
A Mutual information

In this section, we provide a short tutorial on Mutual Information (MI, I) and some of its known
properties we use within our proofs. Given two random variables X and Y , MI measures the
distributional distance between P (X,Y ) and P (X)P (Y ) via the Kullback-Leibler divergence. The
equation for I(X,Y ) is written as

I(X;Y ) = DKL(P(X,Y )‖PX ⊗ PY ) (14)

where Kullback-Leibler divergence of two distributon P,Q is defined as

DKL(P ‖ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (15)

Here, X is the defined domain of the random variable X .

Property 1: MI is non negative, or I(X;Y ) ≥ 0.

Property 2: MI is symmetric, or I(X;Y ) = I(Y ;X).

Property 3: MI with joint distributions has the following chain rule:

I(Y ;X1, . . . , Xn) = I(Y ;X1) + I(Y ;X2|X1) + · · ·+ I(Y ;Xn|X1, . . . , Xn−1). (16)

Property 4: MI of X and Y can be increase or decrease via the conditioning of a third variable Z,
i.e., it is possible that I(X;Y |Z) ≥ I(X;Y ) or I(X;Y |Z) ≤ I(X;Y ) when Z is introduced. As a
corollary to this property, it is therefore possible that I(X;Y ) = 0 6→ I(X;Y |Z) = 0.

Property 5: MI between variables is conserved through diffeomorphism. We formally state this
property as Lemma 3 below.

Lemma 3. Mutual information is invariant under reparametrization of the marginal
variables if X ′ = F (X) and Y ′ = G(Y ) are diffeomorphism, then:

I(X;Y ) = I(F (X);G(Y ))

Property 6: MI cannot be increased via any deterministic transformation of its variables. We formally
state this property as Lemma 4 below.

Lemma 4. According to inequality of data processing for any deterministic trans-
formation f we have:

I(f(X);Y ) ≤ I(X;Y ).

Therefore, as a key corollary used in our proof, we note that
Corollary 4.3. Using the encoder TG as f will not enhance the mutual information.
meaning:

I(TG(X);Y ) ≤ I(X;Y ).

A.1 A note to mention:

We defined X = {X1, . . . , Xd}, and A ⊆ X , where Xj is a random variable representing feature j
and A is a random variable that has a subset of features. But we can also define these notations as
follows: X = {(λ1, . . . , λd)| ∀jλj = Xj ∨ λj = 0}, and A ∈ X . Note that |X | = 2d, because λj
has two choices, to either reflect the random variable Xj or be 0. Furthermore, the every element in
X has can be seen as a projection of the element that all λ are non zero or (x1, . . . , xd). Using the
data processing Lemma 4. Hence we can say I(X ; Y) = I(X; Y).

B Proof for Lemmas 1 and 2

Lemma 1. The decoder T+
G : Z→ Im(T+

G ) is a Diffeomorphism map.

Proof. Diffeomorphism map is a map that is smooth and bijective.

Smoothness: The decoder T+
G in a linear map, hence smooth. We need to prove that T+

G is bijective.
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Injectivity: First we prove it is injective, and therefore

∀zi, zj ∈ Rk, T+
G (zi) = T+

G (zj)→ zi = zj , (17)

The Group matrix G ∈ Rk×d can be represented as its rows which we represent as ĝi ∈ Rd, ∀i =
1, . . . , k. because the group are not overlapping, the rows of G are always orthogonal with each other
which means:

∀i 6= j, 1 ≤ i < j ≤ k 〈ĝi, ĝj〉 = 0. (18)

Let the characteristic features of the ith sample be represented as zi ∈ Rk = [zi,1, . . . , zi,k]T , the
decoder is defined as T+

G (zi) = GT · zi which is equal to

GT · zi = zi,1ĝ1 + · · ·+ zi,kĝk. (19)

Assume T+
G (zi) = T+

G (zj), we will prove that zi = zj . First, because T+
G is linear, we can combine

zi, zj , hence T+
G (zi) = T+

G (zj) lead to T+
G (zi − zj) = 0, using Eq. 19 we obtain

T+
G (zi − zj) = (zi,1 − zj,1)ĝ1 + · · ·+ (zi,k − zj,k)ĝk = 0. (20)

