorem 4.3 with ✏bias = 0.

26

F Analysis of PC-PG for State-Aggregation (Theorem 4.2)

In this section, we analyze Theorem 4.2 for state-aggregation. Similar to the analysis for linear
MDP, we provide a bias-variance tradeoff lemma that is analogous to Lemma D.1. However, unlike
linear MDP, here due to model-misspecification from state-aggregation, the transfer error ✏bias
will not be zero. But we will show that the transfer error is related to a term that is an expected
model-misspecification averaged over a fixed comparator’s state distribution.

First recall the definition of state aggregation � : S ⇥ A ! Z . We abuse the notation a bit, and
denote �(s, a) = 1{�(s, a) = z} 2 R|Z|, i.e., the feature vector � indicates which z the state action
pair (s, a) is mapped to. The following claim studies the approximation of Q-values under state
aggregation.
Claim F.1. Consider any MDP with transition P and reward r. Denote aggregation error ✏z as:

max {kP (·|s, a)� P (·|s0, a0)k1, |r(s, a)� r(s0, a0)|} ✏z, 8(s, a), (s
0, a0), s.t., �(s, a) = �(s0, a0) = z.

Then, for any policy ⇡, (s, a), (s0, a0), z, such that �(s, a) = �(s0, a0) = z, we have:

|Q⇡(s, a)�Q⇡(s0, a0)|
rmax✏z
1� �

,

where r(s, a) 2 [0, rmax] for rmax 2 R+.

Proof. Starting from the definition of Q⇡ , we have:

|Q⇡(s, a)�Q⇡(s0, a0)| = |r(s, a)� r(s0, a0)|+ �|Ex0⇠Ps,aV
⇡(x0)� Ex0⇠Ps0,a0V

⇡(x0)|

 ✏z +
rmax�

1� �
kPs,a � Ps0,a0k1

rmax✏z
1� �

,

where we use the assumption that �(s, a) = �(s0, a0) = z, and the fact that value function kV k1
rmax/(1� �) as r(s, a) 2 [0, rmax].

Now we state the bias and variance tradeoff lemma for state aggregation.

Lemma F.1 (Bias and Variance Tradeoff for State Aggregation). Set W :=
p
|Z|/(1��)2. Consider

any episode n. Assume that we have �(s, a)> (⌃n

cov)
�1 �(s, a) � 2 R+ for (s, a) 2 K

n, and the
following condition is true for all t 2 {0, . . . , T � 1}:

Lt(✓t; ⇢ncov, Q
t

bn � bn) min
✓:k✓kW

Lt(✓; ⇢ncov, Q
t

bn � bn) + ✏stat 2 R+.

We have that for all t 2 {0, . . . , T � 1} at episode n:

E(s,a)⇠edMn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
}

 2
p
��W 2 + 2

p
�n✏stat +

2E(s,a)⇠de⇡ maxa0
⇥
✏�(s,a0)

⇤

(1� �)2
.

Note that comparing to Lemma D.1, the above lemma replaces
p
A✏bias by the average model-

misspecification
E
(s,a)⇠de⇡ maxa0 [✏�(s,a0)]

(1��)2 .

Proof. We first compute one of the minimizers of Lt(✓; ⇢ncov, Q
t

bn
� bn). Recall the definition of

Lt(✓; ⇢ncov, Q
t

bn
� bn), we have:

E(s,a)⇠⇢n
cov

⇣
✓ · �(s, a)�Q⇡

t

bn(s, a) + bn(s, a)
⌘2

= E(s,a)⇠⇢n
cov

X

z

1{�(s, a) = z}
⇣
✓z �Q⇡

t

bn(s, a) + bn(s, a)
⌘2

,

27

which means that for an unconstrained loss minimizer ✓t
?
, we have:

X

s,a

⇢tcov(s, a)1{�(s, a) = z}
⇣
✓z �Q⇡

t

bn(s, a) + bn(s, a)
⌘
= 0,

which implies that ✓t
?,z

:=
P

s,a ⇢
n
cov(s,a)1{�(s,a)=z}(Q⇡t

bn (s,a)�b
n(s,a))P

s,a ⇢n
cov(s,a)1{�(s,a)=z}

. Note that |✓t
?,z

|
1

(1��)2 ,

hence k✓t
?
k2

p
|Z|/(1� �)2 := W , so that this solution is also feasible within our constraints.

Hence, for any s00, a00 such that �(s00, a00) = z, we must have:
���✓t?,z � (Q⇡

t

bn(s
00, a00)� bn(s00, a00))

���

=

�����

P
s,a

⇢ncov(s, a)1{�(s, a) = z}(Q⇡
t

bn
(s, a)� bn(s, a))

P
s,a

⇢ncov(s, a)1{�(s, a) = z}
�Q⇡

t

bn(s
00, a00) + bn(s00, a00)

�����

=

������

P
s,a

⇢ncov(s, a)1{�(s, a) = z}
⇣
Q⇡

t

bn
(s, a)�Q⇡

t

bn
(s00, a00)

⌘

P
s,a

⇢ncov(s, a)1{�(s, a) = z}

������

✏z
(1� �)2

,

where we use Claim F.1, and the fact that r(s, a) + bn(s, a) 2 [0, 1/(1 � �)], and the fact that
bn(s, a) = bn(s00, a00) if �(s, a) = �(s00, a00) as the bonus is defined under feature �.