Note that (zi,η − zj,η) is a scalar value for all η, therefore, we can multiply ĝTη on both side of the
equality condition to obtain

(zi,1 − zj,1)ĝ1 + · · ·+ (zi,k − zj,k)ĝk = 0 (21)

(zi,1 − zj,1)ĝTη ĝ1 + · · ·+ (zi,k − zj,k)ĝTη ĝk = ĝTη (0) = 0 (22)

Using Eq. (18), since the inner product between ĝη with another ĝ6=η is always 0, only the 〈ĝη, ĝη〉
remains in the equation as

(zi,η − zj,η)〈ĝη, ĝη〉 = 0. (23)

From Eq. (23), we the following two possibilities:

• ∀ η, (zi,η − zj,η) = 0, which implies zi = zj

• Or 〈ĝη, ĝη〉 = 0

The 2nd condition of 〈ĝη, ĝη〉 = 0 implies that no features belong to group η. It is important to realize
here that zi came from the original features xi where zi = Gxi. Therefore, if no features belong to
group η, zi,η and zj,η must both be 0, or zi,η = zj,η for all η. Hence , we conclude that zi = zj and
consequently T+

G is injective.

surjective: The decoder is surjective becuase it maps Z to Im(T+
G ), i.e., the entire Im(T+

G ) is being
mapped. Since the decoder is simultaneoulsy injective and surjective, we conclude that it is also
bijective. Using Lemma 3, we can conclude that mutual information is preserved where

I(Z; Y) = I(T+
G (Z); Y). (24)

Lemma 2. If k < d then TG is not injective.

Proof. Given the TG is a linear function, we know that if TG is injective⇐⇒ dim(ker(TG)) = 0,
where ker(TG) = {v ∈ Rd |TG(v) = 0}. Moreover, for a linear transformation T , we have the
following property:

dim(ker(TG)) + dim(Im(TG) = d

Because dim(Im(TG)) ≤ k → dim(ker(TG)) ≥ d− k > 0 Thus, TG is not injective.
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C Proof for Theorems 1 and 2

Note on notation: We denote H(X) as the entropy of X.

Theorem 1. The maximum mutual information I(X̂; X) is achieved if and only if its characteristic
features Z induced by the model makes X representative redundant based on Def. (1), i.e.

max
G

I(X̂; X) = I(X; X) ⇐⇒ min
G

I(X; X|Z) = 0,

s.t. G ∈ {0, 1}k×d,
k∑
i=1

Gij = 1, Z = TG(X), X̂ = ψθG(X).
(25)

Proof. We first prove the condition

I(X̂; X) = I(X; X) =⇒ I(X; X|Z) = 0. (26)

Based on Lemma 4 in App.A, we know that I(X̂; X) is upper bounded by I(X; X), i.e., the
mutual information can never exceed the entropy of X. Therefore, the optimal G∗ that maximizes
I(X̂; X) is found if the following condition is satisfied.

I(X̂; X) = I(X; X). (27)
This can be proven given the following three observations:

• Using Lemmas 1 and 3, MI is preserved under T+
G and therefore the information between

the following are the same.
I(Z; X) = I(X̂; X). (28)

Using I(X̂; X) = I(X; X). and Eq. (28) implies that
I(Z; X) = I(X; X). (29)

• We note that Z = TG(X) and that TG is a deterministic function. Therefore, P (Z|X) =
δ(Z) where δ denotes the Kronecker’s delta. Given this observation, we have

P (X,Z) = P (X,Z) (30)
= P (Z|X)P (X) (31)
= [δ(TG(X))]P (X) (32)

P (X,Z) = P (X). (33)
Therefore, it leads to the conclusion that

I(X,Z; X) = I(X; X). (34)

• We write the chain rule for I(X,Z; X) as
I(X,Z; X) = I(Z; X) + I(X; X|Z). (35)

By using Eq. (34) and (29), the equality becomes
I(X; X) = I(X; X) + I(X; X|Z). (36)

Therefore, I(X; X|Z) must equal to 0 and condition Eq. (26) is proven.

We next prove the reverse condition

I(X; X|Z) = 0 =⇒ I(X̂; X) = I(X; X). (37)
Start by leveraging the result from Eq. (34) to obtain

I(X; X) = I(X,Z; X) (38)
= I(Z; X) + I(X; X|Z) using the chain rule (39)
= I(Z; X) + 0 using the condition assumption (40)

= I(X̂; X) using the Eq. (28) (41)
= H(X) using the definition of Entropy. (42)
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Theorem 2. The maximum mutual information I(X̄; X) is achieved if and only if its m-selected
characteristic features Z� s induced by the model makes X relevant redundant based on Def. (2),
i.e.

max
G

I(X̄; Y) = I(X; Y) ⇐⇒ min
G

I(X; Y|Z� s) = 0,

s.t. G ∈ {0, 1}k×d,
k∑
i=1

Gij = 1, Z = TG(X), X̄ = φθS ,θG(X), s ∈ {0, 1}k, |s| = m.
(43)

Proof. Forward direction.

The proof follows the similar direction as Theorem 1: First we show:

I(X̄; Y) = I(X; Y) =⇒ I(X; Y|Z� s) = 0.

using the data processing lemma 4, I(X̄; Y) ≤ I(X; Y), hence the optimal solution G∗, s∗
satisfies I(X̄; Y) = I(X; Y). The goal is to show that given

I(X̄; Y) = I(X; Y) (44)

then
I(X; Y|Z� s) = 0. (45)

As stated in Lemma 1 the mutual information is preserved under the decoder map, hence

I(Z� s; Y) = I(T+
G (Z� s); Y) = I(X̄; Y) = I(X; Y). (46)

From this observation, it leads to the following derivation:

I(X,Z� s; Y) = I(Z� s; Y) + I(X; Y|Z� s) via chain rule (47)
I(X; Y) = I(Z� s; Y) + I(X; Y|Z� s) via Eq. (33), P (X,Z) = P (X) (48)
I(X; Y) = I(X; Y) + I(X; Y|Z� s) via Eq. (46), I(Z� s; Y) = I(X; Y). (49)

Since I(X; Y) = I(X; Y), then the condition I(X; Y|Z� s) = 0 must be true.

Reverse direction. We now prove

I(X; Y|Z� s) = 0 =⇒ I(X̄; Y) = I(X; Y). (50)

First note that

I(X; Y) ≤ I(X; Y) + I(Z� s; Y|X) (51)
≤ I(X,Z� s; Y) Chain Rule. (52)

Second, note that φθS ,θG is a deterministic function, and therefore a function f defined as
f(X) = [X, φθS ,θG(X)]T is also a deterministic function. This give us the following relationship

I(X,Y) ≥ I(f(X),Y) Apply Lemma. 4. (53)
≥ I(X, φθS ,θG(X); Y) Apply function f . (54)
≥ I(X,Z� s; Y) Apply definition of φθS ,θG(X). (55)

Combining Eq. (52) and Eq. (55) together, we have

I(X,Z� s; Y) ≥ I(X,Y) ≥ I(X,Z� s; Y), (56)

which is only possible if
I(X,Z� s; Y) = I(X,Y). (57)

Leveraging this result, we see that

I(X; Y) = I(X,Z� s; Y) (58)
= I(Z� s; Y) + I(X; Y|Z� s) using the chain rule (59)
= I(Z� s; Y) + 0 using the condition assumption (60)

= I(X̄; Y) using the Eq. (29) (61)
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D Proof for Theorem 3

Theorem 3. Let X = {X1, . . . , Xd} be a random variable that is consists of all features , let
relevant features U be

U = {Xj | I(Xj ; Y) 6= 0 ∨ ∃A ⊆ X I(Xj ; Y|A) 6= 0}, (62)

and let irrelevant features be Uc, then, ∃G ∈ G such that I(TG(X); Y) = I(X; Y) if

k ≥ |U|+ 1(|U| 6= d) (63)

where 1(|U| 6= d) is an indicator function equal to one when |U| 6= d and zero when |U| = d.