With ✓t
?

and its optimality condition for loss Lt(✓; ⇢ncov), we can prove the same point-wise estimation
guarantee, i.e., for any (s, a) 2 K

n, we have:
���(s, a) · (✓t � ✓t

?
)
��

p
�n✏stat + �W 2.

Now we bound E(s,a)⇠edMn

⇣
At

bn
(s, a)� bAt

bn
(s, a)

⌘
1{s 2 K

n
} as follows.

E(s,a)⇠edMbn

⇣
At

bn(s, a)� bAt

bn(s, a)
⌘

1{s 2 K
n
}

= E(s,a)⇠edMn

�
At

bn(s, a)� b̄t,n(s, a)� ✓t
?
· �̄t(s, a)

�
1{s 2 K

n
}

| {z }
term A

+ E(s,a)⇠edMn

�
✓t
?
· �̄t(s, a)� ✓t · �̄t(s, a)

�
1{s 2 K

n
}

| {z }
term B

.

Again, for term B, we can use the point-wise estimation error to bound it as:

term B 2
p

��W 2 + 2
p
�n✏stat.

For term A, we have:

E(s,a)⇠edMn

�
At

bn(s, a)� b̄t,n(s, a)� ✓t
?
· �̄t(s, a)

�
1{s 2 K

n
}

 E(s,a)⇠edMn

��Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

�� 1{s 2 K
n
}

+ E
s⇠edMn ,a⇠⇡t

s

���Qt

bn(s, a) + bn(s, a) + ✓t
?
· �(s, a)

�� 1{s 2 K
n
}

 E(s,a)⇠de⇡

��Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

��+ Es⇠de⇡,a⇠⇡t
s

���Qt

bn(s, a) + bn(s, a) + ✓t
?
· �(s, a)

�� ,

where last inequality uses Lemma C.1 for s 2 K
n to switch from edMn to de⇡—the state-action

distribution of the comparator e⇡ in the real MDP M.

Note that for any d 2 S ⇥A, we have:

E(s,a)⇠d

��Qt

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

��

X

z

E(s,a)⇠d1{�(s, a) = z}
��Qt

bn(s, a)� bn(s, a)� ✓t
?,z

�� Ez⇠d

✏z
(1� �)2

=
E(s,a)⇠d✏�(s,a)

(1� �)2
.

28

Figure 4: The binary tree example. Note that here s0 and s1 have features only span in the first
three standard basis, and the features for states inside the binary tree (dashed) contains features in
the null space of the first three standard bases. Note that the features inside the binary tree could be
arbitrary complicated. Unless the feature dimension scales exp(H) with H being the depth of the
tree, we cannot represent this problem in linear MDPs. The on-policy nature of PC-PG ensures that it
succeeds in this example. Due to the complex features and large `1 model-misspecification inside
the binary tree, Bellman-backup based approaches (e.g., Q-learning) cannot guarantee successes.

With this, we have:

term A E(s,a)⇠de⇡

���Q⇡
t

bn(s, a)� bn(s, a)� ✓n
?
· �(s, a)

���+ Es⇠de⇡,a⇠⇡t
s

����Q⇡
t

bn(s, a) + bn(s, a) + ✓t
?
· �(s, a)

���

 Es⇠de⇡ max
a

���Q⇡
n

fM(s, a)� bn(s, a)� ✓n
?
· �(s, a)

���+ Es⇠de⇡ max
a

����Q⇡
t

bn(s, a) + bn(s, a) + ✓t
?
· �(s, a)

���

 2
⇣
Es⇠de⇡ max

a

���Q⇡
t

bn(s, a)� bn(s, a)� ✓t
?
· �(s, a)

���
⌘

2Es⇠de⇡ maxa
⇥
✏�(s,a)

⇤

(1� �)2

Combine term A and term B, we conclude the proof.

The rest of the proof of Theorem 4.2 is almost identical to the proof of Theorem D.1 with
p
A✏bias in

Theorem D.1 being replaced by
2E

s⇠de⇡ maxa0 [✏�(s,a0)]
(1��)2 .

G Robustness to “Delusional Bias” with Partially Well-specified Models

In this section, we provide an additional example of model misspecification where we show that
PC-PG succeeds while Bellman backup based algorithms do not. The basic spirit of the example
is that if our modeling assumption holds for a sub-part of the MDP, then PC-PG can compete with
the best policy that only visits states in this sub-part with some additional assumptions. In contrast,
prior model-based and Q-learning based approaches heavily rely on the modeling assumptions being
globally correct, and bootstrapping-based methods fail in particular due to their susceptibility to the
delusional bias problem [42].

We emphasize that this constructed MDP and class of features have the following properties:

• It is not a linear MDP; we would need the dimension to be exponential in the depth H , i.e.
d = ⌦(2H), in order to even approximate the MDP as a linear MDP.

• We have no reason to believe that value based methods (that rely on Bellman backups, e.g., Q
learning) or model based algorithms will provably succeed for this example (or simple variants of
it).

• Our example will have large worst case function approximation error, i.e. the `1 error in
approximating Q? will be (arbitrarily) large.

• The example can be easily modified so that the concentrability coefficient (and the distribution
mismatch coefficient) of the starting distribution (or a random initial policy) will be ⌦(2H).

29

Furthermore, we will see that PC-PG succeeds on this example, provably.