Proof. Set U is the collection of features with the property I(Xj ; Y) 6= 0 or I(Xj ; Y|A) 6= 0. In
other words, the first inequality implies that a features belongs to U if its mutual information with
respect to Y is not 0. Yet, just because the MI between a feature and a label is 0, sometimes, their
MI is no longer 0 given another set of features. Therefore, we add the 2nd condition to includes
these cases. Namely, a feature belongs to U if it directly provide information on Y or if it indirectly
provide information given A.

Note that the definition of U is a consequences of Def. (2). Conversely, it allows us to also define its
complement Uc as featuers that doesn’t provide any information on Y even when it is conditioned on
a set of features A. Formally, we define Uc as

Uc = {Xj | I(Xj ; Y) = 0 and ,∀A I(Xj ; Y|A) = 0}. (64)

To prove the theorem, we first we prove the following lemma:

Lemma 5. Set Uc is relevant Redundant with respect to set U , meaning:

I(Uc; Y|U) = 0

Proof. Without loss of generality assume |Uc| = n which we present these set of features by
x̂1, . . . x̂n :

Based on chain rule, we have the following equality for I(x̂1, . . . x̂n,U ; Y):

I(x̂1, . . . x̂n,U ; Y) = I(U ; Y) + I(x̂1; Y|U) + I(x̂2; Y|U , x̂1) + · · ·+ I(x̂n; Y|U , x̂1, . . . , x̂n−1)
(65)

Each x̂i ∈ Uc, hence I(x̂i;Y |A) = 0, which leads to the following:

I(Uc,U ; Y) = I(x̂1, . . . x̂n,U ; Y) = I(U ; Y) + 0 + · · ·+ 0. (66)

Eq. 66 also leads to the conclusion of this lemma:

I(Uc,U ; Y) = I(U ; Y) + I(Uc; Y|U) = I(U ; Y) =⇒ I(Uc; Y|U) = 0

Which means Uc is relevant redundant with respect to set U .

Lemma 6. With the definition of U , we have the following equality:

I(U ; Y) = I(U ,Uc; Y)

Proof. This lemma is one of the consequences of Lemma 5, using chain rules would lead us to the
following results:

I(Y;U ,Uc) = I(Y;U) + I(Y;Uc|U) = I(Y;U) + 0 (67)

Now we prove the following Lemma, which is the final step for proofing the theorem.
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Lemma 7. The encoder, TG : X→ Z, is a mapping induced by a G ∈ {0, 1}k×d,
∑k
i=1Gij = 1, .

If TG has the property of

TG|U := U → Im(TG|U ) is bijective and Im(TG|U ) ∩ Im(TG|Uc) = {0} (68)

where dim(U) = |U|, is subspace created by features in U , and all the elements Uc maps to a
separated axis’ that is orthogonal to elements that are mapped from U , then

I(X; Y) = I(TG(X); Y). (69)

Proof. First we prove such a G exists for k = |U| + 1(|U| 6= d) and it can captures the mutual
information between X and Y. Note the encoder TG : X→ Z is from Rd → Rk. let ê1, . . . , êk the
basis axis inRk, and x̂1, . . . , x̂k the values of each axis. Assume |U| = m, TG is bijective with respect
to set U . Thus, without loss of generality, assume e1, . . . , em axis in U are mapped to ê1, . . . , êm

in Z. And axis in U c are mapped to êm+1, . . . , êk. Hence TG acts as an identity for U , because
U c sends to orthogonal subspace we can say the following: I(TG(X); Y) = I(U, Im(TG|Uc); Y).
based on lemma 6 we have the following:

I(TG(X); Y) = I(TG(U), Im(TG|Uc); Y) ≥ I(TG(U); Y) = I(U ; Y) (70)

which I(U ; Y) we know it is equal to I(X; Y) based on lemma 6, Hence I(TG(X); Y) ≥ (X; Y).
But where I(TG(X); Y) ≤ (X; Y) is based on data processing Lemma 4. Hence I(X; Y) =
I(TG(X); Y) = I(U ; Y), which concludes the proof.