We describe the construction below (see Figure 4 for an example). There are two actions, denoted
by L and R. At initial state s0, we have P (s1|s0, L) = 1; P (s1|s1, a) = 1 for any a 2 {L,R}. We
set the reward of taking the left action at s0 to be 1/2, i.e. r(s0, L) = 1/2. This implies that there
exists a policy which is guaranteed to obtain at least reward 1/2. When taking action a = R at s0, we
deterministically transition into a depth-H completely balanced binary tree. We can further constrain
the MDP so that the optimal value is 1/2 (coming from left most branch), though, as we see later,
this is not needed.

The feature construction of � 2 Rd is as follows: For s0, L, we have �(s0, L) = e1 and �(s0, R) =
e2, and �(s1, a) = e3 for any a 2 {L,R}, where e1, e2, e3 are the standard basis vectors. For all
other states s 62 {s0, s1}, we have that �(s, a) is constrained to be orthogonal to e1, e2, and e3,
but otherwise arbitrary. In other words, �(s, a) has the first three coordinates equal to zero for any
s 62 {s0, s1} but can otherwise be pathological.

The intuition behind this construction is that the features � are allowed to be arbitrary complicated for
states inside the depth-H binary tree, but are uncoupled with the features on the left path. This implies
that both PC-PG and any other algorithm do not have access to a good global function approximator.

Furthermore, as discussed in the following remark, these features do not provide a good approximation
of the true dynamics as a linear MDP.
Remark G.1. (Linear-MDP approximation failure). As the MDP is deterministic, we would need
dimension d = ⌦(2H) in order to approximate the MDP as a linear MDP (in the sense required
in [32]). This is due to that the rank of the transition matrix is O(2H).

However the on-policy nature of PC-PG ensures that there always exists a best linear predictor that
can predict Q⇡ well under the optimal trajectory (the left most path) due to the fact that the features
on s0 and s1 are decoupled from the features in the rest of the states inside the binary tree. Thus it
means that the transfer error is always zero. This is formally stated in the following lemma.
Corollary G.1 (Corollary of Theorem 4.3). PC-PG is guaranteed to find a policy with value
greater than 1/2 � ✏ with probability greater than 1 � �, using a number of samples that is
O (poly(H, d, 1/✏, log(1/�))). This is due to the transfer error being zero.

Proof of Corollary G.1. The proof involves showing that the transfer error is 0. Specifically, we will
show the following: consider any state-action distribution ⇢, and any policy ⇡, and any bonus function
b with bounded value for all b(s, a). Then there exists ✓? as one of the best on-policy fit,
i.e., ✓? 2 argmin✓:k✓kW E(s,a)⇠⇢ (✓ · �(s, a)� (Q⇡(s, a)� b(s, a)))2, such that:

E(s,a)⇠d? (Q⇡(s, a)� b(s, a)� ✓? · �(s, a))
2 = 0,

i.e., the transfer error is zero.

Let us denote a minimizer of E(s,a)⇠⇢ (✓ · �(s, a) + b(s, a)�Q⇡(s, a))2 as e✓. Note that for any of
the first three coordinates of e✓, we have that either the distribution ⇢ does not put mass on states where
this coordinate is non-zero, and we can set the corresponding value in e✓ arbitrarily, or it should be set
to a specific value that we show next. Specifically, we set e✓1 = Q⇡(s0, L)�b(s0, L) = 1/2�b(s0, L),
e✓2 = Q⇡(s0, R)� b(s0, R), and e✓3 = Q⇡(s1, a)� b(s1, a) = �b(s1, a) for any a 2 {L,R}. This
ensures that the fitting error on the (si, a) for i 2 {1, 2} and a 2 {L,R} is zero, while it does not
affect the fit anywhere else as the features in all other states and actions are orthogonal by assumption.
Now we take any such minimizer of E(s,a)⇠⇢ (✓ · �(s, a) + b(s, a)�Q⇡(s, a))2 as e✓, where the first
three coordinates are fixed to the values given above, and denote it as ✓?.

For ✓?, we have ✓? ·�(s0, a) = Q⇡(s0, a)�b(s0, a) for a 2 {L,R}, and ✓? ·�(s1, a) = Q⇡(s1, a)�
b(s1, a) for a 2 {L,R}, thus, we can verify that Q⇡(s0, a)�b(s0, a) = ✓? ·�(s0, a) and Q⇡(s1, a)�
b(s1, a) = ✓? · �(s1, a) for a 2 {L,R}. Since ⇡? only visits s0 and s1, we can conclude that
E(s,a)⇠d? (Q⇡(s, a)� b(s, a)� ✓? · �(s, a))

2 = 0.

With "bias = 0, we can conclude the proof by recalling Theorem D.1.

Intuition for the success of PC-PG. Since the corresponding features of the binary subtree have
no guarantees in the worst-case, PC-PG may not successfully find the best global policy in general.

30

However, it does succeed in finding a policy competitive with the best policy that remains in the
favorable sub-part of the MDP satisfying the modeling assumptions (e.g., the left most trajectory in
Figure 4). We do note that the feature orthogonality is important (at least for a provably guarantee),
otherwise the errors in fitting value functions on the binary subtree can damage our value estimates
on the favorable parts as well; this behavior effect may be less mild in practice.

Delusional bias and challenges with Bellman backup (and Model-based) approaches. While
we do not explicitly construct algorithm dependent lower bounds in our construction, we now
discuss why obtaining guarantees similar to ours with Bellman backup-based (or even model-based)
approaches may be challenging with the current approaches in the literature. We are not assuming
any guarantees about the quality of the features in the right subtree (beyond the aforementioned
orthogonality). Specifically, for Bellman backup-based approaches, the following two observations
(similar to those stressed in Lu et al. [42]), when taken together, suggest difficulties for algorithms
which enforce consistency by assuming the Markov property holds:

• (Bellman Consistency) The algorithm does value based backups, with the property that it does an
exact backup if this is possible. Note that due to our construction, such algorithms will seek to
do an exact backup for Q(s0, R), where they estimate Q(s0, R) to be their value estimate on the
right subtree. This is due to that the feature �(s0, R) is orthogonal to all other features, so a 0
error, Bellman backup is possible, without altering estimation in any other part of the tree.

• (One Sided Errors) Suppose the true value of the subtree is less than 1/2��, and suppose that
there exists a set of features where the algorithm approximates the value of the subtree to be larger
than 1/2. Current algorithms are not guaranteed to return values with one side error; with an
arbitrary featurization, it is not evident why such a property would hold.

More generally, what is interesting about the state aggregation featurization is that it permits us to run
any tabular RL learning algorithm. Here, it is not evident that any other current tabular RL algorithm,
including model-based approaches, can achieve guarantees similar to our average-case guarantees,
due to their strong reliance on how they use the Markov property. In this sense, our work provides a
unique guarantee with respect to model misspecification in the RL setting.

Failure of concentrability-based approaches Some of the prior results on policy optimization
algorithms, starting from the Conservative Policy Iteration algorithm Kakade and Langford [34] and
further studied in a series of subsequent papers [3, 27, 53] provide the strongest guarantees in settings
without exploration, but considering function approximation. As remarked in Section 4.1, most works
in this literature make assumptions on the maximal density ratio between the initial state distribution
and comparator policy to be bounded. In the MDP of Figure 4, this quantity seems fine since the ratio
is at most H for the comparator policy that goes on the left path (by acting randomly in the initial
state). However, we can easily change the left path into a fully balanced binary tree as well, with
O(H) additional features that let us realize the values on the leftmost path (where the comparator
goes) exactly, while keeping all the other features orthogonal to these. It is unclear how to design
an initial distribution to have a good concentrability coefficient, but PC-PG still competes with the
comparator following the leftmost path since it can realize the value functions on that path exactly
and the remaining parts of the MDP do not interfere with this estimation.

H Auxiliary Lemmas

Lemma H.1 (Dimension-free Least Square Guarantees). Consider the following learning pro-
cess. Initialize ✓1 = 0. For i = 1, . . . , N , draw xi, yi ⇠ ⌫, yi 2 [0, H], kxik 1;Set ✓i+1 =Q

⇥:={✓:k✓kW}
(✓i � ⌘i(✓i · xi � yi)xi) with ⌘i = (W 2)/((W + H)

p
N). Set ✓̂ = 1

N

P
N

i=1 ✓i,
we have that with probability at least 1� �:

Ex⇠⌫

⇣
✓̂ · x� E [y|x]

⌘2�
 Ex⇠⌫

h
(✓? · x� E [y|x])2

i
+

R
p

ln(1/�)
p
N

,

with any ✓? such that k✓?k W and R = 3(W 2 +WH) which is dimension free and only depends
on the norms of the feature and ✓? and the bound on y.

31

Proof. Note that we compute ✓i using Projected Online Gradient Descent [73] on the sequence of
loss functions (✓ · xi � yi)2. Using the projected online gradient descent regret guarantee, we have
that:

NX

i=1

(✓i · xi � yi)
2

NX

i=1

(✓? · xi � yi)
2 +W (W +H)| {z }

:=Q

p

N.

Denote random variable zi = (✓i · xi � yi)2 � (✓? · xi � yi)2. Denote Ei as the expectation taken
over the randomness at step i conditioned on all history t = 1 to i� 1. Note that for Ei[zi], we have:

Ei

⇥
(✓i · x� y)2 � (✓? · x� y)2

⇤

= Ei

⇥
(✓i · x� E[y|x])2

⇤

� Ei

⇥
2(✓i · x� E[y|x])(E[y|x]� y)� (✓? · x� E[y|x])2 + 2(✓? · x� E[y|x])(E[y|x]� y))

⇤

= Ei

⇥
(✓i · x� E[y|x])2 � (✓? · x� E[y|x])2

⇤
,

where we use E[E[y|x]� y] = 0. Also for |zi|, we can show that for |zi| we have:

|zi| = |(✓i · xi � ✓? · xi)(✓i · xi + ✓? · xi � 2yi)| W (2W + 2H) = 2W (W +H).

Note that zi forms a Martingale difference sequence. Using Azuma-Hoeffding’s inequality, we have
that with probability at least 1� �:

�����

NX

i=1

zi �
NX

i=1

Ei

⇥
(✓i · x� E[y|x])2 � (✓? · x� E[y|x])2

⇤
����� 2W (W +H)

p
ln(1/�)N,

which implies that:

NX

i=1

Ei

⇥
(✓i · x� E[y|x])2 � (✓? · x� E[y|x])2

⇤

NX

i=1

zi + 2W (W +H)
p
ln(1/�)N

 2W (W +H)
p
ln(1/�)N +Q

p

N.

Apply Jensen’s inequality on the LHS of the above inequality, we have that:

E
⇣
✓̂ · x� E[y|x]

⌘2
 E (✓? · x� E[y|x])2 + (Q+ 2W (W +H))

r
ln(1/�)

N
.