Based on 7, as long as we can satisfy Eq. 68, we can guarantee the preservation of mutual information
between X and Y. As long as k ≥ |U|+ 1(|U| 6= d), we can define TG to act as identity on U and
map U c to orthogonal subspace of Im(TG|U ) which doesn’t need to be injective, i.e. it can map
everything to one axis. If |U | = d then G is the identify map. Not that G is a group matrix and has to
map each input to an output, that is the reason we need at least one axis for elements in U c.

E Proof for Theorem 4

Theorem 4.

Given ρ as the correlation coefficient and

C = {Xj |ρ(Xj ; Y) 6= 0 ∨ ∃A ρ(Xj ; Y|A) 6= 0} (71)

then: |C| ≤ |U|.

Proof. Let C1 = {Xj |ρ(Xj ; Y) 6= 0} and C2 = {Xj |∃A, ρ(Xj ; Y|A) 6= 0}, then

C = C1 ∪ C2. (72)

Also we know that U = U1 ∪ U2 if we let U1 = {Xj |I(Xj ; Y) 6= 0} and U2 =
{Xj |∃A, I(Xj ; Y|A) 6= 0}. If we can show that C1 ⊆ U1 and C2 ⊆ U2, then |C| ≤ |U| is
proven.

We first note that since MI of I(Z1;Z2|A) measures the KL divergence between P (Z1, Z2|A) and
P (Z1|A)P (Z2|A), if I(Z1;Z2|A) = 0, then the following condition must also be true:

P (Z1, Z2|A) = P (Z1|A)P (Z2|A). (73)

Using the condition from Eq. (73), we can compute the conditional expectation where

EZ1,Z2
[Z1Z2] =

∫
z1

∫
z2

z1z2p(z1, z2|A)dz1dz2 (74)

=

∫
z1

∫
z2

z1z2p(z1|A)p(z2|A)dz1dz2 (75)

=

[∫
z1

z1p(z1|A)dz1

] [∫
z2

z2p(z2|A)dz2

]
(76)

= EZ1
[Z1]EZ2

[Z2]. (77)
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Since EZ1,Z2 [Z1Z2] = EZ1 [Z1]EZ2 [Z2], it implies that the cross-covariance must also be 0 where

EZ1,Z2 [Z1Z2]− EZ1 [Z1]EZ2 [Z2] = 0. (78)

Since ρ is the cross-covariance scaled by a constant, we see that if MI is 0 then ρ is also 0. By
contrapositivity, we see that if ρ is not equal to zero then MI is not equal to 0. Therefore, if an
element is in C1 or C2, it must also be included into U1 or U2. Hence, we have shown that C1 ⊆ U1

and C2 ⊆ U2

Corollary 4.1. Theorems 3 and 4 yields a lower bound for k where |C|+ 1(|C| 6= d) ≤ k.

Proof. We want to proof that |C| + 1(|C| 6= d) ≤ |U| + 1(|U| 6= d), and then using Theorem 3,
k ≥ |U| + 1(|U| 6= d), we conclude the proof. Using Theorem 4, we have C ⊆ U . We have the
following cases:

• Case 1. |C| = d: Since C ⊆ U , thus |U| = d. and therefore: |C| + 1(|C| 6= d) =
|U|+ 1(|U| 6= d) ≤ k.

• Case 2. |C| < d: This means 1(|C| 6= d) = 1 We have two sub cases:

– 1(|U| 6= d) = 1: using the fact that |C| ≤ |U|, we conclude: |C| + 1(|C| 6= d) ≤
|U|+ 1(|U| 6= d), since both indicator function are equal to one.

– 1(|U| 6= d) = 0: This means that |U| = d or the whole space, since |C| < d, therefore,
there exist atleast one element in U that is not in C, thus: |C| < |U|, which means:
1(|C| 6= d) ≤ |U|+ 1(|U| 6= d).

Corollary 4.2. For Gaussian distributions the inequality turns into equality where |C| = |U|.

Proof. If X and Y are independent, then they are also uncorrelated. However, if X and Y are uncor-
related, then they could be dependent. General case when lack of correlation implies independence is
when the joint distribution of X and Y is Gaussian, which means C = U . Note that in classification
case, P (X,Y ) cannot be Gaussian due to the discreteness of the classification problem.
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F Complete Collection of Style Adaptation Results

In figure 8, we see the complete collection of Style Adaptation Results. Our method, gI, is capable
of capturing the most relevant pixels in spite of having multiple classes with variations among each
class.