Lemma H.2. Consider the following process. For n = 1, . . . , N , Mn = Mn�1+⌃n with M0 = �I
with � � 1 and ⌃n being PSD matrix with eigenvalues upper bounded by 1. We have that:

2 log det(MN)� 2 log det(�I) �
NX

n=1

Tr
�
⌃iM

�1
i�1

�
.

Proof. Note that M0 is PD, and since ⌃n is PSD for all n, we must have Mn being PD as well.

Using matrix inverse lemma, we have:

det(Mn+1) = det(Mn) det(I+M�1/2
n

⌃n+1M
�1/2
n

).

Add log on both sides of the above equality, we have:

log det(Mn+1) = log det(Mn) + log det(I +M�1/2
n

⌃n+1M
�1/2
n

).

Denote the eigenvalues of M�1/2
n ⌃n+1M

�1/2
n as �1, . . . ,�d, we have:

log det(Mn+1) = log det(Mn) +
dX

i=1

log (1 + �i)

32

Note that since � � 1, we have kM�1/2
n k2 1 which implies that �i 1, and we have log(1+x) �

x/2 for x 2 [0, 1]. Hence, we have:

log det(Mn+1) � log det(Mn) +
dX

i=1

�i/2 = log det(Mn) +
1

2
Tr
⇣
M�1/2

n
⌃n+1M

�1/2
n

⌘

= log det(Mn) +
1

2
Tr
�
⌃n+1M

�1
n

�
,

where we use the fact that Tr(AB) = Tr(BA) and the trace of PSD matrix is the sum of its
eigenvalues. Sum over from n = 0 to N and cancel common terms, we conclude the proof.

Lemma H.3 (Covariance Matrix Concentration). Given ⌫ 2 �(S ⇥ A) and N i.i.d samples
{si, ai} ⇠ ⌫. Denote ⌃ = E(s,a)⇠⌫�(s, a)�(s, a)

>. Then, with probability at least 1 � �, we
have that:

�����x
>

NX

i=1

�(si, ai)�(si, ai)
>/N � ⌃

!
x

�����
2 ln(8bd/�)

3N
+

s
2 ln(8bd/�)

N
,

with bd = Tr(⌃)/k⌃k being the intrinsic dimension of ⌃.

Proof. Denote random matrix Xi = �(si, ai)�(si, ai)>�⌃. First note that the maximum eigenvalue
of Xi is less than 1. Also note that E[Xi] = 0 for all i.

Denote V =
P

N

i=1 E[X2
i
]. For E[X2

i
], we have

E[X2
i
] 4 E[(�i�

>

i
)2] 4 E[�i�

T

i
] = ⌃.

where the last inequality uses k�ik2 1. Thus, we have:

V =
NX

i=1

E[X2
i
] 4 N⌃,

and kV k N . Note that the intrinsic dimension of V is exactly equal to the intrinsic dimension of
⌃, which by definition is bd.

Now apply Matrix Bernstein inequality [65] (Theorem 7.7.1), we have that for any t �
p
N + 1/3,

Pr

�max(

NX

i=1

Xi) � t

!
 4bd exp

✓
�t2/2

N + t/3

◆
.

Since �max

⇣P
N

i=1 Xi

⌘
= N�max

⇣P
N

i=1 Xi/N
⌘

, we get that:

Pr

�max

NX

i=1

Xi/N

!
� ✏

!
 4bd exp

✓
�✏2N/2

1 + ✏/3

◆
,

for any ✏ � 1
p
N

+ 1
3N . Set 4bd exp(�✏2N/((1 + ✏/3))) = �, we get:

✏ =
2 ln(4bd/�)

3N
+

s
2 ln(4bd/�)

N
,

which is trivially bigger than 1/
p
N + 1/(3N) as long as d � 1 and � 1. This concludes that with

probability at least 1� �, we have:

�max

NX

i=1

�(si, ai)�(si, ai)
>/N � ⌃

!

2 ln(4bd/�)
3N

+

s
2 ln(4bd/�)

N
.

33

We can repeat the same analysis for random matrices {Xi := ⌃� (�(si, ai)�(si, ai)>)} and we can
show that with probability at least 1� �, we have:

�max

⌃�

NX

i=1

�(si, ai)�(si, ai)
>/N

!

2 ln(4bd/�)
3N

+

s
2 ln(4bd/�)

N
.

Hence, with probability 1� �, for any x, we have:

x>

⌃�

NX

i=1

�(si, ai)�(si, ai)
>/N

!
x

2 ln(8bd/�)
3N

+

s
2 ln(8bd/�)

N
,

x>

NX

i=1

�(si, ai)�(si, ai)
>/N � ⌃

!
x

2 ln(8bd/�)
3N

+

s
2 ln(8bd/�)

N
.

This concludes the proof.

Lemma H.4 (Concentration with the Inverse of Covariance Matrix). Consider a fixed N . Given
N distributions ⌫1, . . . , ⌫N with ⌫i 2 �(S ⇥ A), assume we draw K i.i.d samples from ⌫i and
form b⌃i =

P
K

j=1 �(sj , aj)�(sj , aj)
>/K for all i. Denote ⌃i = Es,a⇠⌫i�(s, a)�(s, a)

> and

⌃ =
P

N

i=1 ⌃
i + �I and b⌃ =

P
N

i=1
b⌃i + �I with � > 0. Setting K = 32N2 log

⇣
8N bd/�

⌘
/�2,

with probability at least 1� �, we have:

1

2
xT (⌃+ �I)�1 x xT

⇣
b⌃+ �I

⌘�1
x 2xT (⌃+ �I)�1 x,

for all x with kxk2 1, where we denote the intrinsic dimension bd = maxi2[1,...,N] tr(⌃
i)/k⌃i

k.

Proof. Denote ⌘(K) = 2 ln(8N bd/�)
3K +

q
2 ln(8N bd/�)

K
. From Lemma H.3, we know that with probability

1� �, for all i, we have:

⌃i + ⌘(K)I+ (�/N)I ⌫ b⌃i + (�/N)I ⌫ ⌃i
� ⌘(K)I+ (�/N)I,

which implies that:

⌃+N⌘(K)I+ �I � b⌃+ �I � ⌃�N⌘(K)I+ �I,

which further implies that:

(⌃�N⌘(K)I+ �I)�1
⌫

⇣
b⌃+ �I

⌘�1
⌫ (⌃+N⌘(K)I+ �I)�1 ,

under the condition that N⌘(K) � which holds under the condition of K. Let U⇤U> be the
eigendecomposition of ⌃.

x>

⇣
b⌃+ �I

⌘�1
x� x> (⌃+ �I)�1

 x>

⇣
(⌃+ (�N⌘(K) + �)I)�1

� (⌃+ �I)�1
⌘
x

=
X

i

�
(�i + ��N⌘(K))�1

� (�i + �))�1
�
(x · ui)

2

Since �i +� � 2N⌘(K) as �i � 0 and N⌘(K) �/2, we have that 2(�i +��N⌘(K)) � �i +�,
which implies that (1/2)(�i + ��K⌘(N))�1

 (�i + �)�1. Hence, we have:

x>

⇣
b⌃+ �I

⌘�1
x� x> (⌃+ �I)�1 x

X

i=1

(ui · x)
2(�i + �)�1 = x>(⌃+ �I)�1x.

The analysis for the other direction is similar. This concludes the proof.

34

I Experimental Details

I.1 Algorithm Implementation

We implemented two versions of the algorithm: one with a reward bonus which is added to the
environment reward (shown in Algorithm 4), and one which performs reward-free exploration,
optionally followed by reward-based exploitation using the policy cover as a start distribution (shown
in Algorithm 5).

Both of these use NPG as a subroutine, which performs policy optimization using the restart distri-
bution induced by a policy mixture ⇧mix. The implementation of NPG is described in Algorithm
6. We sample states from the restart distribution by randomly sampling a roll-in policy from the
cover and a horizon length h0, and following the sampled policy for h0 steps. Rewards gathered
during these roll-in steps are not used for optimization. With probability ✏, a random action is taken
at the beginning of the rollout. We then roll out using the current policy being optimized, and use the
rewards gathered for optimization. The policy parameters can be updated using any policy gradient
method, we used PPO [56] in our experiments.

For all experiments, we optimized the policy mixture weights ↵1, ...,↵n at each episode using 2000
steps of gradient descent, using an Adam optimizer and a learning rate of 0.001. All implementations
are done in PyTorch [48], and build on the codebase of [57]. Experiments were run on a GPU cluster
which consisted of a mix of 1080Ti, TitanV, K40, P100 and V100 GPUs.

Algorithm 4 PC-PG (reward bonus version)
1: Require: kernel function � : S ⇥A! Rd

2: Initialize policy ⇡1 randomly
3: Initialize policy mixture ⇧mix {⇡1}

4: Initialize episode buffer: R ;
5: for episode n = 1, . . .K do
6: for trajectory k = 1, . . .K do
7: Gather trajectory ⌧k = {s(k)

h
, a(k)

h
}
H

h=1 following ⇡n

8: R R [{(s(k)
h

, a(k)
h

)}H
h=1

9: end for
10: Compute empirical covariance matrix: ⌃̂n =

P
(s,a)2R

�(s, a)�(s, a)>

11: Define exploration bonus: bn(s, a) = �(s, a)>⌃̂�1
n

�(s, a)

12: Optimize policy mixture weights: ↵(n) = argmin
↵=(↵1,...,↵n),↵i�0,

P
i ↵i=1 log det

hP
n

i=1 ↵i⌃̂i

i

13: ⇡n+1 NPG(⇡n,⇧mix,↵(n), Nupdate, r + bn)
14: ⇧mix ⇧mix [{⇡n+1}

15: end for

I.2 Environments

I.2.1 Bidirectional Diabolical Combination Lock

The environment consists of a start state s0 where the agent is placed (deterministically) at the
beginning of every episode. The action space consists of 10 discrete actions, A = {1, 2, ..., 10}. In
s0, actions 1� 5 lead the agent to the initial state of the first lock and actions 6� 10 lead the agent to
the initial state of the second lock. Each lock l consists of 3H states, indexed by sl1,h, s

l

2,h, s
l

3,h for
h 2 {1, ..., H}. A high reward of Rl is obtained at the last states sl1,H , sl2,H . The states {sl3,h}

H

h=1

are all “dead states” which yield 0 reward. Once the agent is in a dead state sl3,h, it transitions
deterministically to sl3,h+1; thus entering a dead state at any time makes it impossible to obtain the
final reward Rl. At each “good” state sl1,h or sl2,h, a single action leads the agent (stochastically with
equal probability) to one of the next good states sl1,h+1, s

l

2,h+1. All other 9 actions lead the agent to
the dead state sl3,h+1. The correct action changes at every horizon length h and the stochastic nature
of the transitions precludes algorithms which plan deterministically. In addition, the agent receives a
negative reward of �1/H for transitioning to a good state, and a reward of 0 for transitioning to a