Figure 8: gI is capable to handling the added complexity of style variation among multiple classes.

MNIST result for 3 groups

In Fig 9, we investigate gI model on k = 3 and m = 1 number of groups we showed each group with
a different color red, blue, green. As we can see increasing the number of groups kept the shape of
each digits but it separates one of the groups into two which is the digit patterns

Figure 9: MNIST result for k = 3 groups and m = 1 number of most important groups.

MNIST alphabet

Im Fig 10, we tried our model for classification of 25 alphabet and the result of grouping is as follows
for some of the instances.

Figure 10: MNIST Alphabet
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COPD result for 3 Groups.

In Fig 11 we tried COPD gene data set with k = 3 number of groups and we are showing the
important group with white pixels similar to the paper. The result are indicator of similar network
as we have for 2 groups in the paper but increasing number of groups seems to make the important
group sparser or less number of features in the most important group.

Figure 11: COPD gene expression and gene most important groups for k = 3, m = 1.

Implementation details for experiments.

Since an overly expressive network of QθR for reconstruction confounds the interpretability of the
group structure. It is preferable to define QθR as a simpler function. We have found two functions
that work well experimentally. First, for balanced dataset, QθR can simply be an identify function.
However, for unbalanced datasets, we found a well behaved function to be one that converts each
characteristic feature to the average value of features in that group. This can be seen as the following
function: fθR : Rd → Rb where given Ii to be the indexes of feature belong to group i. And let j ∈ Ij
It send x̂j to fθR(x̂j) =

x̂j
|Ii| . which means the average value of each group is a good reconstruction

of each feature in that group.

G Variational lower bound

From Eq. (7), Eq. (8) we can derive the graphical model which is shown on Fig. 12.

X Z

G

s

X̂
Z � s

X̄

Figure 12: Graphical model for group learning representation

Given our network φθS ,θG that is parameterized by θG, θS . We wish to solve the problem

arg max
θG,θS

I(ψθG(X),X)︸ ︷︷ ︸
Ξ1

+λI(φθS ,θG(X); Y)︸ ︷︷ ︸
Ξ2

. (79)

MI, however, is difficult to compute due to its requirement of both the joint and marginal distributions.
Chen et al. [11] circumvented this problem by calculating the variational lower bound. Since the
lower bound is tractable, it can be maximized as a surrogate to Eq. (??). We start the derivation by
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only looking at Ξ2 following the definition of MI as

arg max
θG,θS

MI(φθS ,θG(X); Y) = arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log
(
p(φθS ,θG(x), y)

p(φθS ,θG(x))p(y)

)
dxdy.

(80)
Since p(φθS ,θG(x), y) = p(y|φθS ,θG(x))p(φθS ,θG(x)), we replace the numerator term inside the log
and cancel out p(φθS ,θG(x)), the objective then becomes

arg max
θG,θS

MI(φθS ,θG(X); Y) = arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log
(
p(y|φθS ,θG(x))

p(y)

)
dxdy.

(81)
The integrals can be rewritten into

= arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log [p(y|φθS ,θG(x))]− p(φθS ,θG(x), y)log [p(y)] dxdy,

= arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log [p(y|φθS ,θG(x))] dxdy −
∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log [p(y)] dxdy,

= arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log [p(y|φθS ,θG(x))] dxdy −
∫
y∈Y

[∫
x∈X

p(φθS ,θG(x), y)dx

]
log [p(y)] dy,

= arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log [p(y|φθS ,θG(x))] dxdy −
∫
y∈Y

p(y)log [p(y)] dy.