35

Algorithm 5 PC-PG (reward-free exploration version)
1: Require: kernel function � : S ⇥A! Rd

2: Initialize policy ⇡1 randomly
3: Initialize policy mixture ⇧mix {⇡1}

4: Initialize episode buffer: R ;
5: for episode n = 1, . . .K do
6: for trajectory k = 1, . . .K do
7: Gather trajectory ⌧k = {s(k)

h
, a(k)

h
}
H

h=1 following ⇡n

8: R R [{(s(k)
h

, a(k)
h

)}H
h=1

9: end for
10: Compute empirical covariance matrix: ⌃̂n =

P
(s,a)2R

�(s, a)�(s, a)>

11: Define exploration bonus: bn(s, a) = �(s, a)>⌃̂�1
n

�(s, a)

12: Optimize policy mixture weights: ↵(n) = argmin
↵=(↵1,...,↵n),↵i�0,

P
i ↵i=1 log det

hP
n

i=1 ↵i⌃̂i

i

13: ⇡n+1 NPG(⇡n,⇧mix,↵(n), Nupdate, bn)
14: ⇧mix ⇧mix [{⇡n+1}

15: end for
16: Initialize policy ⇡exploit randomly
17: ⇡exploit NPG(⇡exploit,⇧mix,↵(K), Nupdate, r)

Algorithm 6 NPG(⇡,⇧mix,↵, Nupdate, r)

1: Input policy ⇡, policy mixture ⇧mix = {⇡1, ...,⇡n}, mixture weights (↵1, ...,↵n), optional
reward bonus b : S ⇥A! [0, 1]

2: for policy update j = 1, . . . Nupdate do
3: Sample roll in policy index j ⇠ Multinomial{↵1, ...,↵n}

4: Sample roll in horizon index h0
⇠ Uniform{0, ..., H � 1}

5: Sample start state s0 ⇠ P (s0)
6: for h = 1, . . . , h0 do
7: ah ⇠ ⇡j(·|sh), sh+1 ⇠ P (·|sh, ah)
8: end for
9: for h = h0 + 1, . . . , H do

10: ah ⇠ ⇡(·|sh) (✏-greedy if h = h0 + 1)
11: sh+1, rh+1 ⇠ P (·|sh, ah)
12: end for
13: Perform policy gradient update on return R =

P
H

h=h0 r(sh, ah)
14: end for
15: Return ⇡

dead state. Therefore, a locally optimal solution is to learn a policy which transitions to a dead state
as quickly as possible, since this avoids the �1/H penalty.

States are encoded using a binary vector. The start state s0 is simply the zero vector. In each lock, the
state sl

i,h
is encoded as a binary vector which is the concatenation of one-hot encodings of i, h, l.

One of the locks (randomly chosen) gives a final reward of 5, while the other lock gives a final reward
of 2. Therefore, in addition to the locally optimal policy of quickly transitioning to the dead state
(with return 0), another locally optimal solution is to explore the lock with reward 2 and gather the
reward there. This leads to a return of V = 2�

P
H

h=1
1
H

= 1, whereas the optimal return for going
to the end of lock with reward 5 is V ? = 5 �

P
H

h=1
1
H

= 4. In order to ensure that the optimal
reward is discovered for every lock, the agent must therefore explore both locks to the end. We used
Algorithm 5 for this environment.

36

I.2.2 Mountain Car

We used the MountainCarContinuous-v0 OpenAI Gym environment at https://gym.openai.
com/envs/MountainCarContinuous-v0/. This environment has a 2-dimensional continuous state
space and a 1-dimensional continuous action space. We used Algorithm 4 for this environment.

I.2.3 Mazes

We used the source code from https://github.com/junhyukoh/

value-prediction-network/blob/master/maze.py to implement the maze environment, with
the following modifications: i) the blue channel (originally representing the goal) is set to zero ii) the
same maze is used across all episodes iii) the reward is set to be a constant 0. We set the maze size to
be 20⇥ 20. There are 5 actions: {up, down, left, right, no-op}. We used Algorithm 5 for
this environment, omitting the exploitation step.

I.3 Additional Figures

chain 1

ep 500 ep 3000 ep 3500 ep 5000

ep 5500 ep 6000 ep 6500 ep 8000

chain 2

chain 1

chain 2

(a) RND trace during training
State visitations for top weighted policies in mixture

visitations for policy mixture
policy 31 policy 11 policy 28 policy 0

lo
ck
 2

lo
ck
 1

(b) PC-PG final trace

Figure 5: (a) shows the state visitation frequencies (brighter color depicts higher visitation frequency)
when the RND bonus [16] is applied to a policy gradient method throughout training on the above
problem. ’Ep’ denotes epoch number showing the progress during a single training run. Although the
agent manages to explore to the end of one chain (chain 2 in this case), its policy quickly becomes
deterministic and it “forgets” to explore the remaining chain, missing the optimal reward. RND
obtains the optimal reward on roughly half of the initial seeds. (b) panel shows the traces of policies
in the policy cover of PC-PG. Together the policy cover provides a near uniform coverage over both
chains.

.

Figure 5 shows the traces of policies trained by RNDs and the traces of the policies from the policy
cover of PC-PG.

Figure 6 shows the state visitations of the different policies in the policy cover for Mountaincar.

I.4 Hyperparameters

All methods were based on the PPO implementation of [57]. For the Diabolical Combination Lock
and the MountainCar environments, we used the same policy network architecture: a 2-layer fully
connected network with 64 hidden units at each layer and ReLU non-linearities. For the Diabolical
Combination Lock environment, the last layer outputs a softmax over 10 actions and for Mountain
Car the last layer outputs the parameters of a 1D Gaussian. For the Maze environments, we used a
convolutional network with 2 convolutional layers (32 kernels of size 3⇥ 3 for the first, 64 kernels
of size 3 ⇥ 3 for the second, both with stride 2), followed by a single fully-connected layer with

37

https://gym.openai.com/envs/MountainCarContinuous-v0/
https://gym.openai.com/envs/MountainCarContinuous-v0/
https://github.com/junhyukoh/value-prediction-network/blob/master/maze.py
https://github.com/junhyukoh/value-prediction-network/blob/master/maze.py

Figure 6: State visitations of different policies in PC-PG’s policy cover on MountainCar.

512 hidden units, and a final linear layer mapping to a softmax over the 5 actions. In all cases
the RND network has the same architecture as the policy network, except that the last linear layer
mapping hidden units to actions is removed. We found that tuning the intrinsic reward coefficient
was important for getting good performance for RND. Hyperparameters are shown in Tables 1 and 2.

Table 1: PPO+RND Hyperparameters for Combolock and Mountain Car
Hyperparameter Values Considered Final Value (Combolock) Final Value (Mountain Car)
Learning Rate 10�3, 5 · 10�4, 10�4 10�3 10�4

Hidden Layer Size 64 64 64
⌧GAE 0.95 0.95 0.95
Gradient Clipping 5.0 5.0 5.0
Entropy Bonus 0.01 0.01 0.01
PPO Ratio Clip 0.2 0.2 0.2
PPO Minibatch Size 160 160 160
PPO Optimization Epochs 5 5 5
Intrinsic Reward Normalization true, false false false
Intrinsic Reward coefficient 0.5, 1, 10, 102, 103, 104 103 103

Extrinsic Reward coefficient 1.0 1.0 1.0

Table 2: PPO+RND Hyperparameters for Mazes
Hyperparameter Values Considered Final Value
Learning Rate 10�3, 5 · 10�4, 10�4 10�3

Hidden Layer Size 512 512
⌧GAE 0.95 0.95
Gradient Clipping 0.5 0.5
Entropy Bonus 0.01 0.01
PPO Ratio Clip 0.1 0.1
PPO Minibatch Size 128 128
PPO Optimization Epochs 10 10
Intrinsic Reward Normalization true, false true
Intrinsic Reward coefficient 1, 10, 102, 103, 104 103

The hyperparameters used for PC-PG are given in Tables 3 and 4. For the Diabolical Combination
Lock experiments, we used a kernel �(s, a) = s, where s is the binary vector encoding the state
described in Section I.2.1. For Mountain Car, we used a Random Kitchen Sinks kernel [50] with 10
features using the following implementation: https://scikit-learn.org/stable/modules/
generated/sklearn.kernel_approximation.RBFSampler.html. For the Maze environments,
we used a randomly initialized convolutional network with the same architecture as the RND network
as a kernel.

38

https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html

Table 3: PC-PG Hyperparameters for Combolock and Mountain Car
Hyperparameter Values Considered Final Value (Combolock) Final Value (MountainCar)
Learning Rate 10�3, 5 · 10�4, 10�4 10�3 5 · 10�4

Hidden Layer Size 64 64 64
⌧GAE 0.95 0.95 0.95
Gradient Clipping 5.0 5.0 5.0
Entropy Bonus 0.01 0.01 0.01
PPO Ratio Clip 0.2 0.2 0.2
PPO Minibatch Size 160 160 160
PPO Optimization Epochs 5 5 5
✏-greedy sampling 0, 0.01, 0.05 0.05 0.05

Table 4: PC-PG Hyperparameters for Mazes
Hyperparameter Values Considered Final Value
Learning Rate 10�3, 5 · 10�4, 10�4 5 · 10�4

Hidden Layer Size 512 512
⌧GAE 0.95 0.95
Gradient Clipping 0.5 0.5
Entropy Bonus 0.01 0.01
PPO Ratio Clip 0.1 0.1
PPO Minibatch Size 128 128
PPO Optimization Epochs 10 10
✏-greedy sampling 0.05 0.05

39

	Introduction
	Setting
	The PC-PG Algorithm
	Theory
	Well specified case: Linear MDPs in RKHS
	State-Aggregation under Model Misspecification
	Agnostic Guarantees with Bounded Transfer Error

	Experiments
	Discussion
	Additional Related Work
	NPG Analysis (Algorithm 3)
	Set up of Augmented MDPs
	Performance of NPG (Algorithm 3) on the Augmented MDP Mn

	Relationship between Mn and M
	Analysis of PC-PG for the Agnostic Setting (Theorem 4.3)
	Proof of Theorem D.1

	Analysis of PC-PG for Linear MDPs (Theorem 4.1)
	Analysis of PC-PG for State-Aggregation (Theorem 4.2)
	Robustness to ``Delusional Bias'' with Partially Well-specified Models
	Auxiliary Lemmas
	Experimental Details
	Algorithm Implementation
	Environments
	Bidirectional Diabolical Combination Lock
	Mountain Car
	Mazes

	Additional Figures
	Hyperparameters