Since
∫
y∈Y p(y)log [p(y)] dy no longer has a θG, θS term, the maximization over θG, θS can be

treated as a constant, i.e., this term can be removed from the optimization object which leads us to

arg max
θG,θS

∫
x∈X

∫
y∈Y

p(φθS ,θG(x), y)log [p(y|φθS ,θG(x))] dxdy, (82)

arg max
θG,θS

∫
x∈X

∫
y∈Y

p(y|φθS ,θG(x))p(φθS ,θG(x))log [p(y|φθS ,θG(x))] dxdy, (83)

arg max
θG,θS

∫
x∈X

p(φθS ,θG(x))

[∫
y∈Y

p(y|φθS ,θG(x))log [p(y|φθS ,θG(x))] dy

]
dx. (84)

arg max
θG,θS

EφθS,θG (X)

[∫
y∈Y

p(y|φθS ,θG(x))log [p(y|φθS ,θG(x))] dy

]
, (85)

arg max
θG,θS

EφθS,θG (X)EY|φθS,θG (X) [log(p(Y|φθS ,θG(X)))] =

arg max
θG,θS

EY,φθS,θG (X) [log(p(Y|φθS ,θG(X)))] .
(86)

If we look closer at the inner expectation, EY|φθS,θG (X) [log(p(Y|φθS ,θG(X)))], we do not assume
to have p(Y|φθS ,θG(X)). Instead, we wish to approximate the distribution via another distribution
QθP (Y|φθS ,θG(X)) that is parameterized by θP . The approximation can be done by making sure
that the KL divergence between p and q is minimized. When writing out the KL divergence, we get

KL(p||q) =

∫
y∈Y

p(y|φθS ,θG(x))log
[
p(y|φθS ,θG(x))

QθP (y|φθS ,θG(x))

]
dy,

=

∫
y∈Y

p(y|φθS ,θG(x))log(p(y|φθS ,θG(x)))− p(y|φθS ,θG(x))log(QθP (y|φθS ,θG(x)))dy,

= EY|φθS,θG (X)[logp(y|φθS ,θG(x)))]− EY|φθS,θG (X)[logQθP (y|φθS ,θG(x)))].

Since KL divergence is always 0 or greater, we get the inequality relation

EY|φθS,θG (X)[logp(y|φθS ,θG(x)))]− EY|φθS,θG (X)[logQθP (y|φθS ,θG(x)))] ≥ 0 (87)

EY|φθS,θG (X)[logp(y|φθS ,θG(x)))] ≥ EY|φθS,θG (X)[logQθP (y|φθS ,θG(x)))]. (88)
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The inequality suggests that EY|φθS,θG (X)[log(QθP (Y|φθS ,θG(X)))] is a lower bound of
EY|φθS,θG (X)[log(p(Y|φθS ,θG(X)))], and they are equal only when p = q. Therefore, by find-
ing the θ that maximizes EY|φθS,θG (X)[log(QθP (Y|φθS ,θG(X)))] is equivalent to finding the best
approximation of EY|φθS,θG (X)[log(p(Y|φθS ,θG(X)))]. Next, we take Inequality (88) and rewrite
each term back in terms of its integration, we obtain∫

y∈Y
p(y|φθS ,θG(x))logp(y|φθS ,θG(x)))dy ≥∫

y∈Y
p(y|φθS ,θG(x))logQθP (y|φθS ,θG(x)))dy.

(89)

The key realization of this inequality is that given any φθS ,θG(X), the inequality will still hold.
Therefore, if we additionally integrate both terms over any set of X , the inequality will still hold.
Following this logic, we can add an additional integration and maintain the inequality.∫

x∈X
p(φθS ,θG(x))

∫
y∈Y

p(y|φθS ,θG(x))logp(y|φθS ,θG(x)))dydx ≥∫
x∈X

p(φθS ,θG(x))

∫
y∈Y

p(y|φθS ,θG(x))logQθP (y|φθS ,θG(x)))dydx

(90)

∫
x∈X

∫
y∈Y

p(y, φθS ,θG(x))logp(y|φθS ,θG(x)))dydx ≥∫
x∈X

∫
y∈Y

p(y, φθS ,θG(x))logQθP (y|φθS ,θG(x)))dydx.

(91)

EY,φθS,θG (X) [log(p(Y|φθS ,θG(X)))] ≥ EY,φθS,θG (X) [log(QθP (Y|φθS ,θG(X)))] (92)

By looking at the relationship between Eq. (86) and (92), notice that if we simultaneously maximize
θ and θG, θS using QθP , the θP term would help us find the closest approximation of p while the
θG, θS term would help us maximize the MI objective. Therefore, to maximize Eq. (??), we can use
QθP as a surrogate and instead maximize

max
θP ,θG,θS

EY,φθS,θG (X) [log(QθP (Y|φθS ,θG(X)))] (93)

We can estimate Eq. 93 by ancestral sampling from X and Y based on the graphical model in Fig. 12
to compute the expectation empirically in the new objective below as

max
θP ,θG,θS

1

n

∑
i=1

log(QθP (yi|φθS ,θG(xi))). (94)

Here, we are performing maximum likelihood. Note that since Y is the label, the probability of yi
equaling its label is 1, and the probability of it being another label is 0. Therefore, the Eq. (94) can be
equivalently written as minimizing the Cross-Entropy loss where

min
θP ,θG,θS

−
∑
i=1

p(yi)log(QθP (yi|φθS ,θG(xi))). (95)

Therefore, given ψθG,θS (X) = X̄, objective (95) can be used in place of the Ξ2 term of our
objective Eq. (79).

Following the same derivation, we can replace the Ξ1 with its lower bound as well. Here we use QθR
as the neural network to approximate the true distribution.

max
θR,θG

EX,ψθG (X) [log(QθR(X|ψθG(X)))] . (96)

Consequently, instead of maximizing Eq. (79) directly, we can maximized its variational lower bound

max
θR,θG,θS

EX,ψθG (X) [log(QθR(X|ψθG(X)))] + λEY,φθS,θG (X) [log(QθP (Y|φθS ,θG(X)))] , (97)

or
max

θP ,θR,θG,θS
EX,X̂

[
log(QθR(X|X̂))

]
+ λEY,X̄

[
log(QθP (Y|X̄))

]
. (98)
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Different Variations of this Objective. It is not always necessary to approximate p(X|X̂) with
QθR . Depending on prior information on the data, we can simply assume p(X|X̂) to have a certain
distribution. For example, we can simply set it to the Gaussian distribution if X can take any value.
Here, if we let QθP be a Gaussian distribution of some constant σ, then given ψθG(xi) as the mean
Eq. (96) becomes

max
θG,θS

1

n

∑
i=1

log
(
e−
||xi−ψθG

(xi)||
2

2σ2

)
. (99)

By building σ directly into λ, we can ignore σ. By applying the log term to the exponential term, the
objective becomes

min
θG,θS

∑
i=1

||xi − ψθG,θS (xi)||2. (100)

From this objective, we see that by assuming that QθR is a Gaussian Distribution, we can instead
optimize MSE as a variational lower bound for the mutual information, i.e., we no longer need to
pass ψθG(xi) through QθR . Therefore, as a surrogate, we can solve Eq. (3) with

min
θP ,θR,θG,θS

∑
i=1

||xi − ψθG,θS (xi)||2 − λ
∑
i=1

p(xi)log(QθP (xi|φθS ,θG(xi))). (101)

H Computational and Memory Complexity Analysis

We derive the complexity for a general k, d, but in most cases, we assume the number of group are
much smaller than number of features meaning: k << d. For our purposes, we are using stochastic
gradient descent. So the complexity is proportion to the number of samples N into the number of
parameters involved in the neural net. For each sample, the input size is d, then we have an neural
net which the output is the Group matrix G, hence the number of parameters for this part is kd2.
Since G determines the auto-encoder ψθG(xi) = GTGxi for a sample xi. thus that is just matrix
multiplication. So for auto-encoder ψθG(xi) the complexity is O(nkd2). For group selection part,
we have another neural net for learning the projection map through selector s, which the complexity
is k2 which lead to Z� s. Having Z� s, lead to X̄ by matrix multiplication. We used the last neural
net from X̄ to predict the class lables. Assumming we have C classes, lead to the complexity of
Cd. Hence the overall complexity for gI is O(n(kd2 + k2 + Cd)), assuming C << d and k << d,
complexity of gI is O(nkd2). For the memory complexity of a stochastic gradient descent, we only
need to save the information of weights for each sample at a time, hence it is O(kd2). If we are doing
mini-batch this number linearly increases by the size of the mini-batches.
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